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Abstract

We develop a scalar theory of gravity in which the apparent dark matter halo
of a galaxy is the response of a Fisher information vacuum to the presence of
baryonic matter. The starting point is a local Fisher energy functional for a scalar
field 𝜎F on an information manifold for the vacuum, with baryons entering as
a source. The Fisher energy admits a Bogomolny type completion that fixes
the halo profile via a Fisher bound rather than empirical fitting. The scalar
sector is formulated as a dissipative gradient flow generated by a Fisher operator
𝐺F embedded in the Universal Information Hydrodynamics framework, with
reversible currents 𝐽F encoded by a bounded entropy correction obtained by
viewing𝜎F as the logit of a Bernoulli occupation number on the Bogoliubov Kubo
Mori information manifold. This yields a Fisher Bogomolny equation for the halo
at fixed baryon distribution and a Fisher free energy with a saturation mechanism
that prevents runaway halo growth, while also producing inequalities and scaling
relations that bound halo masses and accelerations and identify characteristic
Fisher acceleration and surface density scales. In spherical symmetry the Fisher
Bogomolny equation produces cored or cuspy halos depending on a Fisher
temperature parameter 𝑇𝐹 controlling bounded entropy: in the cold limit 𝑇𝐹 → 0
the profiles approach Navarro Frenk-White like cusps, while for 𝑇𝐹 of order unity
the solutions match Burkert type cores. A Bernoulli bounded entropy model
reproduces this cusp to core transition and fits cored profiles. On realistic baryon
distributions taken from the SPARC sample, a single halo amplitude per galaxy
obtained from a linear Fisher susceptibility model captures many rotation curves,
especially in low surface brightness and dwarf galaxies, while 𝐺F acting on high
surface density discs generates baryon compressed profiles and characteristic
acceleration and surface density scales consistent with observed disc galaxy
trends. Gravity in this regime is described by the combined acceleration of
baryons and Fisher halo, with the halo realised as the Fisher minimiser of the free
energy under the given baryon source and the Fisher sector acting as a universal
information theoretic susceptibility of the vacuum to matter.
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1 Introduction

The dynamics of galaxies are dominated at large radii by an effective mass distribution
that is not accounted for by luminous baryons. Rotation curves remain approximately
flat far beyond the optical disc, and gravitational lensing maps reveal mass concen-
trations offset from baryonic components in cluster collisions. Standard approaches
address this by postulating a new form of matter, or by modifying the law of inertia
or the Poisson equation. Both strategies introduce new degrees of freedom or new
constants which are constrained empirically but not determined by an underlying
geometric or information theoretic principle.

In earlier work on the converse Madelung problem the Schrödinger equation was
reconstructed from minimal information theoretic axioms, with the quantum potential
arising as a Fisher information term in a hydrodynamic representation [1, 2].

In Universal Information Hydrodynamics the same Fisher structure governs the
irreversible part of a general GKLS generator on a state space equipped with a
monotone metric and a symplectic form [3]. The combined generator 𝐾 = 𝐺 + 𝐽
splits into a symmetric Fisher part 𝐺 and a skew part 𝐽 which encodes reversible
currents, and the pair is constrained by an information geometric structure that admits
a Fisher–Kähler realisation on suitable coadjoint orbits.

This suggests treating gravity at galactic scales as the response of a Fisher information
vacuum to the presence of baryonic matter. Instead of introducing a new particle
species with an arbitrary density profile, one introduces a scalar Fisher field 𝜎F on
physical space whose gradients encode the local Fisher energy stored in vacuum
degrees of freedom. Baryons act as sources in a Fisher free energy functional, and
the resulting scalar field equation is fixed by the Fisher structure and its Bogomolny
completion rather than by phenomenological fitting. The apparent halo is then an
emergent property of the Fisher vacuum, determined by a small set of geometric
parameters and the baryon distribution.

1.1 Fisher information and hydrodynamic form

The Fisher information of a probability density 𝜌(𝑥) on R𝑑 ,

𝐼 [𝜌] =
∫
R𝑑

|∇𝜌(𝑥) |2
𝜌(𝑥) d𝑥,

plays a distinguished role among information measures. It is the unique metric tensor
on the statistical manifold of probability distributions [8] that is monotone under coarse
graining, and it appears as the quadratic form governing small fluctuations around a
reference distribution.

In the Madelung representation of quantum mechanics a wave function 𝜓 =
√
𝜌 e𝑖𝑆

gives rise to a phase field 𝑆 and a density field 𝜌, and the kinetic energy can be written
as the sum of a classical part

∫
𝜌 |∇𝑆 |2 and a Fisher part proportional to 𝐼 [𝜌] [7, 9].

In Universal Information Hydrodynamics this structure is lifted to the space of density
matrices equipped with a monotone quantum metric such as the Bogoliubov Kubo
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Mori (BKM) metric. The irreversible part of a GKLS generator can be written as
a gradient flow with respect to this metric, and the Fisher information functional
plays the role of a Lyapunov functional. The reversible part generates Hamiltonian
or symplectic flows on the same manifold. The pair (𝐺, 𝐽) is constrained by a Fisher
Kähler structure on suitable coadjoint orbits, so that the state space carries both a
Riemannian Fisher metric and a compatible symplectic form.

This geometric framework suggests that any effective field theory for large scale
dynamics in a medium built from such degrees of freedom should inherit a Fisher
structure. In particular, if the vacuum is treated as a medium with internal states
described by a Fisher Kähler manifold, then long wavelength excitations of that vacuum
will be governed by effective Fisher energy functionals and gradient flows derived
from the underlying metric.

This extends to the metric sector itself. In Section 7 we show that the natural Fisher
metric on the configuration space of spatial geometries is the DeWitt supermetric.
Imposing refoliation invariance on the associated reversible generator uniquely fixes
the Hamiltonian constraint to be that of General Relativity. Consequently, the Einstein–
Hilbert action is recovered not as an external assumption, but as the rigid dynamical
backbone of the theory, ensuring that the scalar halo embeds covariantly into standard
spacetime dynamics.

1.2 Scalar Fisher gravity

The simplest way to encode the response of the Fisher vacuum to baryonic matter is
through a real scalar field 𝜎F(𝑥) on physical space, with an energy functional of the
form

F [𝜎F; 𝜌𝑏] =

∫
R3

{
𝛼(𝑥) |∇𝜎F(𝑥) |2 +𝑉I

(
𝜎F(𝑥)

)
− 𝜅 𝜎F(𝑥) 𝜌𝑏 (𝑥)

}
d3𝑥.

Here 𝜌𝑏 is the baryon density, where 𝛼 is a Fisher stiffness that encodes the local
information metric of the vacuum, 𝑉𝐼 is an effective bounded entropy potential that
arises from the underlying BKM geometry, and 𝜅 has the potential so that the scalar-
baryon coupling −𝜅 𝜎𝐹𝜌𝑏 contributes with the correct physical units in the Fisher free
energy.

The field equation obtained by varying (1.2) with respect to 𝜎F is a nonlinear elliptic
equation of Fisher type. In the weak field regime it can be written schematically as

−∇ ·
(
2𝛼(𝑥)∇𝜎𝐹 (𝑥)

)
+ 𝑑𝑉𝐼

𝑑𝜎𝐹

(𝑥) = 𝜅𝜌𝑏 (𝑥).

The Fisher gravitational acceleration associated to the scalar sector is then defined by

𝑔F(𝑥) = 𝜆𝐹 ∇𝜎F(𝑥),

where 𝜆𝐹 is a Fisher coupling scale. The total acceleration governing slow test particles
is the sum of the Newtonian baryon acceleration 𝑔N and the Fisher halo acceleration
𝑔F,

𝑔tot(𝑥) = 𝑔N(𝑥) + 𝑔F(𝑥).
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In spherical symmetry this produces a Fisher halo contribution to the circular velocity
that can be expressed as a Green function of the baryon acceleration, and in general
disc geometries it can be treated as a nonlocal susceptibility kernel.

The central questions are how the Fisher energy functional is fixed by information
geometry, how the bounded entropy potential arises from a Bernoulli or BKM geometry,
and how the resulting scalar theory compares to observed galactic rotation curves and
halo profiles.

1.3 Information geometric origin of the Fisher halo

In Universal Information Hydrodynamics the generator 𝐾 of the dynamics on state
space decomposes into a symmetric part 𝐺 and a skew part 𝐽,

𝐾 = 𝐺 + 𝐽,

where 𝐺 is a Fisher gradient operator determined by a monotone metric, and 𝐽 is
a Hamiltonian vector field determined by a symplectic form. On diagonal sectors
associated with classical probability distributions, 𝐺 reduces to a Fisher diffusion
operator, while 𝐽 encodes reversible currents.

When the scalar field 𝜎F is interpreted as the logit of a Bernoulli occupation number
𝑝(𝑥) on a local two level system, the effective potential 𝑉I (𝜎F) inherits a bounded
entropy structure from the BKM geometry of the two level density matrix. The Fisher
mobility vanishes at 𝑝 = 0 and 𝑝 = 1, so the Fisher diffusion generated by 𝐺 cannot
drive the system beyond these bounds. The reversible sector 𝐽 can be interpreted
effectively as giving rise to a Fisher temperature parameter 𝑇𝐹 in the scalar free energy,
controlling the weight of the bounded entropy term relative to the gradient term in this
phenomenological reduction.

The halo is not an arbitrary profile but a distinguished solution of a Fisher Bogomolny
equation derived from the structure of 𝐺 and the bounded entropy geometry. The
cusp to core transition is then controlled by 𝑇𝐹 and by the baryon density, with low
temperature and high surface density favouring cusps, and higher temperature and low
surface density favouring cores.

1.4 Structure of the paper

The paper is organised as follows. Section 2 introduces the scalar Fisher field, the
Fisher free energy functional and its Bogomolny completion in the presence of a
baryon source. We derive the scalar field equation and its spherical reduction, identify
the Fisher halo acceleration in terms of the scalar gradients, and record basic functional
analytic properties and simple solar system bounds for the scalar sector.

Section 3 constructs a bounded entropy potential for 𝜎𝐹 by treating it as the logit of a
Bernoulli occupation number on a BKM manifold. This produces a Fisher temperature
parameter 𝑇𝐹 that controls the strength of the entropy term, and we analyse a family of
spherical Bernoulli halos that interpolate between cuspy and cored profiles as 𝑇𝐹 and
the baryon density are varied.
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Section 4 describes numerical solvers for the scalar Fisher halo equation in spherical
symmetry and on three-dimensional grids. We present parameter sweeps over 𝑇𝐹
and stiffness profiles that illustrate the cusp-to-core transition and the emergence of
Burkert-like cores and NFW-like cusps in the Bernoulli model.

Section 5 develops a Fisher susceptibility description of disc galaxies, treating the halo
as a nonlocal response to baryonic acceleration. We derive the Baryonic Tully-Fisher
Relation from the Bogomolny scaling, establish structural inequalities and Freeman-
type surface density bounds, and introduce a pair of Fisher gap and response indices
that define a “Fisher spectrometer” for galaxies.

Section 6 presents the numerical implementation of the one-parameter Fisher fit to
the SPARC galaxy sample. We analyze the results across low, intermediate and high
density subsamples, demonstrating the transition from a soft to a stiff vacuum response
and confirming the universality of the effective Planck-weighted stiffness profile.

Section 7 details the relativistic completion of the theory. We derive Einstein geometro-
dynamics directly from Fisher–DeWitt kinematics, showing that the Einstein-Hilbert
action is the unique reversible generator compatible with the information geometry. We
further demonstrate that the reversible “Kähler current” sector suppresses gravitational
slip, ensuring the model remains consistent with weak lensing observations.

Section 8 discusses cluster-scale Fisher halos and colliding systems. We show that the
scalar sector naturally accommodates Bullet-type phenomenology where lensing peaks
track collisionless components, and discuss implications for dwarf galaxy clustering.

Section 9 summarises the main results, outlines the guardrails and failure modes of
the effective theory, and places the scalar Fisher gravity picture within the broader
Universal Information Hydrodynamics programme.

1.5 Guardrails and failure modes

The scalar Fisher halo model developed below is intended to be a necessity statement
inside a specific class of Fisher free energies, baryon sources and weak field regimes.
This subsection records the main analytic and phenomenological guardrails under
which the results are claimed to hold, together with simple failure modes that would
falsify or constrain the present formulation. The spirit is the same as the scope and
guardrails discussion in [2, 3], adapted to the scalar halo setting.

Analytic guardrails for the scalar Fisher sector. Throughout we work with the scalar
free energy (1.2)

𝐹 [𝜎𝐹 ; 𝜌𝑏] =
∫
R3

(
𝛼(𝑥) |∇𝜎𝐹 (𝑥) |2 +𝑉𝐼 (𝜎𝐹 (𝑥)) − 𝜅𝜎𝐹 (𝑥) 𝜌𝑏 (𝑥)

)
d3𝑥,

with a stiffness profile 𝛼(𝑥) and a bounded entropy potential 𝑉𝐼 induced by the
Bernoulli construction in Section 3. The functional analysis in Section 2, the
Bogomolny completion, and the radial flow statements in Section 4 are made under
three structural hypotheses.

First, the potential sector is assumed to be 𝐶2, bounded below, and strictly convex
on the range of 𝜎𝐹 explored by physically relevant halos. In the Bernoulli model of
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Section 3 this corresponds to keeping the bounded entropy channel in a single well
regime, so that the second variation 𝑉 ′′

𝐼
(𝜎𝐹) is non negative along the halo branch.

Strongly non convex choices of 𝑉𝐼 , for example double well deformations of the
Bernoulli potential, would spoil the coercivity of the second variation and can lead to
multiple competing local minima. In such cases the uniqueness and stability of the
minimiser are not covered by the present arguments.

Second, the Fisher stiffness is taken to be local and uniformly elliptic. We assume that
𝛼(𝑥) is measurable and satisfies

0 < 𝛼min ≤ 𝛼(𝑥) ≤ 𝛼max < ∞

on the region where 𝜌𝑏 and 𝜌𝐹 are non negligible. This keeps the Euler-Lagrange
equation in the class of uniformly elliptic second order operators and allows standard
maximum principles and regularity theory to be applied. Nonlocal kernels or stiffness
profiles that vanish inside the halo, which would effectively change the tangent norm
in the sense of [2], are outside the present scope and can break the Fisher curvature
picture imported from the density manifold.

Third, the baryon source 𝜌𝑏 is assumed to have finite total mass and to belong to
a mild regularity class, such as 𝐿1(R3) ∩ 𝐿 𝑝 (R3) with 𝑝 > 3/2, or to be a smooth,
radially decreasing profile with reasonable decay at large radius. This covers the coarse
grained SPARC discs and simple cluster models used later. Highly singular or strongly
oscillatory sources, for example distributions with Dirac spikes or fractal structure at
very small scales, are not treated here. The halo theory is intended as a coarse grained
description on kiloparsec scales and is not claimed to resolve stellar scale clumpiness.

Astrophysical scope and parameter hierarchy. The present paper works in a weak field,
quasi Newtonian regime in which the metric remains general relativistic and the Fisher
sector enters only through an additional energy density in the Poisson equation. The
scalar field modifies the total acceleration by an extra contribution 𝑔𝐹 = −𝜆𝐹∇𝜎𝐹 ,
but it does not introduce new tensorial degrees of freedom or alter the local light
cones. Precision tests of the metric sector and gravitational wave propagation (such
as GW170817) are therefore inherited from general relativity provided the Fisher
contribution to the Newtonian potential is small on solar system and binary pulsar
scales. Section 5 and the solar system bounds in Section 2 are written under this
separation of roles.

On the data side, sharp claims in this paper are restricted to rotationally supported disc
galaxies with well measured baryon profiles, essentially the SPARC sample, and to
simple cluster scale toy models. Elliptical galaxies with strongly anisotropic velocity
tensors, violently interacting systems, and a full Fisher cosmology are deliberately
left for future work. The Fisher scalar sector can in principle be extended into those
regimes, but this paper does not claim that such an extension has been carried out.

A further guardrail concerns parameter counting. Motivated by the universality pattern
in [3], we work with a small set of global Fisher parameters such as a coupling scale
𝜆𝐹 , a Fisher temperature 𝑇𝐹 , and one or two parameters in the stiffness profile 𝛼(𝑟),
together with at most a single susceptibility-like amplitude per galaxy when fitting
rotation curves. Allowing additional per galaxy knobs, highly flexible radial profiles
for 𝛼, or ad hoc modifications of the bounded entropy map would move the model into
the class of over parameterised halo fits that the present approach is designed to avoid.
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Falsifiers and breakdown scenarios. Within these guardrails the scalar Fisher halo
picture has several clean failure modes.

First, the Bogomolny completion and bounded entropy sector give inequalities that
bound the halo response to a given baryon source. At fixed 𝜌𝑏 and Fisher parameters
there are upper bounds on the total Fisher halo mass and on central slopes or core
surface densities. If a robust population of galaxies were to exhibit inferred halo masses
or inner densities that systematically exceed these bounds for all admissible choices
of the global Fisher parameters, the present scalar halo model would be falsified or
would require a different potential sector.

Second, once a parameter hierarchy is fixed, the scalar Fisher theory predicts specific
relations between baryon distributions and rotation curves, including the shape of the
radial acceleration relation and the slope and zero point of the baryonic Tully Fisher
relation for a given choice of 𝜆𝐹 and 𝑇𝐹 . If a full SPARC scale analysis were to show
that no single choice of global Fisher parameters plus one amplitude per galaxy can
jointly reproduce these relations while respecting the mass and slope bounds, then the
current formulation of the Fisher scalar sector would be in tension with the data.

Third, the wider UIH framework imposes Fisher monotonicity under coarse graining
and links Fisher curvature scales to hypocoercive indices measured in quantum and
statistical systems [2, 3]. If fitting galactic halos forced the Fisher scalar into a regime
of effective gaps or spectral exponents that is grossly incompatible with Fisher channels
in laboratory systems, in a way that cannot reasonably be attributed to scale separation,
the cross scale universality story that motivates Fisher halos would be weakened.

Fourth, on cluster scales the scalar Fisher model implies that effective mass distributions
inferred from lensing should track a combination of baryons and Fisher halo in a way
consistent with the static or slowly evolving scalar equation. If future observations of
clean, dissociative cluster collisions were to show that lensing mass robustly tracks
only the hot gas, or moves in a way that cannot be reconciled with a quasi static Fisher
scalar coupled to the baryon density, the simple coupling adopted here would have to
be revised.

Finally, there are explicit non claims. The present paper does not cover our work on
Fisher cosmology for the cosmic microwave background, large scale structure and
lensing. It does not address strong field quantum gravity or black hole interiors. It does
not attempt to derive a unique microscopic model of the Fisher vacuum degrees of
freedom beyond the assumption that their state space carries a Fisher Kähler structure
with a bounded entropy scalar sector. Reading the scalar Fisher halo as a complete
replacement for general relativity or for all dark sector phenomenology would therefore
be outside the scope that this guardrail subsection is intended to define.

1.6 Relation to existing approaches

It is useful to locate the scalar Fisher halo model within the landscape of existing
attempts to explain galactic and cluster scale mass discrepancies. Standard cold dark
matter treatments postulate a new collisionless particle species whose phase space
distribution is evolved under gravity and feedback. In phenomenological applications
this is often encapsulated by flexible profile families such as NFW or Einasto halos,
with two or more shape parameters per galaxy.
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Modified dynamics frameworks instead alter the relation between acceleration and
force or the structure of the Poisson equation, typically introducing a new acceleration
scale and an interpolating function that control the transition between Newtonian
and modified regimes. Emergent gravity proposals appeal to entropic or holographic
considerations [11, 12] to generate additional forces from coarse grained microscopic
degrees of freedom.

The scalar Fisher construction developed here can be read as an alternative corner
of the same phenomenological space. Rather than adding a new particle species or
modifying the inertial law directly, we treat the apparent halo as the response of a Fisher
information vacuum whose state space already carries a monotone information metric
and a Fisher Kähler structure in other contexts. The free energy is fixed by this Fisher
geometry and by a bounded entropy channel, and the halo profile is determined by a
Bogomolny completion and a scalar field equation rather than by choosing a density
profile by hand. Once a small set of global Fisher parameters and a simple stiffness
hierarchy are fixed, the scalar sector is constrained to live inside the corresponding
Fisher Bogomolny and bounded entropy bounds.

From a practical point of view the scalar Fisher model occupies an intermediate
position between fully empirical halo fitting and tightly prescribed modified gravity. It
retains the Newtonian and weak field GR limit for the metric sector, and uses the Fisher
scalar only to supply an additional quasi static potential determined by the baryon
distribution. At the same time, the Fisher free energy and its Bogomolny structure
restrict the space of allowed halos more strongly than generic profile fits. A systematic
quantitative comparison with cold dark matter fits, MOND type laws and emergent
gravity constructions on common galaxy and cluster samples is left for future work,
but the present framework is designed so that such comparisons can be made at the
level of Fisher parameters and inequalities rather than ad hoc profiles.

Remark (Quantum potential as Korteweg capillarity). In the converse Madelung
analysis [1, 2] the Fisher curvature term appears in the Hamiltonian as a quadratic
gradient energy

𝐹F [𝜌] = 4𝛼𝑄
∫
R𝑑

|∇
√︁
𝜌(𝑥) |2 d𝑥,

with associated Euler-Lagrange potential

𝑄𝛼𝑄
(𝜌) = − 2𝛼𝑄

Δ
√
𝜌

√
𝜌
.

Written in momentum form, the contribution of 𝐹F can be expressed as the divergence
of a symmetric stress tensor ΠF whose entries are built from 𝜌, ∇𝜌 and ∇2𝜌. This
stress has the same structure as the classical Euler-Korteweg capillarity stress for
a compressible fluid with a density-dependent capillarity coefficient, so that the
Bohm-Madelung “quantum potential” 𝑄𝛼𝑄

may be viewed as the capillary pressure
associated with an internal surface tension of the probability fluid. In particular, the
Madelung hydrodynamics sit inside the well-studied class of capillary (Euler-Korteweg)
fluids; the Fisher term penalises sharp gradients of 𝜌 rather than introducing any new
long-range interaction.
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We will only use this observation at the level of interpretation. No additional
assumptions from the Korteweg theory are required in what follows.

Remark. The Fisher stiffness 𝑍 (𝜎𝐹) is positive by construction and the bounded
entropy potential 𝑉𝐼 (𝜎𝐹) is built from the Bernoulli entropy, so the scalar sec-
tor admits a standard relativistic completion. A covariant formulation and the
corresponding energy conditions are recorded in Section 2.8.

2 Scalar Fisher gravity and Bogomolny structure

In this section we develop the scalar Fisher description of gravity in the weak field
regime. We start from a local Fisher energy functional for a scalar field 𝜎F on R3

coupled to a baryon density 𝜌𝑏, and we derive the associated Bogomolny type bound
and scalar field equation. The construction is deliberately minimal and local, and will
be refined later when bounded entropy and Bernoulli geometry are introduced.

2.1 Fisher free energy for a scalar halo

We consider a real scalar field 𝜎F : R3 → R and a non negative baryon density
𝜌𝑏 : R3 → R≥0. The Fisher free energy is taken to be of the form

F [𝜎F; 𝜌𝑏] =

∫
R3

{
𝛼(𝑥) |∇𝜎F(𝑥) |2 +𝑈

(
𝜎F(𝑥)

)
− 𝜅 𝜎F(𝑥) 𝜌𝑏 (𝑥)

}
d3𝑥,

where 𝛼(𝑥) > 0 is a stiffness profile,𝑈 is a scalar potential, and 𝜅 is a coupling constant
with potential.

The interpretation is that the gradient term encodes the Fisher energy stored in spatial
variations of the scalar field, while the potential𝑈 encodes local constraints from the
underlying information geometry of the vacuum. Consistent with the thermodynamic
structure of Universal Information Hydrodynamics [3], the scalar field 𝜎𝐹 can be
viewed as a dimensionless chemical potential.

In this picture the linear coupling −𝜅𝜎F𝜌𝑏 has the standard form of a Gibbs mixing
contribution, representing the work required to insert baryonic matter 𝜌𝑏 into the
vacuum fluid.

We will use this as the canonical effective coupling between the Fisher vacuum sector
and baryons in the present scalar theory.

A simple field redefinition makes the stiffness role of 𝛼more transparent in the constant
coefficient case. For 𝛼(𝑥) ≡ 𝛼0 one can write

𝜙(𝑥) =
√︁

2𝛼0 𝜎𝐹 (𝑥),

so that
𝛼0 |∇𝜎𝐹 |2 =

1
2
|∇𝜙|2, −𝜅 𝜎𝐹 𝜌𝑏 = − 𝜅

√
2𝛼0

𝜙 𝜌𝑏 .
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In this normalisation the gradient term takes the canonical form 1
2

∫
|∇𝜙|2𝑑3𝑥, and the

effect of 𝛼0 is to set the overall size of an effective matter coupling

𝑔eff =
𝜅

√
2𝛼0

.

Larger Fisher stiffness therefore corresponds to a more weakly coupled scalar response
to a given baryon distribution, while smaller stiffness enhances the response. When
𝛼(𝑥) varies slowly with position the same interpretation holds locally up to derivative
corrections from ∇𝛼, which can be treated as higher order terms in the weak field,
slowly varying regime.

The Euler Lagrange equation for 𝜎F obtained by varying (2.1) is

−∇·
(
2𝛼(𝑥) ∇𝜎F(𝑥)

)
+𝑈′ (𝜎F(𝑥)

)
= 𝜅 𝜌𝑏 (𝑥),

interpreted in a weak sense when 𝜌𝑏 is a finite measure rather than a smooth function.

The Fisher gravitational acceleration associated to the scalar sector is defined as the
gradient of the field,

𝑔F(𝑥) = 𝜆𝐹 ∇𝜎F(𝑥),
where 𝜆𝐹 is a positive constant. For a test particle in the weak field regime, the
total acceleration is the sum of the Newtonian baryon acceleration 𝑔N and the Fisher
acceleration,

𝑔tot(𝑥) = 𝑔N(𝑥) + 𝑔F(𝑥).

Microscopic origin of the stiffness scale. In Fisher regularised Madelung dynamics
the quadratic Fisher form that controls density gradients carries a fixed coefficient
𝛼 = ℏ2/(2𝑚), determined by matching the hydrodynamic equations to the Galilean
dispersion relation for a free particle [1].

In that setting the same coefficient sets the scale of the quantum regulariser and ties
the Fisher curvature of the density directly to the inertial mass 𝑚 [2]. Scalar sectors
that descend from such microscopic dynamics inherit this Fisher coefficient in the
overall scale of their gradient term. After the canonical rescaling that brings the scalar
Fisher energy to the form 1

2

∫
|∇𝜙|2 𝑑3𝑥, the coefficient 𝛼0 moves into the effective

matter coupling 𝑔eff = 𝜅/
√

2𝛼0 and can be interpreted as setting an inverse squared
coupling for the scalar response. In this way the stiffness profile 𝛼(𝑥) appearing in
the halo model can be viewed, at least at the level of scale setting, as the large scale
imprint of the same Fisher regulariser that controls the underlying Madelung sector.

In the remainder of this section we choose𝑈 so that the gradient term and source term
admit a Bogomolny completion, leading to a Fisher bound and a first order equation
for 𝜎F in spherical symmetry.

2.2 Spherical symmetry

We now specialise to static, spherically symmetric configurations. Write

𝜎F(𝑥) = 𝜎F(𝑟), 𝑟 = |𝑥 |,
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and assume a spherically symmetric baryon density

𝜌𝑏 (𝑥) = 𝜌𝑏 (𝑟).

The free energy (2.1) becomes

F [𝜎F; 𝜌𝑏] = 4𝜋
∫ ∞

0

{
𝛼(𝑟) 𝜎′

F(𝑟)
2 +𝑈

(
𝜎F(𝑟)

)
− 𝜅 𝜎F(𝑟) 𝜌𝑏 (𝑟)

}
𝑟2 d𝑟.

where a prime denotes a derivative with respect to 𝑟.

The Euler Lagrange equation (2.1) reduces to

− 1
𝑟2

d
d𝑟

(
2𝛼(𝑟) 𝑟2𝜎′

F(𝑟)
)
+𝑈′ (𝜎F(𝑟)

)
= 𝜅 𝜌𝑏 (𝑟).

This can be interpreted as a balance between Fisher diffusion, local potential forces,
and the baryon source.

The baryon mass enclosed within radius 𝑟 is

𝑀𝑏 (𝑟) = 4𝜋
∫ 𝑟

0
𝜌𝑏 (𝑠) 𝑠2 d𝑠,

so that
𝜌𝑏 (𝑟) 𝑟2 =

1
4𝜋

d𝑀𝑏

d𝑟
(𝑟).

The Newtonian baryon acceleration in the radial direction is

𝑔N(𝑟) = −𝐺𝑀𝑏 (𝑟)
𝑟2 𝑟,

where 𝑟 is the radial unit vector. The Fisher halo acceleration is

𝑔F(𝑟) = 𝜆𝐹 𝜎
′
F(𝑟) 𝑟,

and the total circular velocity for a test particle in the equatorial plane is

𝑣2
c (𝑟) = 𝑟 |𝑔N(𝑟) + 𝑔F(𝑟) |.

2.3 Cold Fisher limit and Bogomolny completion

In the cold Fisher limit the bounded entropy potential is negligible, so we set

𝑈 (𝜎F) = 0.

The free energy reduces to

Fcold [𝜎F; 𝜌𝑏] = 4𝜋
∫ ∞

0

{
𝛼(𝑟) 𝜎′

F(𝑟)
2 − 𝜅 𝜎F(𝑟) 𝜌𝑏 (𝑟)

}
𝑟2 d𝑟.
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Using (2.2), the source term can be written as

−4𝜋𝜅
∫ ∞

0
𝜎F(𝑟) 𝜌𝑏 (𝑟) 𝑟2 d𝑟 = −𝜅

∫ ∞

0
𝜎F(𝑟)

d𝑀𝑏

d𝑟
(𝑟) d𝑟.

An integration by parts gives

−𝜅
∫ ∞

0
𝜎F(𝑟)

d𝑀𝑏

d𝑟
(𝑟) d𝑟 = −𝜅

[
𝜎F(𝑟) 𝑀𝑏 (𝑟)

]∞
0 + 𝜅

∫ ∞

0
𝜎′

F(𝑟) 𝑀𝑏 (𝑟) d𝑟.

Assuming that 𝑀𝑏 (𝑟) vanishes at the origin and that 𝜎F(𝑟) does not diverge faster than
1/𝑟2 at infinity, the boundary term can be treated as a finite surface contribution.

Substituting (2.3) into (2.3) gives

Fcold [𝜎F; 𝜌𝑏] = 4𝜋
∫ ∞

0
𝛼(𝑟) 𝜎′

F(𝑟)
2 𝑟2 d𝑟+𝜅

∫ ∞

0
𝜎′

F(𝑟) 𝑀𝑏 (𝑟) d𝑟−𝜅
[
𝜎F(𝑟) 𝑀𝑏 (𝑟)

]∞
0 .

The integrand in the bulk can be written as a quadratic in 𝜎′
F,

4𝜋𝛼(𝑟) 𝑟2 𝜎′
F(𝑟)

2+𝜅 𝑀𝑏 (𝑟) 𝜎′
F(𝑟) = 4𝜋𝛼(𝑟) 𝑟2

(
𝜎′

F(𝑟)+
𝜅 𝑀𝑏 (𝑟)

8𝜋𝛼(𝑟) 𝑟2

)2
− 𝜅2𝑀𝑏 (𝑟)2

16𝜋 𝛼(𝑟) 𝑟2 .

Therefore

Fcold [𝜎F; 𝜌𝑏] = 4𝜋
∫ ∞

0
𝛼(𝑟) 𝑟2

(
𝜎′

F(𝑟) +
𝜅 𝑀𝑏 (𝑟)

8𝜋𝛼(𝑟) 𝑟2

)2
d𝑟

−
∫ ∞

0

𝜅2𝑀𝑏 (𝑟)2

16𝜋 𝛼(𝑟) 𝑟2 d𝑟 − 𝜅
[
𝜎F(𝑟) 𝑀𝑏 (𝑟)

]∞
0 .

The first term is non negative, so we obtain the Fisher Bogomolny bound

Fcold [𝜎F; 𝜌𝑏] ≥ −
∫ ∞

0

𝜅2𝑀𝑏 (𝑟)2

16𝜋 𝛼(𝑟) 𝑟2 d𝑟 − 𝜅
[
𝜎F(𝑟) 𝑀𝑏 (𝑟)

]∞
0 .

It is convenient to isolate the radial integral in this expression as a Fisher charge
functional of the baryon distribution.

Writing the radial reduction in the form of a general Bogomolny completion, one can
identify a weight

𝑤(𝑟) = 8𝜋 𝛼(𝑟) 𝑟2, 𝑞(𝑟) = 𝜅 𝑀𝑏 (𝑟)
8𝜋 𝛼(𝑟) 𝑟2 ,

so that the pure Fisher charge takes the specialised form

𝑄
grav
𝐹

[𝜌𝑏] :=
1
2

∫ ∞

0
𝑤(𝑟) |𝑞(𝑟) |2 d𝑟 =

∫ ∞

0

𝜅2𝑀𝑏 (𝑟)2

16𝜋𝛼(𝑟)𝑟2 d𝑟.

In terms of 𝑄grav
𝐹

the cold Fisher bound can be written

Fcold [𝜎F; 𝜌𝑏] ≥ −𝑄grav
𝐹

[𝜌𝑏] − 𝜅 𝜎F(𝑟)𝑀𝑏 (𝑟)
���∞
0
.
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For the class of baryon profiles and scalar configurations considered here the boundary
term either vanishes under the standard regularity and decay conditions or can be
controlled as a finite surface contribution. In that regime 𝑄grav

𝐹
[𝜌𝑏] depends only on

the enclosed baryon mass profile and plays the role of a configuration independent
lower scale for the cold Fisher free energy, in direct analogy with the pure Fisher
charge 𝑄𝐹 [𝑞] in the abstract scalar setting.

The bound is saturated if and only if the first order Fisher Bogomolny equation holds:

𝜎′
F(𝑟) = − 𝜅 𝑀𝑏 (𝑟)

8𝜋 𝛼(𝑟) 𝑟2 .

Any solution of (2.3) that satisfies suitable boundary conditions at the origin and
infinity is therefore a global minimiser of the cold Fisher free energy for the given
baryon distribution.

Remark. The Bogomolny equation (2.3) relates the radial derivative of the Fisher
scalar field directly to the enclosed baryon mass. Up to the stiffness profile 𝛼(𝑟)
and the coupling 𝜅, the Fisher halo is completely determined by the baryonic mass
profile. The effective Fisher halo mass and acceleration then follow from the scalar
gradient. Unlike standard dark matter halos, where the mass and scale radius are
free fitting parameters, the Bogomolny nature of the Fisher halo implies its profile
is entirely rigid: once the baryon source and global stiffness are set, the halo mass
distribution is geometrically necessitated.

2.4 Cold Fisher halos as scalar EPI extremals

The scalar information sector developed in the Fisher–Kähler paper provides a general
template for Extreme Physical Information (EPI) functionals on a Fisher type state
space [5, 9, 10]. In that setting a real scalar field 𝜎(𝑥) carries a Fisher gradient energy
with weight 𝑤(𝑥), couples linearly to an external source 𝑞(𝑥), and is endowed with a
bounded entropy 𝑆bnd [𝜎]. The pure Fisher free energy

𝐹0 [𝜎] :=
1
2

∫
𝑋

𝑤(𝑥) |∇𝜎(𝑥) |2 𝑑𝜇(𝑥) −
∫
𝑋

𝑤(𝑥) ∇𝜎(𝑥) ·𝑞(𝑥) 𝑑𝜇(𝑥)

admits an exact Bogomolny completion

𝐹0 [𝜎] =
1
2

∫
𝑋

𝑤 |∇𝜎 − 𝑞 |2 𝑑𝜇 −𝑄𝐹 [𝑞], 𝑄𝐹 [𝑞] :=
1
2

∫
𝑋

𝑤 |𝑞 |2 𝑑𝜇,

so that 𝐹0 [𝜎] ≥ −𝑄𝐹 [𝑞] with equality if and only if the BPS condition ∇𝜎 = 𝑞 holds
almost everywhere. Identifying

𝐼sc [𝜎] :=
1
2

∫
𝑋

𝑤 |∇𝜎 |2 𝑑𝜇, 𝐽𝐹,sc [𝜎] :=
∫
𝑋

𝑤 ∇𝜎 ·𝑞 𝑑𝜇,

one may view 𝐹0 = 𝐼sc − 𝐽𝐹,sc −𝑄𝐹 [𝑞] as an EPI functional in which the Fisher data
information 𝐼sc is pumped from the source information 𝐽𝐹,sc. BPS configurations
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saturate the Fisher charge 𝑄𝐹 [𝑞] and realise maximal information extraction in this
channel.

The cold Fisher halo functional

𝐹cold [𝜎𝐹 ; 𝜌𝑏] = 4𝜋
∫ ∞

0

(
𝛼(𝑟) 𝜎′

𝐹 (𝑟)2 − 𝜅 𝜎𝐹 (𝑟) 𝜌𝑏 (𝑟)
)
𝑟2 𝑑𝑟

is a special case of this scalar EPI structure. Introducing the enclosed baryon mass
𝑀 ′

𝑏
(𝑟) = 4𝜋𝑟2𝜌𝑏 (𝑟) and integrating by parts, one finds

𝐹cold [𝜎𝐹 ; 𝜌𝑏] = 4𝜋
∫ ∞

0
𝛼(𝑟) 𝜎′

𝐹 (𝑟)2𝑟2 𝑑𝑟+𝜅
∫ ∞

0
𝜎′
𝐹 (𝑟)𝑀𝑏 (𝑟) 𝑑𝑟−𝜅

[
𝜎𝐹 (𝑟)𝑀𝑏 (𝑟)

]∞
0 .

If we now specialise the scalar sector to 𝑋 = R3 with spherical symmetry and set

𝑤(𝑟) := 8𝜋 𝛼(𝑟) 𝑟2, 𝜎(𝑟) := 𝜎𝐹 (𝑟), 𝑞(𝑟) := − 𝜅 𝑀𝑏 (𝑟)
8𝜋 𝛼(𝑟) 𝑟2 𝑟,

then the bulk term in 𝐹cold takes the EPI form

𝐹bulk
cold [𝜎𝐹 ; 𝜌𝑏] = 𝐼sc [𝜎𝐹] − 𝐽𝐹,sc [𝜎𝐹],

with the same data and source functionals 𝐼sc, 𝐽𝐹,sc as in the abstract scalar theory.
Using the Bogomolny completion one can equivalently write

𝐹cold [𝜎𝐹 ; 𝜌𝑏] =
1
2

∫ ∞

0
𝑤(𝑟) |𝜎′

𝐹 (𝑟) − 𝑞𝑟 (𝑟) |2 𝑑𝑟 −𝑄𝐹 [𝑞] − 𝜅
[
𝜎𝐹 (𝑟)𝑀𝑏 (𝑟)

]∞
0 ,

where 𝑄𝐹 [𝑞] is the pure Fisher charge of the baryon source. For baryon profiles and
scalar configurations satisfying the usual regularity and decay conditions the surface
term can be treated as a finite boundary contribution, so the cold Fisher bound reduces
to

𝐹cold [𝜎𝐹 ; 𝜌𝑏] ≥ −𝑄𝐹 [𝑞] − 𝜅
[
𝜎𝐹 (𝑟)𝑀𝑏 (𝑟)

]∞
0 .

The Fisher Bogomolny equation

𝜎′
𝐹 (𝑟) = − 𝜅 𝑀𝑏 (𝑟)

8𝜋 𝛼(𝑟) 𝑟2

is precisely the radial component of the scalar BPS condition ∇𝜎 = 𝑞 for this choice of
weight and source. In the cold limit 𝑇𝐹 → 0 a Fisher BPS halo is therefore exactly an
EPI extremal in the scalar sector: the baryon mass profile 𝑀𝑏 (𝑟) plays the role of the
external information source 𝑞, and the Fisher halo profile 𝜎𝐹 is the field configuration
that saturates the pure Fisher charge 𝑄𝐹 [𝑞] and realises maximal information transfer
from the baryons into the scalar Fisher channel. Turning on a finite Fisher temperature
𝑇𝐹 adds the bounded entropy functional 𝑆bnd [𝜎𝐹] to the source sector and deforms
the BPS halo into a finite temperature EPI extremal, truncating the Fisher halo profile
while preserving the Fisher charge lower bound.
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2.5 Fisher halo acceleration and effective density

For any spherically symmetric solution 𝜎F(𝑟), the Fisher halo acceleration is given by
(2.2),

𝑔F(𝑟) = 𝜆𝐹 𝜎
′
F(𝑟) 𝑟.

Using the Fisher Bogomolny equation (2.3) in the cold limit, we obtain

𝑔F(𝑟) = −𝜆𝐹
𝜅 𝑀𝑏 (𝑟)

8𝜋 𝛼(𝑟) 𝑟2 𝑟.

For 𝜅 > 0 and 𝜆𝐹 > 0 the Bogomolny branch (2.3) has 𝜎′
F(𝑟) < 0, so 𝑔F(𝑟) points

inward, opposite to 𝑟, as required for an attractive Fisher halo.

With this choice the physical acceleration scale is set by the product 𝜆𝐹𝜅, which carries
the same dimensions as a Newtonian gravitational coupling and appears in the Fisher
halo acceleration.

It is convenient to define an effective Fisher mass profile 𝑀𝐹 (𝑟) by comparing (2.5)
with the Newtonian form

𝑔F(𝑟) = −𝐺𝑀𝐹 (𝑟)
𝑟2 𝑟.

Equating the magnitudes gives

𝐺𝑀𝐹 (𝑟)
𝑟2 =

𝜆𝐹𝜅

8𝜋𝛼(𝑟)
𝑀𝑏 (𝑟)
𝑟2 ,

so that, for 𝜅 > 0 and 𝜆𝐹 > 0, the effective Fisher coupling

𝐶𝐹 :=
𝜆𝐹𝜅

8𝜋𝐺

is positive and

𝑀𝐹 (𝑟) = 𝐶𝐹

𝑀𝑏 (𝑟)
𝛼(𝑟) .

In particular, for a constant stiffness 𝛼(𝑟) = 𝛼0 the effective Fisher halo mass is
proportional to the baryon mass,

𝑀𝐹 (𝑟) = 𝛾𝐹𝑀𝑏 (𝑟), 𝛾𝐹 =
𝐶𝐹

𝛼0
.

This expression makes the inverse dependence on the stiffness explicit: for fixed
Fisher couplings (𝜆𝐹 , 𝜅) the ratio 𝑀𝐹/𝑀𝑏 is proportional to 1/𝛼0. Together with the
canonical rescaling above, this supports the view that 𝛼 controls an effective inverse
squared coupling of the scalar Fisher sector to baryons. A stiffer vacuum (larger 𝛼)
produces a lighter halo for the same baryonic mass, while a softer vacuum (smaller 𝛼)
yields a more massive halo.

The total enclosed mass that determines the circular velocity is then

𝑀tot(𝑟) = 𝑀𝑏 (𝑟) + 𝑀𝐹 (𝑟),
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and the circular velocity satisfies

𝑣2
c (𝑟) =

𝐺𝑀tot(𝑟)
𝑟

.

In this cold, constant stiffness limit the scalar Fisher gravity reproduces a baryon scaled
halo model, with a proportionality factor set by the Fisher couplings.

More generally, when 𝛼(𝑟) varies with radius, the Fisher halo mass picks up a non
trivial radial dependence through (5.6). A stiffness profile that grows with radius
suppresses the Fisher mass relative to the baryon mass in the outer regions, while a
stiffness profile that decays with radius enhances the outer halo. This radial structure
can be used to capture the observed transition from baryon dominance in the inner
disc to halo dominance in the outskirts.

The cold Fisher Bogomolny analysis provides a baseline scalar theory in which the
halo profile is slaved to the baryons through the Fisher energy. Before introducing the
bounded entropy sector it is useful to record some basic functional analytic properties
of the scalar Fisher theory that will be used implicitly in the rest of the paper.

In this constant stiffness, zero temperature limit the Bogomolny completion identifies
a preferred class of halo profiles that saturate the quadratic Fisher bound for a given
baryon source. Following the structure of the bounded Fisher entropy sector we will
refer to these configurations as Fisher BPS halos: they minimise the scalar Fisher
free energy at fixed baryon distribution, and small perturbations that respect the
regularity assumptions increase the free energy at quadratic order. In what follows the
phrase “BPS type” is used only in this restricted sense, as a shorthand for cold Fisher
configurations that saturate the Bogomolny inequality; no additional supersymmetric
structure is assumed, and all stability statements are made at the level of the scalar free
energy functional and its Euler-Lagrange equation.

2.6 Functional analytic properties of the scalar Fisher sector

The scalar Fisher free energy in three dimensions was introduced in (2.1),

𝐹 [𝜎𝐹 ; 𝜌𝑏] =
∫
R3

(
𝛼(𝑥) |∇𝜎𝐹 (𝑥) |2 +𝑉𝐼 (𝜎𝐹 (𝑥)) − 𝜅 𝜎𝐹 (𝑥) 𝜌𝑏 (𝑥)

)
d3𝑥,

and its spherical reduction was written as

𝐹 [𝜎𝐹 ; 𝜌𝑏] = 4𝜋
∫ ∞

0

(
𝛼(𝑟) 𝜎′

𝐹 (𝑟)2 +𝑈 (𝜎𝐹 (𝑟)) − 𝜅 𝜎𝐹 (𝑟) 𝜌𝑏 (𝑟)
)
𝑟2 d𝑟.

Here 𝛼 is a Fisher stiffness, 𝑉𝐼 (or 𝑈 in the radial setting) is an effective bounded
entropy potential, and 𝜌𝑏 is a non-negative baryon density with finite mass. In this
subsection we summarise modest functional analytic properties of 𝐹 [𝜎𝐹 ; 𝜌𝑏] that are
sufficient for the halo applications in this paper. A more abstract treatment of the scalar
Fisher theory is given in the scalar companion paper.
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Assumptions and lower bounds. For definiteness we work in spherical symmetry
and regard 𝜎𝐹 as an element of the weighted Sobolev space

𝐻1
rad :=

{
𝜎𝐹 : (0,∞) → R

��� ∫ ∞

0

(
𝜎′
𝐹 (𝑟)2 + 𝜎𝐹 (𝑟)2) 𝑟2 d𝑟 < ∞

}
,

with the standard identification of functions in 𝐻1
rad that agree almost everywhere.

We assume that the stiffness profile 𝛼(𝑟) is measurable, radial, and satisfies uniform
bounds

0 < 𝛼min ≤ 𝛼(𝑟) ≤ 𝛼max < ∞ for all 𝑟 ≥ 0,
and that the baryon density 𝜌𝑏 (𝑟) is non-negative, locally bounded, and has finite total
mass 𝑀𝑏 (∞) = 4𝜋

∫ ∞
0 𝜌𝑏 (𝑟) 𝑟2 d𝑟 < ∞.

In the Bernoulli bounded entropy construction of Section 3 the scalar potential𝑈 (𝜎𝐹)
is chosen to be proportional to the negative of the Bernoulli entropy,

𝑈 (𝜎𝐹) = −𝑇𝐹𝑆Bern(𝜎𝐹),

so that, using 0 ≤ 𝑆Bern ≤ log 2, one has the simple pointwise bound

−𝑇𝐹 log 2 ≤ 𝑈 (𝜎𝐹 (𝑟)) ≤ 0 for all 𝑟.

The bounded entropy term is therefore uniformly bounded from below and cannot
drive the Fisher free energy to arbitrarily negative values on any finite domain. Writing

𝐹 [𝜎𝐹 ; 𝜌𝑏] = 𝐹cold [𝜎𝐹 ; 𝜌𝑏] + 4𝜋
∫ ∞

0
𝑈 (𝜎𝐹 (𝑟))𝑟2 𝑑𝑟,

and imposing the usual regularity conditions at the origin together with a fixed vacuum
value at infinity, 𝜎𝐹 (𝑟) → 0 as 𝑟 → ∞, the cold sector analysis of Section 2.3 gives
the Bogomolny bound

𝐹cold [𝜎𝐹 ; 𝜌𝑏] ≥ −𝑄grav
𝐹

[𝜌𝑏],

where 𝑄grav
𝐹

[𝜌𝑏] depends only on the baryon mass profile. The Bernoulli contribution
then supplies at most a finite, source-independent shift to this bound on any finite
halo volume. In the relativistic completion one is free to subtract the vacuum value
𝑈 (𝜎vac) and absorb this constant into the background cosmological term, so that the
renormalised potential is non-negative at the vacuum and the scalar sector obeys the
usual energy conditions.

Since 𝑈 is bounded below by −𝑇𝐹 log 2 and contributes only a finite, source-
independent shift to the free energy on any finite halo volume, the full scalar free
energy inherits the same type of lower bound,

𝐹 [𝜎𝐹 ; 𝜌𝑏] ≥ −𝑄grav
𝐹

[𝜌𝑏] − 𝐶Bern(𝑇𝐹),

with a constant 𝐶Bern(𝑇𝐹) that depends only on the Fisher temperature and the chosen
outer radius. At the level of the relativistic completion this additive constant is absorbed
into the background cosmological term; here only differences in 𝐹 enter the weak-field
halo phenomenology.
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Existence of minimisers in the radial setting. On the weighted Sobolev space 𝐻1
rad

with fixed boundary values, the functional 𝐹 [𝜎𝐹 ; 𝜌𝑏] is the sum of three terms: a
strictly convex quadratic gradient contribution, a pointwise bounded potential, and
a linear source term. Under the assumptions above the gradient term controls the
𝐻1

rad norm, the potential term is bounded from below and continuous in 𝜎𝐹 , and the
source term is continuous with respect to the 𝐻1

rad topology for bounded baryon mass.
Standard arguments in the direct method of the calculus of variations then give:

• for each fixed baryon profile 𝜌𝑏 and Fisher parameters (𝛼,𝑇𝐹 , 𝜅), there exists at
least one minimiser 𝜎∗

𝐹
∈ 𝐻1

rad of 𝐹 [𝜎𝐹 ; 𝜌𝑏] subject to the imposed boundary
conditions;

• every minimising sequence for 𝐹 [𝜎𝐹 ; 𝜌𝑏] contains a subsequence that converges
weakly in 𝐻1

rad and strongly in 𝐿2
loc to a minimiser 𝜎∗

𝐹
.

We do not attempt here to prove the most general uniqueness statements. In the cold
Fisher regime the Bogomolny equation (2.3) with regularity at the origin and fixed
vacuum value at infinity singles out a unique monotone profile for each baryon mass
profile, and any solution of the first order equation is a global minimiser of 𝐹cold for
the given 𝜌𝑏. In the bounded entropy regime, the static Euler-Lagrange equation

− 1
𝑟2

d
d𝑟

(
2𝛼(𝑟) 𝑟2 𝜎′

𝐹 (𝑟)
)
+ 𝑇𝐹

d𝑆Bern
d𝜎𝐹

(𝜎𝐹 (𝑟)) = 𝜅 𝜌𝑏 (𝑟)

is a uniformly elliptic second order equation with a monotone nonlinearity in 𝜎𝐹 for
admissible ranges of 𝑇𝐹 . For fixed boundary data one expects uniqueness of weak
solutions in the natural energy class under mild additional regularity hypotheses on
𝛼 and 𝜌𝑏. Our radial gradient flow experiments in Section 4 are consistent with
convergence towards a single equilibrium configuration for the scalar field.

Bounds on Fisher halo mass and density. In the cold Bogomolny limit the effective
Fisher mass profile 𝑀𝐹 (𝑟) was obtained in (5.6) as

𝑀𝐹 (𝑟) =
𝜆𝐹𝜅

8𝜋𝐺
𝑀𝑏 (𝑟)
𝛼(𝑟) ,

so that the halo mass is proportional to the enclosed baryon mass, with a proportionality
factor that depends only on the Fisher couplings and the stiffness profile. If 𝛼 is
bounded above and below, the ratio 𝑀𝐹/𝑀𝑏 is correspondingly bounded: defining

𝛾min :=
𝐶𝐹

𝛼max
, 𝛾max :=

𝐶𝐹

𝛼min
,

one has
𝛾min ≤ 𝑀𝐹 (𝑟)

𝑀𝑏 (𝑟)
≤ 𝛾max

for all radii in the domain where 𝛼min ≤ 𝛼(𝑟) ≤ 𝛼max.

𝛾min 𝑀𝑏 (𝑟) ≤ 𝑀𝐹 (𝑟) ≤ 𝛾max 𝑀𝑏 (𝑟)
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for all radii. The total enclosed mass therefore satisfies(
1 + 𝛾min

)
𝑀𝑏 (𝑟) ≤ 𝑀tot(𝑟) ≤

(
1 + 𝛾max

)
𝑀𝑏 (𝑟),

so the Fisher sector cannot generate haloes whose mass exceeds a fixed multiple of the
baryonic mass at any radius, once the Fisher parameters are specified.

The effective Fisher density 𝜌𝐹 (𝑟) derived from the scalar profile via (2.2) inherits
the same control. In particular, for BPS solutions the combination of the Bogomolny
bound and the stiffness bounds ensures that 𝜌𝐹 (𝑟) is square-integrable with respect to
the radial measure 𝑟2 d𝑟 and that the associated halo mass is finite. In the bounded
entropy regime the additional contribution of𝑈 (𝜎𝐹) does not spoil these estimates,
since the Bernoulli term is pointwise bounded and does not introduce new infrared
divergences.

These functional properties are modest but sufficient for the present paper. They
justify treating the scalar Fisher halo as the minimiser of a well posed free energy
functional with a finite lower bound, and they ensure that the radial gradient flows
used in Section 4 converge towards physically reasonable halo profiles with controlled
mass and density.

In the next section we introduce a bounded entropy potential that arises from a Bernoulli
geometry on the BKM manifold, and we show how this modifies the scalar equation
and allows for a controlled cusp to core transition.

Proposition (Existence and convexity of Fisher-Bernoulli minimisers) Let 𝜌𝑏 (𝑟)
be a spherically symmetric baryon density with 𝜌𝑏 ∈ 𝐿1(R3) ∩ 𝐿∞(R3) and compact
support, and let the Fisher stiffness satisfy

0 < 𝛼min ≤ 𝛼(𝑟) ≤ 𝛼max < ∞.

Let 𝜎𝐹 (𝑟) take values in a bounded Bernoulli channel range

𝜎min ≤ 𝜎𝐹 (𝑟) ≤ 𝜎max,

and let 𝑈 (𝜎𝐹 ;𝑇𝐹) be the Bernoulli bounded entropy potential, continuous on
[𝜎min, 𝜎max] and convex in 𝜎𝐹 for each fixed 𝑇𝐹 ≥ 0. Consider the free energy
functional on the radial Sobolev space

𝐹 [𝜎𝐹 ; 𝜌𝑏] =
∫
R3

[
1
2
𝛼(𝑟) |∇𝜎𝐹 |2 +𝑈 (𝜎𝐹 ;𝑇𝐹) − 𝜅 𝜎𝐹 𝜌𝑏 (𝑟)

]
𝑑3𝑥,

restricted to the convex admissible set

A =
{
𝜎𝐹 ∈ 𝐻1

rad(R
3) : 𝜎min ≤ 𝜎𝐹 (𝑟) ≤ 𝜎max a.e.

}
.

Then:

1. 𝐹 [𝜎𝐹 ; 𝜌𝑏] is bounded below and coercive in the gradient norm on A.
2. 𝐹 attains its minimum on A: there exists at least one minimiser 𝜎★

𝐹
∈ A.

3. Any minimiser 𝜎★
𝐹

is a weak solution of the scalar Euler-Lagrange equation

−∇ · (𝛼∇𝜎𝐹) +𝑈′(𝜎𝐹 ;𝑇𝐹) = 𝜅𝜌𝑏
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in the radial class, and is smooth away from the baryon support.

Proof (sketch). Boundedness of the Bernoulli channel implies |𝑈 (𝜎𝐹 ;𝑇𝐹) | ≤ 𝑈max(𝑇𝐹)
on [𝜎min, 𝜎max]. For any 𝜎𝐹 ∈ A we have

𝐹 [𝜎𝐹 ; 𝜌𝑏] ≥
𝛼min

2
∥∇𝜎𝐹 ∥2

𝐿2 −𝑈max(𝑇𝐹)𝑉eff − 𝜅 𝜎max ∥𝜌𝑏∥𝐿1 ,

so 𝐹 is bounded below, and 𝐹 [𝜎𝐹] → +∞ as ∥∇𝜎𝐹 ∥𝐿2 → ∞ at fixed bounds on 𝜎𝐹 .
Thus 𝐹 is coercive on A. A minimising sequence is bounded in 𝐻1

rad, and by weak
compactness admits a subsequence converging weakly to some 𝜎★

𝐹
∈ A. The kinetic

term is convex and continuous in ∇𝜎𝐹 , hence weakly lower semicontinuous. The
potential term converges by continuity of𝑈 on a bounded range and compactness on
the baryon support, and the linear source term converges by weak convergence in 𝐿2

against 𝜌𝑏 ∈ 𝐿2. This gives weak lower semicontinuity of 𝐹 and shows that 𝜎★
𝐹

attains
the infimum. The Euler-Lagrange equation follows by standard variational arguments,
and elliptic regularity gives smoothness away from the baryon support.

Proposition (Cold convex regime and effective uniqueness) In the cold Fisher
limit 𝑇𝐹 = 0 suppose that the scalar potential reduces to a strictly convex function
𝑉cold(𝜎𝐹) on [𝜎min, 𝜎max] with 𝑉 ′′

cold(𝜎𝐹) ≥ 𝑣0 > 0. Then the free energy

𝐹cold [𝜎𝐹 ; 𝜌𝑏] =
∫ [

1
2
𝛼(𝑟) |∇𝜎𝐹 |2 +𝑉cold(𝜎𝐹) − 𝜅 𝜎𝐹 𝜌𝑏 (𝑟)

]
𝑑3𝑥

is strictly convex on A. In particular, the minimiser 𝜎cold
𝐹

in the radial class is unique.

Moreover, in the Bogomolny sector where 𝐹cold can be written as a sum of a non
negative square and a boundary or BPS term,

𝐹cold [𝜎𝐹 ; 𝜌𝑏] =
∫

𝛼

2
��∇𝜎𝐹 −Φ(𝜎𝐹 , 𝜌𝑏)

��2𝑑3𝑥 + 𝐹BPS [𝜎𝐹 , 𝜌𝑏],

any regular radial solution of the associated first order BPS equation

∇𝜎𝐹 = Φ(𝜎𝐹 , 𝜌𝑏)

which is finite at the origin and tends to the vacuum value at infinity coincides with
this unique minimiser.

For finite Fisher temperature 𝑇𝐹 > 0 the Bernoulli bounded entropy potential
𝑈 (𝜎𝐹 ;𝑇𝐹) remains convex but need not be strictly convex everywhere on [𝜎min, 𝜎max]
because of saturation at the entropy bounds. The functional 𝐹 [𝜎𝐹 ; 𝜌𝑏] is therefore
convex but not guaranteed to be strictly convex. In that regime we do not claim a
general global uniqueness theorem for arbitrary baryon profiles. In the parameter range
relevant for galaxies, however, the numerical gradient flows that we study converge
to a single attracting profile for each (𝜌𝑏, 𝛼, 𝑇𝐹), and we have not observed multiple
distinct minimisers in the radial class. We regard this as strong evidence for effective
uniqueness in the galactic sector, and leave a full functional analysis of the finite
temperature case to future work.
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2.7 Weak-field limit and solar system bounds

The scalar Fisher sector is intended as an effective description of galactic-scale gravity
in the weak-field regime, with the metric itself remaining governed by General Relativity
at small scales. In particular, the scalar field 𝜎𝐹 is defined after coarse-graining the
baryon distribution over disc and halo scales, and the Fisher halo acceleration is treated
as an additional contribution to the Newtonian potential sourced by this coarse-grained
density, rather than as a modification of the local metric or of light propagation.

To make this more explicit, consider the scalar field equation obtained by varying the
Fisher free energy in the constant-stiffness case,

−2𝛼0 Δ𝜎𝐹 (𝑥) +𝑈′(𝜎𝐹 (𝑥)
)
= 𝜅 𝜌𝑏 (𝑥),

with 𝛼0 > 0 constant and 𝑈 a local potential with a non-degenerate minimum at 𝜎0.
Writing 𝜎𝐹 = 𝜎0 + 𝛿𝜎 and expanding 𝑈′ to first order around 𝜎0 with 𝑈′(𝜎0) = 0
and𝑈′′(𝜎0) > 0 gives the linearised equation(

−Δ + 𝑚2
𝐹

)
𝛿𝜎(𝑥) = 𝜅

2𝛼0
𝜌𝑏 (𝑥), 𝑚2

𝐹 :=
𝑈′′(𝜎0)

2𝛼0
.

At this level the Fisher scalar behaves like a Yukawa field with mass 𝑚𝐹 sourced by the
coarse-grained baryon density, analogous to chameleon-type screening mechanisms
[15]. The associated Fisher acceleration is

𝑔𝐹 (𝑥) = 𝜆𝐹 ∇𝜎𝐹 (𝑥) ≃ 𝜆𝐹 ∇𝛿𝜎(𝑥),

and the total weak-field acceleration on a test particle is

𝑔tot(𝑥) = 𝑔𝑁 (𝑥) + 𝑔𝐹 (𝑥),

where 𝑔𝑁 is the standard Newtonian acceleration generated by baryons.

In the constant-stiffness, weak-field regime the Yukawa Green function for (2.1) is
strictly positive, so a concentrated baryon source with 𝜌𝑏 ≥ 0 produces a scalar profile
𝜎𝐹 (𝑟) that is largest at small radii and decreases outwards. Its radial derivative is
therefore negative, 𝜎′

𝐹
(𝑟) < 0 for 𝑟 outside the baryon core, and the Fisher acceleration

𝑔𝐹 (𝑟) = 𝜆𝐹𝜎′
𝐹 (𝑟) 𝑟

points inward for 𝜆𝐹 > 0. In the effective potential language of [2] this choice
corresponds to an attractive potential

Φeff = −𝑐
2

2
𝜎𝐹 , −∇Φeff = 𝑔𝐹 ,

so that maxima of 𝜎𝐹 coincide with potential wells and there is no hidden sign flip
between the Fisher scalar and the effective Newtonian description.

In the present framework the metric remains the usual weak-field GR metric determined
by 𝑔𝑁 , and 𝑔𝐹 enters only through an effective additional mass distribution in the
Poisson equation.
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This constant-stiffness, linearised Yukawa description is intended as a local weak-field
approximation: the global halo profiles and the flat rotation-curve behaviour analysed
in Sections 3-5 rely on the full, radially varying stiffness 𝛼(𝑟) and the Bernoulli
bounded entropy sector rather than on a single, constant-𝛼0 Yukawa field.

On galactic scales the Fisher parameters are fixed by requiring that 𝑔𝐹 accounts for
the missing acceleration in rotation curves and in the lensing masses inferred from
the weak-field Einstein equations with total source 𝜌𝑏 + 𝜌𝐹 . In what follows, “Fisher
lensing mass” always refers to this contribution to the GR source term rather than to
any direct coupling of the scalar to photons.

For a Milky Way-like galaxy with circular speed 𝑣𝑐 ≃ 220 km s−1 at galactocentric
radius 𝑅0 ≃ 8 kpc, the total centripetal acceleration is of order

|𝑔tot(𝑅0) | ∼
𝑣2
𝑐

𝑅0
∼ 10−10 m s−2.

In the Fisher halo picture the Fisher contribution 𝑔𝐹 (𝑅0) is at most of this order, and
typically smaller in high-surface-density systems where baryons already dominate the
inner potential.

A general Fisher acceleration bound in the inner potential well. The scalar in-
equalities derived above imply a simple structural bound on the Fisher halo acceleration
at small radii. Outside the bulk of the baryons the Fisher contribution to the radial
acceleration is

𝑔𝐹 (𝑟) =
𝐺𝑀𝐹 (< 𝑟)

𝑟2 ,

where 𝑀𝐹 (< 𝑟) is the enclosed Fisher halo mass. The global mass inequality (2.9)
gives

𝑀𝐹 (< 𝑟) ≤ 𝑀𝐹 ≤ 𝜂(. . .) 𝑀𝑏,

so that for any radius 𝑟 outside the baryon dominated core we have

|𝑔𝐹 (𝑟) | ≤ 𝜂(. . .)
𝐺𝑀𝑏 (< 𝑟)

𝑟2 = 𝜂(. . .) 𝑔N,baryon(𝑟).

Here 𝑀𝑏 (< 𝑟) and 𝑔N,baryon(𝑟) are the enclosed baryon mass and Newtonian baryon
acceleration, and 𝜂(. . .) is the dimensionless Fisher susceptibility factor already
constrained by the halo fits.

In the Fisher parameter range required to fit SPARC rotation curves we find 𝜂 of order
unity or smaller. Equation (2.7) then shows that, in any galaxy where the local baryon
potential dominates, the Fisher halo acceleration is parametrically suppressed relative
to the baryon contribution.

In particular, at solar system radii 𝑟 ≃ 1 AU inside the Milky Way disc we have
𝑔N,baryon(𝑟) orders of magnitude larger than the dark halo contribution at the same
radius, so the Fisher halo term is automatically many orders below existing Cassini
and ephemeris constraints. The explicit Solar System tidal estimate given below is
simply a concrete evaluation of this bound for Milky Way baryons and the fitted Fisher
parameters.

The relativistic completion also makes it clear why Solar System tests do not place
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strong constraints on the Fisher sector. In the present effective theory the scalar
field couples to the coarse grained galactic baryon density on kiloparsec scales rather
than to individual stellar sources. At the Solar radius the Fisher acceleration is of
order 𝑔F ∼ 10−10 m s−2 and varies on the galactic scale length 𝑅gal ∼ 10 kpc. Over a
characteristic Solar System diameter 𝐷SS ∼ 50 AU the fractional change in the Fisher
field is therefore 𝐷SS/𝑅gal ∼ 10−8, giving a tidal variation

Δ𝑔F ∼ 𝑔F
𝐷SS
𝑅gal

∼ 10−18 m s−2.

This is four to five orders of magnitude below current Cassini level bounds on
anomalous accelerations from planetary ephemerides. Locally the Fisher contribution
appears as an almost uniform background field that can be absorbed into the definition
of the barycentric frame, so the scalar sector is automatically consistent with existing
Solar System tests in the parameter regime probed in this paper.

Over solar system scales, the Fisher field generated by the coarse-grained galactic
baryons varies only on kiloparsec scales. Approximating the Fisher acceleration as a
smooth function of radius on scales Δ𝑟 ≪ 𝑅0, its variation across one astronomical
unit satisfies

Δ𝑔𝐹 (1 AU) ≲

����𝑑𝑔𝐹𝑑𝑟 ����
𝑅0

1 AU ∼ |𝑔𝐹 (𝑅0) |
𝑅0

1 AU ∼ 10−19 m s−2,

using |𝑔𝐹 (𝑅0) | ≲ 10−10 m s−2, 𝑅0 ∼ 8 kpc and 1 AU ≪ 𝑅0. This is many orders
of magnitude below the sensitivities of solar system tests that constrain differential
accelerations and post-Newtonian parameters. To leading order, the Fisher halo
therefore contributes only an almost constant background acceleration across the solar
system, which can be absorbed into the barycentric frame and leaves local Keplerian
dynamics and Shapiro delay measurements unchanged. Furthermore, because the
Fisher scalar couples to the coarse-grained galactic density rather than point sources,
it does not modify the potential of the Sun itself, avoiding constraints from planetary
orbital precession.

A second potential concern is whether the scalar sector generates a new 1/𝑟-type force
around individual compact objects such as the Sun. In the present construction the
source term 𝜌𝑏 entering the scalar equation is a coarse-grained galactic baryon density,
not the microscopic density of stars and planets.

The scalar field is therefore not driven by the detailed solar density profile, and no
additional solar 1/𝑟 potential arises at the level of the effective theory. At small
radii, where the coarse-graining scale is much larger than the system size, the Fisher
contribution reduces to a slowly varying background that does not interfere with the
usual GR description of the solar system.

Finally, the Fisher scalar carries no new tensor degrees of freedom and does not
introduce an independent long-range modification of the metric sector in the solar
system. Gravitational waves remain governed by the GR metric, and on solar system
scales the scalar contributes only a nearly constant correction to the Newtonian
potential through its energy density, well below current bounds on Shapiro delay and
post-Newtonian parameters. On galactic and cluster scales the same scalar energy
density enters the Einstein equations as part of the total source 𝜌𝑏 + 𝜌𝐹 , and it is this
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combined source that determines the weak-field lensing potential.

A full post-Newtonian and cosmological analysis of the Fisher sector would require
coupling the scalar energy-momentum tensor to the Einstein equations, but at the
level of the present weak-field, coarse-grained description, the model is compatible
with existing constraints provided that the Fisher parameters are chosen in the range
required by galactic dynamics and the scalar is interpreted strictly as a large-scale
vacuum response rather than as a new local fifth force.

Recent work on Solar System tests of dark matter has proposed that collisionless
particle dark matter streams could be gravitationally focused by the Sun to produce local
density wakes or “hairs” with potentially detectable effects on planetary ephemerides
[32]. In such scenarios the dark matter density can vary appreciably on astronomical
unit scales, and the induced anomalous accelerations must then be compared directly
to Cassini level bounds on Solar System dynamics.

The scalar Fisher theory considered here is effectively immune to these constraints. In
the present EFT the Fisher scalar couples to the coarse grained galactic baryon density
that sources the large scale halo, rather than to the microscopic stellar density profile
of the Sun. The resulting scalar field varies on kiloparsec scales, so across a region of
size 𝐷SS ∼ 50 AU the Fisher acceleration changes only by a small tidal amount

Δ𝑔𝐹 ∼ 𝑔𝐹

𝑅gal
𝐷SS ∼ 10−10 50 AU

10 kpc
∼ 10−18 m s−2.

This is at least four orders of magnitude below the current sensitivity of Cassini level
ephemeris analyses, which constrain anomalous accelerations in the outer Solar System
at the level of 10−14 m s−2. In this sense a null result for Solar System dark matter
wakes is a natural prediction of the Fisher effective field theory, while any confirmed
detection of an AU scale dark matter lensing signal would point to additional particle
dark matter structure beyond the scalar Fisher halo.

2.8 Relativistic completion and energy conditions

The scalar Fisher sector used in this paper is strictly weak field and quasistatic. It is built
as an energy functional on a coarse grained spatial slice and is only required to reproduce
the Newtonian limit of General Relativity at galactic scales. For completeness it is
useful to record how such a scalar sector can arise from a standard Einstein plus scalar
theory and how the usual energy conditions constrain this completion.

A minimal covariant completion is obtained by treating the Fisher scalar as a canonical
field in the Einstein frame, with action

𝑆 =
1

16𝜋𝐺

∫
M
𝑅
√−𝑔 𝑑4𝑥 + 𝑆baryon [𝑔,Ψ] + 𝑆F [𝑔, 𝜎𝐹 , 𝜌𝑏],

where 𝑔𝜇𝜈 is the spacetime metric, 𝑅 is the Ricci scalar, 𝑆baryon is the usual minimally
coupled matter action for baryonic fields Ψ, and the Fisher scalar contribution is taken
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to be

𝑆F [𝑔, 𝜎𝐹 , 𝜌𝑏] =
∫
M

(
− 1

2
𝑍 (𝜎𝐹) 𝑔𝜇𝜈∇𝜇𝜎𝐹∇𝜈𝜎𝐹 −𝑉𝐼 (𝜎𝐹) − 𝜅 𝜎𝐹 𝜌𝑏

)
√−𝑔 𝑑4𝑥.

Here 𝑍 (𝜎𝐹) > 0 is an effective stiffness that reduces to the constant 𝛼0 used in the
weak field analysis after a suitable field rescaling, 𝑉𝐼 is the bounded entropy potential
introduced in Section 3, and 𝜌𝑏 is a coarse grained rest mass density for baryons on
the same scales at which the scalar field is defined. Dimensional analysis fixes the
Fisher coupling so that the source term −𝜅𝜎𝐹𝜌𝑏 has the same units as the gradient
and potential contributions in both the relativistic action and the static free energy.

In the present normalisation 𝜎𝐹 is dimensionless and 𝜌𝑏 is a coarse-grained rest-mass
density, so 𝜅 carries the dimensions of a specific energy. It is convenient, when
comparing with the scalar Fisher equation in Ref. [2], to introduce a reference density
𝜌0 and a dimensionless baryon contrast 𝜌̂𝑏 := 𝜌𝑏/𝜌0, in terms of which the weak-field
equation takes the same Helmholtz form as in that work. We therefore keep 𝜅 as a
single phenomenological coupling with the appropriate units, to be fixed by the galactic
weak-field phenomenology, and do not impose an explicit closed-form expression in
terms of 𝐺, 𝑐 and 𝜌0 at this stage.

Varying the action with respect to the metric gives the Einstein equations

𝐺𝜇𝜈 = 8𝜋𝐺
(
𝑇

baryon
𝜇𝜈 + 𝑇F

𝜇𝜈

)
,

with Fisher stress tensor

𝑇F
𝜇𝜈 = 𝑍 (𝜎𝐹) ∇𝜇𝜎𝐹∇𝜈𝜎𝐹−

1
2
𝑍 (𝜎𝐹) 𝑔𝜇𝜈 𝑔𝛼𝛽∇𝛼𝜎𝐹∇𝛽𝜎𝐹−𝑔𝜇𝜈𝑉𝐼 (𝜎𝐹)−𝑔𝜇𝜈𝜅 𝜎𝐹 𝜌𝑏 .

Variation with respect to 𝜎𝐹 yields the scalar field equation

∇𝜇

(
𝑍 (𝜎𝐹)∇𝜇𝜎𝐹

)
=
𝑑𝑉𝐼

𝑑𝜎𝐹

+ 𝜅 𝜌𝑏 .

In a static, weak field regime with 𝑔𝜇𝜈 close to a Newtonian metric, time derivatives of
𝜎𝐹 negligible, and 𝑍 (𝜎𝐹) slowly varying, equation (2.7) reduces to the elliptic Fisher
equation used in Section 1.2, with the identification 𝑍 (𝜎𝐹) ≈ 2𝛼0 and 𝑉𝐼 equal to the
scalar potential𝑈. This choice corresponds to the simplest relativistic completion of
the constant stiffness model used in the weak field analysis; a fully position dependent
stiffness 𝛼(𝑥) would require a more general 𝑍 (𝜎𝐹 , 𝑥), which we leave to future work.

The Fisher contribution to the Newtonian potential is then entirely encoded in the
scalar energy density and pressure appearing in 𝑇F

𝜇𝜈 .

For a canonical scalar with positive stiffness 𝑍 (𝜎𝐹) > 0 and a potential 𝑉𝐼 bounded
from below, the standard energy conditions are automatically satisfied in the Einstein
frame. For any future directed null vector 𝑘𝜇 one finds

𝑇F
𝜇𝜈𝑘

𝜇𝑘𝜈 = 𝑍 (𝜎𝐹)
(
𝑘𝜇∇𝜇𝜎𝐹

)2 ≥ 0,

so the null energy condition holds. For any future directed timelike vector 𝑢𝜇 with
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𝑢𝜇𝑢𝜇 = −1 one has

𝑇F
𝜇𝜈𝑢

𝜇𝑢𝜈 =
1
2
𝑍 (𝜎𝐹)

(
𝑢𝜇∇𝜇𝜎𝐹

)2 + 1
2
𝑍 (𝜎𝐹)ℎ𝛼𝛽∇𝛼𝜎𝐹∇𝛽𝜎𝐹 +𝑉𝐼 (𝜎𝐹) + 𝜅 𝜎𝐹 𝜌𝑏,

where ℎ𝛼𝛽 = 𝑔𝛼𝛽 + 𝑢𝛼𝑢𝛽 is the spatial projector orthogonal to 𝑢𝜇. If 𝑉𝐼 (𝜎𝐹) is
bounded below and the baryon density 𝜌𝑏 stays in a regime where the combination
𝑉𝐼 (𝜎𝐹) + 𝜅𝜎𝐹𝜌𝑏 is bounded below by a non negative constant on the configurations
of interest, then the contribution of the Fisher sector together with the explicit coupling
−𝜅𝜎𝐹𝜌𝑏 to the total energy density is non negative and the weak energy condition
𝑇𝐹
𝜇𝜈𝑢

𝜇𝑢𝜈 ≥ 0 holds.

Equivalently, one can absorb the −𝜅𝜎𝐹𝜌𝑏 term into an effective baryon stress tensor
and regard the Fisher stress tensor proper as containing only 𝑉𝐼 ; in that viewpoint the
same boundedness requirement is imposed on the combined scalar plus baryon fluid.
The bounded entropy construction of Section 3 ensures that 𝑉𝐼 remains uniformly
bounded from above and below, so that such a choice is always possible at the level of
the effective theory.

In the variational derivation the Fisher scalar equation takes the form

∇𝜇

(
𝑍 (𝜎F) ∇𝜇𝜎F

)
− 1

2
𝑍 ′(𝜎F) (∇𝜎F)2 = 𝑉 ′

𝐼 (𝜎F) + 𝜅 𝜌𝑏,

where a prime denotes a derivative with respect to 𝜎F and (∇𝜎F)2 = 𝑔𝜇𝜈 ∇𝜇𝜎F ∇𝜈𝜎F.
In the weak field, slowly varying stiffness regime that is relevant for galactic halos
the Fisher stiffness can be treated as approximately constant, 𝑍 (𝜎F) ≈ 2𝛼0, so that
𝑍 ′(𝜎F) is negligible. In this constant stiffness limit (2.8) reduces to the Helmholtz
type equation used in the non relativistic halo analysis,

∇𝜇

(
𝑍 (𝜎F) ∇𝜇𝜎F

)
≈ 𝑉 ′

𝐼 (𝜎F) + 𝜅 𝜌𝑏,

which in the static, cold Fisher limit with𝑉𝐼 = 0 reproduces the elliptic Fisher equation

−∇·
(
2𝛼0 ∇𝜎F

)
≈ 𝜅 𝜌𝑏

used in Sections 2.1 and 2.5.

We make no attempt to explore the full phenomenology of the relativistic completion
(2.8). The role of this subsection is to show that the scalar Fisher sector used at galactic
scales.

In the parameter range relevant for galactic dynamics the scalar stress tensor itself
does not act as a conventional cold dark matter fluid: its contribution to the Einstein
equations decays faster than the effective Fisher force 𝑔𝐹 extracted from the weak-field
scalar equation. The primary phenomenology is therefore encoded in the fifth-force
sector 𝑔𝐹 and in the associated effective density, while the Einstein frame embedding
should be viewed as a consistency check on the scalar sector rather than an alternative
energy-density model for dark matter.
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2.9 Scalar halo bounds and structural inequalities

The bounded Bernoulli channel and the Fisher stiffness already imply a set of simple
but important inequalities for any radial minimiser 𝜎★

𝐹
and its associated Fisher halo

density 𝜌𝐹 (𝑟).

(i) Global halo mass fraction. By construction the scalar order parameter is confined
to a finite range 𝜎min ≤ 𝜎★

𝐹
≤ 𝜎max, and the mapping from 𝜎𝐹 to Fisher halo density,

𝜌𝐹 (𝑟) = 𝑓 (𝜎𝐹 (𝑟); Fisher parameters),

is a smooth function of 𝜎𝐹 on this interval. In particular there is a finite upper bound

0 ≤ 𝜌𝐹 (𝑟) ≤ 𝜌𝐹,max := max
𝜎∈[𝜎min,𝜎max ]

𝑓 (𝜎).

Moreover, outside the baryon support the BPS structure and ellipticity of the Euler-
Lagrange equation force 𝜎★

𝐹
to relax back to its vacuum value on a characteristic scale

set by the Fisher length 𝜆𝐹 . Hence the effective halo support volume is bounded in
terms of the Fisher parameters and the baryon scale radius 𝑅𝑏. Combining these facts
we obtain a conservative bound

𝑀𝐹 = 4𝜋
∫ ∞

0
𝜌𝐹 (𝑟)𝑟2𝑑𝑟 ≤ 𝜂(𝛼min, 𝛼max, 𝑇𝐹 , 𝜅, 𝜎min, 𝜎max; 𝑅𝑏) 𝑀𝑏,

where 𝑀𝑏 is the total baryon mass and 𝜂 is a finite dimensionless constant determined
by the Fisher parameters and the typical size of the system. In the cold BPS sector
this can be sharpened by expressing 𝑀𝐹 directly in terms of the Bogomolny charge,
leading to a more constrained bound 𝑀𝐹 ≤ 𝜂BPS𝑀𝑏 with 𝜂BPS fixed by the scalar
stiffness and potential.

(ii) Central density and core surface density. Regularity of 𝜎★
𝐹

at the origin and
spherical symmetry imply 𝑑𝜎★

𝐹
/𝑑𝑟 = 0 at 𝑟 = 0, so the Euler-Lagrange equation gives

3𝛼(0) 𝜎′′
𝐹 (0) = 𝜅𝜌𝑏 (0) −𝑈′(𝜎𝐹 (0);𝑇𝐹).

Convexity and boundedness of the Bernoulli potential ensure that𝑈′(𝜎𝐹 ;𝑇𝐹) grows
as 𝜎𝐹 is pushed toward the entropy saturation plateau. For given (𝜌𝑏 (0), 𝛼(0), 𝑇𝐹)
there is therefore a finite band of admissible central values, and in particular a constant
𝐶𝑐 such that

|𝜎𝐹 (0) | ≤ 𝐶𝑐 (𝜌𝑏 (0), 𝛼(0), 𝑇𝐹 , 𝜅).
If 𝜌𝐹 (𝑟) is an increasing function of 𝜎𝐹 (𝑟) in the relevant range then this immediately
yields a hard ceiling on the central Fisher density

𝜌𝐹 (0) ≤ 𝜌max
𝐹,core := 𝑓

(
𝐶𝑐 (𝜌𝑏 (0), 𝛼(0), 𝑇𝐹 , 𝜅)

)
.

Defining a core radius 𝑟𝑐 as the scale on which 𝜎𝐹 falls to, say, half its central value,
the same balance between the entropy restoring force and baryon forcing gives 𝑟𝑐 as a
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function of (𝜌𝑏 (0), 𝛼(0), 𝑇𝐹). The central Fisher surface density then obeys

Σ𝐹 (0) ∼
∫ 𝑟𝑐

0
𝜌𝐹 (𝑟) 𝑑𝑟 ≲ 𝜌max

𝐹,core 𝑟𝑐 = Σmax
𝐹,core(𝜌𝑏 (0), 𝛼(0), 𝑇𝐹 , 𝜅),

so arbitrarily dense or arbitrarily compact Fisher cores are excluded once the Fisher
parameters and the central baryon density are fixed.

(iii) Inner halo acceleration bound. Outside the bulk of the baryons the Fisher
contribution to the radial acceleration can be written in terms of the enclosed halo
mass 𝑀𝐹 (< 𝑟) as

𝑔𝐹 (𝑟) =
𝐺𝑀𝐹 (< 𝑟)

𝑟2 .

Using the mass bound (2.9) we obtain the simple inequality

|𝑔𝐹 (𝑟) | ≤ 𝜂(. . .)
𝐺𝑀𝑏 (< 𝑟)

𝑟2 = 𝜂(. . .) 𝑔N,baryon(𝑟),

where 𝑀𝑏 (< 𝑟) is the baryon mass enclosed within radius 𝑟 and 𝑔N,baryon is the
corresponding Newtonian acceleration. For the range of Fisher parameters we use
to fit SPARC galaxies, the dimensionless prefactor 𝜂 inferred from the halo fits is of
order unity or less. At solar system radii this suppresses the Fisher halo acceleration
by many orders of magnitude relative to existing constraints, and the explicit 1 AU
estimate quoted later in the paper is simply a concrete evaluation of (2.9) for Milky
Way parameters.

3 Bernoulli bounded entropy and Fisher temperature

We now incorporate a bounded entropy structure into the scalar Fisher theory by
interpreting the scalar field 𝜎F as the logit of a local Bernoulli occupation number.
This construction is motivated by the BKM Fisher geometry of a two level system,
where the Fisher mobility vanishes at both zero and full occupation. The resulting
bounded entropy potential introduces a Fisher temperature parameter 𝑇𝐹 that controls
the strength of the reversible sector relative to the Fisher gradient flow and allows the
halo to saturate.

3.1 Bernoulli occupation and BKM geometry

Consider a two level system with populations 𝑝 and 1 − 𝑝, where 𝑝 ∈ (0, 1) is
interpreted as the local probability of exciting a vacuum degree of freedom into a
Fisher active mode. The Bernoulli entropy is

𝑆Bern(𝑝) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝).

The binary entropy satisfies the elementary bound

0 ≤ 𝑆Bern(𝑝) ≤ log 2 for all 𝑝 ∈ (0, 1),
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with the maximum attained at 𝑝 = 1
2 and the entropy tending to zero as 𝑝 → 0 or

𝑝 → 1.

In the effective scalar theory we restrict 𝜎𝐹 (𝑥) to a finite Bernoulli channel window
[𝜎min, 𝜎max] corresponding to physically accessible occupation probabilities 𝑝 ∈
[𝑝min, 𝑝max], with the entropy plateaux near 𝑝 ≃ 0, 1 represented by the endpoints of
this interval.

The BKM Fisher metric for the diagonal sector of a two level density matrix can be
written, up to an overall scale, as

𝑔BKM(𝑝) ∝ 1
𝑝(1 − 𝑝) .

The mobility associated with a gradient flow of a free energy functional on this
manifold is inversely proportional to the metric, so that

𝑀 (𝑝) ∝ 𝑝(1 − 𝑝).

The mobility vanishes at 𝑝 = 0 and 𝑝 = 1, so the Fisher flow cannot drive the
system beyond these boundaries. This provides a geometric saturation mechanism that
prevents complete depletion or complete filling.

To couple this structure to the scalar field, we introduce a logit map

𝑝(𝜎F) =
1

1 + e−𝛽 𝜎F
,

where 𝛽 > 0 is a stiffness parameter. The inverse map is

𝜎F =
1
𝛽

log
𝑝

1 − 𝑝 .

The scalar field 𝜎F therefore measures the local log odds of the Fisher active state, and
large positive or negative values of 𝜎F correspond to saturated occupation 𝑝 ≈ 1 or
𝑝 ≈ 0.

We define a bounded entropy potential for 𝜎F by composing the Bernoulli entropy
with the logit map,

𝑆Bern(𝜎F) = 𝑆Bern
(
𝑝(𝜎F)

)
.

The derivative with respect to 𝜎F is

d𝑆Bern
d𝜎F

=
d𝑆Bern

d𝑝
d𝑝
d𝜎F

.

A direct computation using (3.1) gives

d𝑝
d𝜎F

= 𝛽 𝑝(1 − 𝑝),

and
d𝑆Bern

d𝑝
= − log 𝑝 + log(1 − 𝑝).

For moderate amplitudes it is convenient to Taylor expand around 𝜎F = 0, where
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𝑝 = 1/2. To second order in 𝜎F one finds

𝑆Bern(𝜎𝐹) = log 2 − 𝛽2

8
𝜎2
𝐹 +𝑂 (𝜎4

𝐹),

In particular,
𝑑𝑆Bern
𝑑𝜎𝐹

(𝜎𝐹) ≈ − 𝛽2

4
𝜎𝐹 for small 𝜎𝐹 .

so that the entropy decreases quadratically as 𝜎F moves away from zero in either
direction.

3.2 Fisher free energy with bounded entropy

We now choose the scalar potential𝑈 in (2.1) to be proportional to the negative of the
Bernoulli entropy,

𝑈 (𝜎F) = −𝑇𝐹 𝑆Bern(𝜎F),
where 𝑇𝐹 ≥ 0 is a Fisher temperature parameter. The free energy becomes

F [𝜎F; 𝜌𝑏] =

∫
R3

{
𝛼(𝑥) |∇𝜎F(𝑥) |2 − 𝑇𝐹 𝑆Bern

(
𝜎F(𝑥)

)
− 𝜅 𝜎F(𝑥) 𝜌𝑏 (𝑥)

}
d3𝑥.

On any finite domain𝑉 ⊂ R3 where 𝛼 and 𝜌𝑏 are bounded and integrable, the Bernoulli
bound

0 ≤ 𝑆Bern
(
𝜎𝐹 (𝑥)

)
≤ log 2

implies
−𝑇𝐹𝑆Bern

(
𝜎𝐹 (𝑥)

)
≥ −𝑇𝐹 log 2 for all 𝑥 ∈ 𝑉.

Together with the positive quadratic term
∫
𝑉
𝛼(𝑥) |∇𝜎𝐹 (𝑥) |2 𝑑3𝑥, this shows that, for

fixed baryon source 𝜌𝑏 and Fisher temperature 𝑇𝐹 , the Fisher free energy on 𝑉 cannot
be driven to arbitrarily negative values by varying 𝜎𝐹 .

In practice we work with finite volumes adapted to a given baryon profile, so this local
entropy cap is sufficient to ensure a well posed variational problem for the scalar field.

In spherical symmetry this reads

F [𝜎F; 𝜌𝑏] = 4𝜋
∫ ∞

0

{
𝛼(𝑟) 𝜎′

F(𝑟)
2 − 𝑇𝐹 𝑆Bern

(
𝜎F(𝑟)

)
− 𝜅 𝜎F(𝑟) 𝜌𝑏 (𝑟)

}
𝑟2 d𝑟.

The Euler Lagrange equation is now

− 1
𝑟2

d
d𝑟

(
2𝛼(𝑟) 𝑟2𝜎′

F(𝑟)
)
− 𝑇𝐹

d𝑆Bern
d𝜎F

(
𝜎F(𝑟)

)
= 𝜅 𝜌𝑏 (𝑟).

For small amplitudes, where 𝑆Bern(𝜎F) is approximately quadratic, the entropy term
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behaves like a mass term,

−𝑇𝐹
𝑑𝑆Bern
𝑑𝜎𝐹

(𝜎𝐹) ≈
𝑇𝐹𝛽

2

4
𝜎𝐹 ,

so that the scalar equation becomes a Fisher screened Poisson equation,

− 1
𝑟2

d
d𝑟

(
2𝛼(𝑟) 𝑟2𝜎′

F(𝑟)
)
+𝑈′′(0) 𝜎F(𝑟) ≈ 𝜅 𝜌𝑏 (𝑟),

where the small-amplitude Bernoulli channel has curvature𝑈′′(0) = 𝑇𝐹𝛽2/4. In the
constant-stiffness limit 𝛼(𝑟) ≈ 𝛼0, this matches the canonical Fisher mass definition

𝑚2
𝐹 :=

𝑈′′(0)
2𝛼0

=
𝑇𝐹𝛽

2

8𝛼0

introduced in Section 2.6.

At larger amplitudes the full bounded entropy structure becomes important. Since
𝑈 (𝜎𝐹) = −𝑇𝐹𝑆Bern(𝜎𝐹) and 𝑆Bern has a maximum at 𝜎𝐹 = 0, the entropy contribution
𝑈 (𝜎𝐹) is minimised near the centre of the Bernoulli channel and increases again as
𝜎𝐹 is driven toward the saturation plateaux. In the free energy

𝐹 [𝜎𝐹 ; 𝜌𝑏] =
∫ (

𝛼 |∇𝜎𝐹 |2 +𝑈 (𝜎𝐹) − 𝜅𝜎𝐹𝜌𝑏
)

d3𝑥

this means that the Fisher temperature term penalises large excursions of 𝜎𝐹 toward
the entropy saturation plateau and provides an effective saturation mechanism for the
scalar response.

Helmholtz structure and gravitational screening In the weak amplitude regime
where 𝑆Bern(𝜎𝐹) can be approximated by a quadratic potential, the radial scalar
equation

− 1
𝑟2
𝑑

𝑑𝑟

(
2𝛼(𝑟)𝑟2𝜎′

𝐹 (𝑟)
)
+ 𝑚2

𝐹𝜎𝐹 (𝑟) ≈ 𝜅𝜌𝑏 (𝑟)

has the structure of a screened Poisson or Helmholtz problem for 𝜎𝐹 with mass scale
𝑚𝐹 and penetration length ℓ𝐹 ∼ 1/𝑚𝐹 . In particular, for slowly varying stiffness one
can take 𝛼(𝑟) ≈ 𝛼0 on the scales of interest, so that the differential operator acting on
𝜎𝐹 reduces to the spherically symmetric Helmholtz operator

−2𝛼0

(
𝑑2

𝑑𝑟2 + 2
𝑟

𝑑

𝑑𝑟

)
𝜎𝐹 (𝑟) + 𝑚2

𝐹𝜎𝐹 (𝑟).

This is directly analogous to the London equation for magnetic screening in a
superconductor, where the field obeys a massive Helmholtz equation with a finite
penetration depth. In the present work we use this analogy only at the level of the
linearised scalar equation, as a way to interpret the cored branch as a regime of partial
gravitational screening by the Fisher scalar. We do not assume a full superconducting
order parameter or flux quantisation structure for the vacuum.
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3.3 Qualitative impact of Fisher temperature

The Fisher temperature 𝑇𝐹 controls the competition between gradient energy, bounded
entropy, and baryon source. Three regimes are particularly relevant.

Cold Fisher regime. When 𝑇𝐹 is very small, the entropy term is negligible and
the scalar dynamics are dominated by the gradient and source terms. The halo
configuration approaches a solution of the cold Fisher Bogomolny equation (2.3).
Gradients can become large in regions where the baryon mass rises steeply, and the
resulting halo profiles are susceptible to cusps.

Moderate Fisher temperature. For 𝑇𝐹 of order unity in suitable units, the entropy
term becomes comparable to the gradient term in regions where 𝜎F grows. The
mobility factor 𝑝(1 − 𝑝) suppresses further growth as 𝑝 approaches zero or unity. In
spherical toy models this leads to cored profiles with approximately constant density in
the centre, and to outer profiles that smoothly join on to the gradient dominated regime.
These solutions can be compared directly with empirical cored halo families [23].

High Fisher temperature. For very large 𝑇𝐹 the entropy penalty dominates and
the scalar field is strongly confined near 𝜎F = 0 except where the baryon source is
sufficiently strong. The halo becomes compressed toward regions of high baryon
density, and the outer halo can be suppressed. This provides a simple mechanism for
the adiabatic contraction of halos in massive galaxies and clusters where the baryon
potential well is deep.

The full interplay between 𝑇𝐹 , the stiffness profile 𝛼(𝑟), and the baryon density 𝜌𝑏 (𝑟)
is best explored numerically. In Section 4 we study a simple Bernoulli bounded entropy
model in spherical symmetry and show explicitly how cuspy and cored profiles arise
as 𝑇𝐹 and the baryon concentration are varied. In Section 5 we then connect the scalar
theory to observed rotation curves through an effective Fisher susceptibility model.

4 Radial Bernoulli halos: numerical construction

To understand the combined effect of Fisher stiffness, bounded entropy and baryon
concentration it is useful to study a simplified spherical model in which the scalar
equation (3.2) is evolved as a gradient flow in a one dimensional radial coordinate.
This section introduces such a model and summarises its qualitative behaviour.

4.1 Radial gradient flow model

We approximate the static Euler Lagrange equation (3.2) by a dissipative flow in an
auxiliary time variable 𝑡,

𝜕𝑡𝜎F(𝑟, 𝑡) =
1
𝑟2

𝜕

𝜕𝑟

(
2𝛼(𝑟) 𝑟2𝜕𝑟𝜎F(𝑟, 𝑡)

)
+ 𝑇𝐹

d𝑆Bern
d𝜎F

(
𝜎F(𝑟, 𝑡)

)
+ 𝜅 𝜌𝑏 (𝑟).
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For suitable initial data and boundary conditions this flow decreases the free energy
(3.2) and relaxes toward a steady state that solves the static equation (3.2).In particular,
the numerical scheme enforces a Dirichlet condition

𝜎𝐹 (𝑟max) = 0,

which is the finite-radius analogue of the vacuum boundary condition 𝜎𝐹 (𝑟) → 0 as
𝑟 → ∞ used in the Bogomolny completion. This ensures that the surface term in the
Bogomolny decomposition vanishes in the continuum limit and that the numerical
halos saturate the same lower bound as the analytic cold sector.

A simple explicit time stepping scheme for (4.1) reads

𝜎𝑛+1
F, 𝑗 = 𝜎𝑛

F, 𝑗 + Δ𝑡
{
D 𝑗 [𝜎𝑛

F ] + 𝑇𝐹 (𝜕𝜎F𝑆Bern) 𝑗 (𝜎𝑛
F ) + 𝜅 𝜌𝑏, 𝑗

}
,

where 𝜎𝑛
F, 𝑗 ≈ 𝜎F(𝑟 𝑗 , 𝑡𝑛), with 𝑡𝑛 = 𝑛Δ𝑡, and 𝜌𝑏, 𝑗 ≈ 𝜌𝑏 (𝑟 𝑗). The operator D 𝑗

approximates the radial Fisher Laplacian,

D 𝑗 [𝜎F] ≈ 1
𝑟2
𝑗

𝜕

𝜕𝑟

(
2𝛼(𝑟) 𝑟2𝜎′

F(𝑟)
)���
𝑟=𝑟 𝑗

,

with a second order central stencil away from the origin and a regularised expression
at 𝑟 = 0. One convenient choice is

𝜎F,𝑟 (𝑟 𝑗) ≈
𝜎F, 𝑗+1 − 𝜎F, 𝑗−1

2Δ𝑟
, 1 ≤ 𝑗 ≤ 𝑁 − 2,

𝜎F,𝑟 (𝑟0) = 0, 𝜎F,𝑟 (𝑟𝑁−1) = 0,

so that a Neumann boundary condition is imposed at the origin and at the outer radius.
The flux

𝑗 𝑗 = 𝑟
2
𝑗𝛼(𝑟 𝑗) 𝜎F,𝑟 (𝑟 𝑗)

is then used to approximate the divergence,

D 𝑗 [𝜎F] ≈ 2
𝑟2
𝑗

𝑗 𝑗+1 − 𝑗 𝑗−1

2Δ𝑟
, 1 ≤ 𝑗 ≤ 𝑁 − 2,

with appropriate one sided approximations at 𝑗 = 0 and 𝑗 = 𝑁 − 1 that respect the
regularity of 𝜎F at the origin and the imposed outer boundary condition.

The Bernoulli entropy derivative is evaluated pointwise using the logit map (3.1).
Writing 𝑝 𝑗 = 𝑝(𝜎F, 𝑗) one has

d𝑆Bern
d𝜎F

(𝜎F, 𝑗) =
(
− log 𝑝 𝑗 + log(1 − 𝑝 𝑗)

)
𝛽 𝑝 𝑗 (1 − 𝑝 𝑗),

and a numerically stable implementation is obtained by clipping 𝑝 𝑗 away from the
exact boundaries 0 and 1.

The explicit scheme (4.1) is subject to a Courant stability condition controlled by the
Fisher stiffness. A practical stability criterion is

Δ𝑡 ≲ 𝑐CFL
Δ𝑟2

max 𝑗 𝛼(𝑟 𝑗)
,
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with 𝑐CFL < 1. In practice one can choose a requested timestep and clamp it to this
stability bound at run time.

4.2 Toy baryon and stiffness profiles

To illustrate the qualitative behaviour of the model we adopt a simple Gaussian baryon
profile

𝜌𝑏 (𝑟) = 𝜌0 exp
(
− 𝑟2

2𝑟2
𝑏

)
,

with characteristic core radius 𝑟𝑏 and central density scale 𝜌0. The Fisher stiffness
is chosen to interpolate between a small radius area law regime and a large radius
saturation,

𝛼(𝑟) = 𝛼0
(𝑟/𝑟∗)2

1 + (𝑟/𝑟∗)2 ,

where 𝑟∗ is a crossover radius. For 𝑟 ≪ 𝑟∗ one has 𝛼(𝑟) ≈ 𝛼0(𝑟/𝑟∗)2, while for 𝑟 ≫ 𝑟∗
one finds 𝛼(𝑟) → 𝛼0. This simple profile captures the idea that Fisher coupling is
weak in the deep interior and saturates to a constant in the outer halo.

The baryon concentration is controlled by the dimensionless combination 𝜌0𝑟
2
𝑏

relative
to the Fisher coupling 𝜅, while the Fisher temperature 𝑇𝐹 and stiffness parameter 𝛽
control the bounded entropy channel. By scanning over (𝑇𝐹 , 𝛽, 𝜌0) one can identify
regimes in which the scalar field relaxes to a cuspy profile and regimes in which it
develops a flat core.

4.3 Cusps, cores and the cold limit

Numerical experiments with the radial gradient flow (4.1) and the toy profiles (4.2)
and (4.2) reveal three characteristic regimes.

For small Fisher temperature 𝑇𝐹 ≈ 0 the entropy term plays no role and the flow
relaxes toward a solution that is well approximated by the cold Fisher Bogomolny
equation (2.3). In this regime the scalar gradient 𝜎′

F(𝑟) is directly proportional to
𝑀𝑏 (𝑟)/(𝛼(𝑟) 𝑟2), so in regions where the baryon mass rises steeply the gradient
becomes large. For centrally concentrated baryons this produces a cuspy Fisher profile
with a steep inner rise.

For intermediate Fisher temperature, with 𝑇𝐹 of order unity in suitable units, the
bounded entropy term introduces an effective saturation when 𝜎F grows large enough
that 𝑝(𝜎F) approaches zero or one. In this regime the inner profile flattens: the
scalar field develops a core in which 𝜎′

F(𝑟) is small and the effective halo density is
approximately constant. The transition from core to outer halo is controlled by the
crossover radius 𝑟∗ in the stiffness profile and by the balance between 𝑇𝐹 and the
baryon concentration.

For high Fisher temperature the entropy penalty is strong. The scalar field is confined
near 𝜎F = 0 except in regions where the baryon source is large enough to overcome the
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entropy barrier. In the toy model this leads to halos that are tightly bound to the baryon
distribution, with little extended Fisher mass at large radii. This regime resembles
adiabatic contraction of halos in massive galaxies and clusters.

A particularly striking feature of the intermediate temperature regime is that the
resulting core profiles can be well fitted by empirical cored halo families. In spherical
toy models with suitable parameter choices the scalar profile 𝜎F(𝑟) produces an
effective density that matches the Burkert form to high precision over a wide radial
range. This supports the interpretation of the bounded entropy channel as a Fisher
mechanism for generating cored halos without introducing an independent dark matter
species.

4.4 A simple cusp to core phase diagram

The radial Bernoulli model of Secs. 3.2 and 4 provides a convenient way to summarise
the cusp to core behaviour of the scalar Fisher halo in terms of a small number of
dimensionless control parameters. In the toy model of Sec. 4.2 the baryon distribution
is specified by a central density scale 𝜌0 and a characteristic core radius 𝑟𝑏, while the
Fisher sector is controlled by the stiffness profile 𝛼(𝑟), the Fisher temperature 𝑇𝐹 and
the Bernoulli stiffness parameter 𝛽.

For the Gaussian baryon profile and stiffness ansatz of Sec. 4.2 it is useful to introduce
the dimensionless Fisher temperature parameter

Θ𝐹 := 𝑚𝐹𝑟𝑏,

where 𝑚𝐹 is the Fisher screening mass from the weak-field Yukawa limit of Sec. 3.2,
defined by

𝑚2
𝐹 :=

𝑈′′(0)
2𝛼0

=
𝑇𝐹𝛽

2

8𝛼0

for the Bernoulli potential, and a dimensionless baryon compaction parameter

Ξ𝑏 :=
𝜅𝜌0𝑟

2
𝑏

𝛼0
.

Here 𝛼0 is the asymptotic value of the stiffness in the simple profile

𝛼(𝑟) = 𝛼0
(𝑟/𝑟∗)2

1 + (𝑟/𝑟∗)2 ,

and the ratio
𝑅∗ :=

𝑟𝑏

𝑟∗

measures whether the baryons reside predominantly in the rising part of the stiffness
profile or in the saturated outer regime.

In terms of these parameters, the numerical experiments of Sec. 4.3 can be organised
into three qualitative branches.

Cold cusp dominated branch. When Θ𝐹 ≪ 1 the screening length ℓ𝐹 ∼ 1/𝑚𝐹 is much
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larger than the baryon core radius. The bounded entropy term is then weak on the
scale of 𝑟𝑏 and the scalar profile is well approximated by the cold Fisher Bogomolny
equation. For sufficiently large baryon compaction, with Ξ𝑏 above an order one
threshold that depends on 𝑅∗, the gradient 𝜎′

𝐹
(𝑟) grows rapidly in the inner region

and the effective Fisher density develops a steep central rise. In this regime the halo
lies on a cusp dominated branch.

Entropy supported core branch. For intermediate Fisher temperature, with Θ𝐹 of order
unity for fixed 𝑅∗, the bounded entropy channel becomes effective within the baryon
core. As 𝜎𝐹 grows, the Bernoulli occupation 𝑝(𝜎𝐹) approaches its saturation values
and the mobility factor 𝑝(1 − 𝑝) suppresses further growth of the scalar field.

For moderate baryon compaction the radial flow (4.1) relaxes to profiles in which 𝜎′
𝐹

is small over a finite inner region and the effective density is approximately constant
in the centre. The transition from this core to the outer gradient dominated halo is
controlled by 𝑅∗ and by the balance between Θ𝐹 and Ξ𝑏. In the (Θ𝐹 ,Ξ𝑏) plane this
defines a band in which cored solutions are realised.

Entropy dominated compressed branch. For large Fisher temperature, with Θ𝐹 ≫ 1 at
fixed 𝑅∗, the entropy penalty term dominates the free energy on the scale of the baryon
core. The scalar field is then confined near 𝜎𝐹 = 0 except where the baryon source is
strong enough to overcome the entropy barrier. In the toy model this yields solutions
in which the Fisher halo mass is concentrated near the baryons and the extended outer
halo is strongly suppressed. This branch resembles adiabatic contraction of halos in
deep baryonic potential wells.

For a fixed stiffness profile and baryon shape the three regimes above define a schematic
phase diagram in the (Θ𝐹 ,Ξ𝑏) plane, parametrised by 𝑅∗. The numerical radial flows
do not exhibit a sharp phase transition between cusps and cores, but rather a smooth
crossover curve Ξ𝑏,crit(Θ𝐹 ; 𝑅∗) separating solutions with steep inner profiles from
those that develop an extended entropy supported core. Within the present model we
do not attempt to extract a closed form for this curve, but the structure is sufficient to
make two points clear.

First, once the Fisher sector parameters (𝑇𝐹 , 𝛽, 𝛼0, 𝑟∗) are fixed, the location of a given
galaxy in the phase diagram is controlled by its baryon compaction through Ξ𝑏; the
choice between a cusp dominated and a cored halo is not an extra free knob that can
be tuned independently for each system. Second, the same control parameters that
govern the toy model can be inferred, at least approximately, from observed baryon
profiles in real galaxies, so the qualitative phase diagram provides a bridge between
the Bernoulli scalar theory and empirical cusp to core trends without introducing
additional phenomenological structure.

4.5 Effective density and rotation curves in the toy model

Given a relaxed scalar profile 𝜎F(𝑟) from the radial gradient flow, the effective Fisher
halo mass and rotation curve can be constructed directly. The effective density
is obtained by differentiating the Fisher acceleration (2.2) and comparing with the
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Θ𝐹

Ξ𝑏

compressed

cuspy

cored

𝑇𝐹 ∼ 𝑇𝐹,∗

Figure 1: Schematic cusp - core phase diagram in the (Θ𝐹 ,Ξ𝑏) plane. The solid curve
indicates the qualitative transition between cuspy, cored and entropy compressed branches for
a fixed stiffness profile and baryon shape, as discussed in the text. The dashed line illustrates
a representative Θ𝐹 slice corresponding to a family of halos at approximately fixed Fisher
temperature.

Newtonian Poisson equation. In spherical symmetry one has

𝑔F(𝑟) = −𝐺𝑀𝐹 (𝑟)
𝑟2 𝑟,

so that
𝑀𝐹 (𝑟) = −𝜆𝐹

𝐺
𝑟2𝜎′

F(𝑟).

Differentiating yields the effective Fisher density

𝜌𝐹 (𝑟) =
1

4𝜋𝑟2
d𝑀𝐹

d𝑟
(𝑟) = − 𝜆𝐹

4𝜋𝐺

(
2𝜎′

F(𝑟) + 𝑟 𝜎
′′
F (𝑟)

)
.

In practice, numerical derivatives of the relaxed 𝜎F(𝑟) profile can be used to construct
𝜌𝐹 (𝑟) and the total circular velocity

𝑣2
c (𝑟) =

𝐺

𝑟

(
𝑀𝑏 (𝑟) + 𝑀𝐹 (𝑟)

)
.

Comparisons with standard analytic halo families then provide a direct link between
the Fisher scalar model and phenomenological dark matter profiles.

Remark (Osmotic interpretation of the Fisher force). In the scalar density formulation
of the Fisher sector developed in [2], one introduces a coarse-grained density 𝜌 and a
log-density potential 𝜑 = log(𝜌/𝜌0) for a fixed reference density 𝜌0 > 0. To match the
effective potential convention Φeff = − 𝑐2

2 𝜑 used there, it is convenient in the present
paper to identify the Fisher scalar with the log-density in the weak-field regime,

𝜎F ≈ 𝜑 = log(𝜌/𝜌0).
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Using the halo acceleration 𝑔F = 𝜆𝐹∇𝜎F then gives

𝑔F(𝑥) ≈ 𝜆𝐹∇𝜎F(𝑥) ≈ 𝜆𝐹∇𝜑(𝑥) = 𝜆𝐹∇ log 𝜌(𝑥).

The associated Fisher force density is

𝑓F(𝑥) := 𝜌(𝑥) 𝑔F(𝑥) ≈ 𝜆𝐹𝜌(𝑥) ∇ log 𝜌(𝑥) = 𝜆𝐹∇𝜌(𝑥) = −∇𝑃F(𝜌(𝑥)), 𝑃F(𝜌) = −𝜆𝐹𝜌+const.

In this weak log-density branch the Fisher halo force is algebraically equivalent to
an osmotic pressure gradient with a negative pressure (tension) 𝑃F ∝ −𝜌. With
this convention an overdensity (∇𝜌 pointing inward) generates an attractive Fisher
acceleration (directed towards higher density), consistent with the effective potential
Φeff in [2] and with the definition of 𝑔F used in the present paper.

This matches the thermodynamic picture in which 𝜎F plays the role of a dimensionless
chemical potential for the vacuum sector: the Fisher halo force can be viewed as the
osmotic reaction of the vacuum to the presence of baryons.

In the present paper we use this only as a local interpretation of the Fisher force in
slowly varying regions and do not impose 𝑃F ∝ 𝜌 as a global closure condition for
halo structure.

Remark (Self-sourced branch and 𝑛 = 1 polytropic comparison). The same scalar
density sector in [2, Sec. 6.3] admits a self-sourced branch in which the coarse-grained
density plays the role of its own source, with 𝜌𝑚 = 𝜆𝜌 for 𝜆 > 0. In spherical symmetry
the corresponding static equation reduces to a Helmholtz-type equation

Δ𝜌 + 𝜆𝜅 𝜌 = 0,

with regular solution

𝜌(𝑟) = 𝜌𝑐
sin

(√
𝜆𝜅 𝑟

)
√
𝜆𝜅 𝑟

, 0 ≤ 𝑟 ≤ 𝜋
√
𝜆𝜅
,

where 𝜌𝑐 is the central density and the outer radius is fixed by the first zero of the
sine. This is the classical 𝑛 = 1 Lane-Emden profile, which can be obtained from a
polytropic equation of state of the form 𝑃 ∝ 𝜌2. We do not make direct use of this
self-sourced branch in the galactic fits below, but it shows that the Fisher scalar sector
naturally supports both an osmotic interpretation in the weak log-density regime and a
polytropic, self-sourced configuration with an 𝑛 = 1 equation of state, all within the
same Fisher geometry on densities.

The toy model therefore plays two roles. It demonstrates explicitly that Bernoulli
bounded entropy can generate cored halos with realistic shapes, and it fixes the
qualitative dependence of halo structure on Fisher temperature, baryon concentration
and stiffness profile. In the next section we introduce an observationally anchored
construction in which the Fisher halo contribution to rotation curves is written directly
in terms of the baryonic acceleration profile of a galaxy.
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5 Fisher halo response in disc galaxies

The scalar Fisher model described above can be connected to observed rotation curves
by treating the Fisher halo as a nonlocal response to the baryonic acceleration within
the framework of Universal Information Hydrodynamics. Rather than reconstructing
𝜎F for each galaxy in detail, it is natural to work with an effective susceptibility kernel
that maps the baryonic acceleration profile to an additional halo contribution. This
section develops a simple one parameter response model and applies it to disc galaxy
data.

5.1 Baryonic acceleration and Fisher susceptibility

Consider a galaxy with baryonic circular velocity profile 𝑣𝑏 (𝑅) in the disc plane,
where 𝑅 is the cylindrical radius. The corresponding baryonic acceleration is

𝑔𝑏 (𝑅) =
𝑣𝑏 (𝑅)2

𝑅
.

In the scalar Fisher picture, gradients of 𝜎F are sourced by 𝑔𝑏 through the Fisher
operator and bounded entropy geometry. To leading order one can posit that the Fisher
halo acceleration is a nonlocal functional of 𝑔𝑏,

𝑔𝐹 (𝑅) =

∫ ∞

0
𝐾 (𝑅, 𝑅′) 𝑔𝑏 (𝑅′)2 d𝑅′,

where 𝐾 is an effective susceptibility kernel that encodes the radial Fisher stiffness
and the Bernoulli channel. In the simplest approximation 𝐾 is taken to be positive and
slowly varying, so that the dominant contribution to 𝑔𝐹 (𝑅) at a given radius comes
from baryonic accelerations at comparable radii.

A particularly simple model arises by assuming that the effective halo mass enclosed
within radius 𝑅 is proportional to a cumulative Fisher energy constructed from 𝑔2

𝑏
,

𝑀𝐹 (< 𝑅) ∝
∫ 𝑅

0
𝑔𝑏 (𝑟)2 𝑟2 d𝑟.

Comparing with the Newtonian relation between enclosed mass and circular velocity,

𝑣𝐹 (𝑅)2 =
𝐺𝑀𝐹 (< 𝑅)

𝑅
,

one is led to an effective Fisher halo contribution of the form

𝑔𝐹 (𝑅) = 𝐶𝐼 (𝑅), 𝑣2
𝐹 (𝑅) = 𝑅𝑔𝐹 (𝑅), 𝐼 (𝑅) = 1

𝑅

∫ 𝑅

0
𝑔𝑏 (𝑟)2𝑟2 d𝑟,

where 𝐶 is an amplitude parameter with dimensions of (acceleration × length)−1 that
plays the role of an effective Fisher susceptibility. The function 𝐼 (𝑅) is completely
determined by the baryonic rotation curve of the galaxy, and encodes the shape of the
Fisher response.
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Analytic properties of the Fisher response functional. In a thin exponential
disc with surface density Σ(𝑅) = Σ0𝑒

−𝑅/𝑅𝑑 the baryonic acceleration has the usual
behaviour 𝑔𝑏 (𝑅) ∝ 𝑅 at 𝑅 ≪ 𝑅𝑑 and 𝑔𝑏 (𝑅) ∝ 𝐺𝑀𝑏/𝑅2 at 𝑅 ≫ 𝑅𝑑 . We approximate
the shape functional 𝐼 (𝑅) by taking the weight 𝑤(𝑟) ≈ 1. Inserting these asymptotics
into (5.1) gives:

• For 𝑅 ≪ 𝑅𝑑 , 𝑔𝑏 (𝑅) ≈ 𝑎𝑅 and

𝐼 (𝑅) ≈ 1
𝑅

∫ 𝑅

0
𝑎2𝑟4𝑑𝑟 =

𝑎2

5
𝑅4,

so 𝑔𝐹 (𝑅) ∝ 𝑅4 and 𝑣2
𝐹
(𝑅) ∝ 𝑅5. The Fisher contribution is negligible in the very

centre.
• For 𝑅 ≫ 𝑅𝑑 , 𝑔𝑏 (𝑅) ≈ 𝐺𝑀𝑏/𝑅2 and the integral converges,

𝐼 (𝑅) → 𝐼∞ ∼
𝐺2𝑀2

𝑏

𝑅0 𝑅
,

where 𝑅0 is an inner cutoff of order the disc scale and the precise prefactor depends
on the full 𝑔𝑏 (𝑅) shape. In this regime 𝑣2

𝐹
(𝑅) = 𝑅𝑔𝐹 (𝑅) tends to a constant

𝑣2
𝐹 (𝑅) → 𝐶 𝐼∞ ∼ 𝐶

𝐺2𝑀2
𝑏

𝑅0
,

so the Fisher halo generically produces an asymptotically flat rotation curve
contribution controlled by the baryon profile and 𝐶.

Low acceleration RAR behaviour. In the outer disc the baryonic acceleration scales as
𝑔𝑏 (𝑅) ∝ 𝑅−2 while the Fisher response scales as 𝐼 (𝑅) ∝ 𝑅−1. Eliminating 𝑅 gives

𝐼 (𝑅) ∝ 𝑔1/2
𝑏

(𝑅), 𝑔𝐹 (𝑅) = 𝐶 𝐼 (𝑅) ∝ 𝐶 𝑔1/2
𝑏

(𝑅),

so in the low acceleration regime where 𝑔𝐹 ≫ 𝑔𝑏 the total acceleration behaves as

𝑔tot(𝑅) ≃ 𝑔𝐹 (𝑅) ∝ 𝑔𝑏 (𝑅)1/2.

Thus the Fisher susceptibility model naturally generates a radial acceleration relation
with an effective slope one half in the low 𝑔𝑏 regime, without imposing a MOND like
interpolation by hand. The normalisation of (5.1) is set by the global susceptibility 𝐶
and the Fisher parameters entering 𝐼∞.

Scaling towards the baryonic Tully Fisher relation. For a family of discs with similar
surface density profiles, the integral 𝐼∞ scales as

𝐼∞ ∼
∫ ∞

0
𝑔2
𝑏 (𝑟) 𝑟

2𝑑𝑟 ∼
𝐺2𝑀2

𝑏

𝑅𝑑

,

up to a dimensionless factor that depends only on the shape of 𝑔𝑏 (𝑅). Combining
(5.1) and (5.1) gives

𝑣2
𝐹 (∞) ∝ 𝐶

𝐺2𝑀2
𝑏

𝑅𝑑

.
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Empirically, disc scale lengths obey a size mass relation 𝑅𝑑 ∝ 𝑀𝑠
𝑏

with 𝑠 in the range
0.3 to 0.5, so that

𝑣2
𝐹 (∞) ∝ 𝑀2−𝑠

𝑏 , 𝑣4
𝐹 (∞) ∝ 𝑀4−2𝑠

𝑏 .

For realistic 𝑠 this exponent lies close to the observed baryonic Tully Fisher slope. The
key point is that in the Fisher scalar theory the scaling of 𝑣flat with 𝑀𝑏 arises from the
non local response functional 𝐼∞ and the size mass relation, rather than being fitted
galaxy by galaxy: once the global Fisher parameters and susceptibility 𝐶 are fixed, the
BTFR enters as a derived scaling law.

Remark (Scalar Helmholtz limit and the shape functional). In the weak amplitude
regime of Sec. 3.2, where the Bernoulli bounded entropy can be approximated by
a quadratic potential, the scalar equation for 𝜎𝐹 reduces to a screened Poisson or
Helmholtz problem with Fisher mass 𝑚𝐹 and screening length ℓ𝐹 ≃ 1/𝑚𝐹 . For slowly
varying stiffness one has 𝛼(𝑟) ≃ 𝛼0 on the scales of interest, and the radial operator
acting on 𝜎𝐹 becomes a constant coefficient Helmholtz operator. In three dimensions
this can be written schematically as

−∇ ·
(
𝛼0∇𝜎𝐹 (𝑥)

)
+ 𝑚2

𝐹𝜎𝐹 (𝑥) ≃ 𝜅 𝜌𝑏 (𝑥),

so that in this homogeneous limit the Fisher potential is given by a Yukawa convolution

𝜎𝐹 (𝑥) = 𝜅

∫
R3
𝐺𝑚𝐹

(𝑥 − 𝑦) 𝜌𝑏 (𝑦) 𝑑3𝑦, 𝐺𝑚𝐹
(𝑟) = 1

4𝜋𝛼0

𝑒−𝑚𝐹𝑟

𝑟
.

The corresponding Fisher acceleration field

gF(x) := −𝜆𝐹∇𝜎𝐹 (x)

is therefore a nonlocal functional of the baryon distribution with a characteristic range
set by the screening length ℓ𝐹 .

For an approximately axisymmetric, thin disc the relevant component is the radial
acceleration in the disc plane. Projecting the Yukawa Green function onto the disc
geometry produces an effective kernel 𝐾 (𝑅, 𝑅′) which decays once |𝑅 − 𝑅′ | exceeds
ℓ𝐹 , and the halo contribution to the circular velocity can be written in the form

𝑣2
𝐹 (𝑅) ≃

∫ ∞

0
𝐾 (𝑅, 𝑅′) 𝑔𝑏 (𝑅′)2 𝑅′2 𝑑𝑅′.

The shape functional 𝐼 (𝑅) can thus be viewed as a cylindrical analogue of a Fisher
energy built from 𝑔2

𝑏
, obtained by integrating the squared baryonic acceleration over

the interior region. The susceptibility 𝐶, with dimensions of inverse velocity squared
as in 5.1, then plays the role of a coarse grained amplitude that encodes the net strength
of the scalar Helmholtz response for a given galaxy, without requiring an explicit
reconstruction of the three dimensional field 𝜎𝐹 or the exact kernel 𝐾 (𝑅, 𝑅′).
In the numerical SPARC fits of Section 5 we set 𝑤(𝑟) ≡ 1, so that 𝐼 (𝑅) is computed
directly from the squared baryonic acceleration profile of each galaxy.

This cumulative response model should therefore be understood as a phenomenological
summary of the underlying three dimensional Helmholtz dynamics in thin discs;
different non local kernels that produce the same 𝐼 (𝑅) over the radii sampled by the
data would be observationally indistinguishable at the level of the present susceptibility
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fits.

The total model circular velocity is

𝑣mod(𝑅)2 = 𝑣𝑏 (𝑅)2 + 𝑣𝐹 (𝑅)2 = 𝑣𝑏 (𝑅)2 + 𝐶 𝐼 (𝑅).

For each galaxy, 𝐶 can be determined by a weighted least squares fit to the observed
rotation curve. The magnitude of 𝐶 measures the strength of the Fisher halo response
relative to the baryons (with the attractive branch selected by the sign convention in gF
and by enforcing 𝐶best ≥ 0 in the fits).

5.2 Amplitude fitting from rotation curves

Given observed velocities 𝑣obs(𝑅𝑖) with uncertainties𝜎𝑣,𝑖 and a baryonic model 𝑣𝑏 (𝑅𝑖)
at radii 𝑅𝑖, the Fisher amplitude 𝐶 can be estimated by solving a linear regression
problem in 𝑣2 space. Define

𝑦𝑖 = 𝑣obs(𝑅𝑖)2 − 𝑣𝑏 (𝑅𝑖)2, 𝐼𝑖 = 𝐼 (𝑅𝑖),

where 𝐼 (𝑅) is the shape function (5.1) computed from the baryonic profile. The model
(5.1) implies

𝑦𝑖 ≈ 𝐶 𝐼𝑖 .

Approximating the uncertainty in 𝑦𝑖 by propagating the errors in 𝑣obs gives

𝜎𝑦,𝑖 ≈ 2 𝑣obs(𝑅𝑖) 𝜎𝑣,𝑖 .

Introducing weights 𝑤𝑖 = 1/𝜎2
𝑦,𝑖

, the least squares estimator for 𝐶 is

𝐶best =

∑
𝑖 𝑤𝑖 𝐼𝑖𝑦𝑖∑
𝑖 𝑤𝑖 𝐼

2
𝑖

.

To enforce an attractive halo one can constrain 𝐶best ≥ 0. The corresponding halo and
total velocities are then

𝑣𝐹 (𝑅𝑖) =
√︁
𝐶best𝐼𝑖 , 𝑣mod(𝑅𝑖) =

√︁
𝑣𝑏 (𝑅𝑖)2 + 𝑣𝐹 (𝑅𝑖)2.

A standard chi squared statistic in velocity space,

𝜒2 =
∑︁
𝑖

(
𝑣obs(𝑅𝑖) − 𝑣mod(𝑅𝑖)

𝜎𝑣,𝑖

)2
,

provides a measure of goodness of fit, together with the root mean square residual

RMS =

(
1
𝑁

∑︁
𝑖

(
𝑣obs(𝑅𝑖) − 𝑣mod(𝑅𝑖)

)2
)1/2

.

This construction defines a one parameter Fisher halo model for each galaxy, in which
the shape of the halo response is completely fixed by the baryonic rotation curve and
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only the overall Fisher susceptibility 𝐶 is adjusted. The model is simple enough to be
applied uniformly across large galaxy samples, while retaining a direct interpretation
in terms of the scalar Fisher dynamics.

5.3 Qualitative trends across galaxies

When the Fisher halo response model is applied to a heterogeneous galaxy sample,
one expects several robust trends.

For low mass, gas dominated dwarf galaxies with gently rising baryonic curves, the
shape function 𝐼 (𝑅) grows approximately linearly with radius in the outer disc. The
fitted Fisher amplitude 𝐶best is typically non zero and of order 10−2 in appropriate
units, and the resulting halo contribution 𝑣𝐹 (𝑅) produces a cored rotation curve that
closely resembles empirical cored profiles. The baryons alone would underpredict the
outer velocities, and the Fisher response supplies the missing acceleration.

For intermediate mass spirals with both stellar and gas components, the baryonic
rotation curve is more peaked. In many of these cases 𝐼 (𝑅) still supports a useful Fisher
response, but the fitted 𝐶best tends to be smaller, reflecting the fact that a significant
fraction of the observed rotation is already provided by the baryons. The Fisher halo
then acts as a modest correction that smooths the transition between the inner baryon
dominated regime and the outer flat portion of the curve.

For massive, bulge dominated systems with very high central baryon concentra-
tions, the simple Fisher susceptibility model (5.1) often assigns a small or vanishing
𝐶best. In such galaxies the baryonic model already saturates or overshoots the observed
velocities in the inner regions, and a positive Fisher response would worsen the fit.
This behaviour is consistent with the high Fisher temperature regime of the scalar
model, in which the halo is compressed into the inner potential well and does not
generate a significant extended mass at large radii.

These trends suggest that the Fisher susceptibility 𝐶 is not a universal constant, but
depends on properties of the baryonic distribution that determine the local balance
between Fisher gradient flow and bounded entropy. In the scalar model this dependence
is controlled by the Fisher temperature and the reversible sector of the vacuum generator.
A natural next step is to relate 𝐶 to a dimensionless Fisher temperature parameter
derived from the full UIH dynamics, and to determine whether the galaxy to galaxy
variation in𝐶best can be collapsed onto a small number of underlying Fisher parameters.

5.4 Connection to Fisher temperature and hypocoercivity

The effective susceptibility 𝐶 introduced in (5.1) measures the integrated response
of the Fisher halo to the baryonic acceleration field. Within the framework of the
universal generator 𝐾 = 𝐺 + 𝐽, the magnitude of this response is controlled by the
relative strength of the reversible sector 𝐽 and the Fisher gradient sector 𝐺.

In the hypocoercive setting, the ratio of the true relaxation rate to the bare Fisher
diffusion rate defines a dimensionless hypocoercive index. In simple models this index
flows under coarse graining toward a universal infrared fixed point. The Bernoulli
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bounded entropy channel can be viewed as a local realisation of this hypocoercive
structure, in which the Fisher temperature 𝑇𝐹 encodes the strength of the reversible
sector relative to the Fisher gradient. In regions where the baryonic potential is shallow
and the reversible currents are effective, the Fisher temperature is higher and the
scalar field is prevented from developing deep cusps, leading to cored halos and a
sizable Fisher susceptibility. In regions where the potential is deep and the reversible
currents are trapped, the Fisher temperature is effectively lower and the scalar halo is
compressed, reducing the extended Fisher response.

An important open question is therefore how to express the effective susceptibility 𝐶 in
terms of the underlying Fisher temperature and hypocoercive index, using the full UIH
operator geometry rather than the simplified scalar model. Addressing this requires a
more detailed analysis of the spectrum of the generator 𝐾 in the presence of baryonic
sources, and a study of how the Fisher halo eigenmodes emerge and saturate as one
flows toward larger scales. We return to this question in the discussion and outlook.

In the small amplitude regime of the Bernoulli channel, Sec. 3.2 shows that the bounded
entropy contribution induces a Fisher mass scale 𝑚2

𝐹
= 𝑇𝐹𝛽

2, so that the characteristic
screening length of the scalar halo is 𝜆𝑐 ∼ 1/𝑚𝐹 ∝ 𝑇−1/2

𝐹
at fixed stiffness profile. In

the finite dimensional UIH hypocoercivity experiments of Ref. [4], the impact of the
reversible sector on relaxation is captured by dimensionless UIH couplings built from
the Fisher gap and the norm of 𝐽. In particular, the leading hypocoercive corrections
to the bare Fisher decay rate are quadratic in the reversible amplitude, so any effective
Fisher temperature parameter constructed from the same operator data is naturally an
even functional of 𝐽, and in simple two-scale toy models can be arranged to scale as
𝑇𝐹 ∝ 𝑔2

1 up to model-dependent factors.

In such a picture the Fisher mass scale inherits this dependence, 𝑚𝐹 ∝ |𝑔1 |, and
the core radius 𝜆𝑐 is inversely related to the effective hypocoercive strength. We do
not attempt to derive a unique microscopic relation 𝑇𝐹 (𝑔1, 𝑔2) for realistic galaxies
here, but this scaling illustrates how the effective susceptibility 𝐶 and the cusp-core
behaviour inferred from rotation curves could, in a more complete UIH field theory,
be organised by the same hypocoercive indices that control relaxation in the operator
models. For the present paper we keep 𝑇𝐹 and 𝐶 at the level of effective parameters,
interpreted as coarse measures of the reversible sector strength in the scalar reduction.

5.5 Derivation of the Tully-Fisher Power Law

The empirical Baryonic Tully-Fisher Relation (BTFR), which relates the baryonic mass
𝑀𝑏 to the asymptotic circular velocity 𝑣 𝑓 via a power law 𝑀𝑏 ∝ 𝑣4

𝑓
, is often cited as

a challenge for standard dark matter models which typically require fine-tuning of
feedback mechanisms to reproduce the tight correlation. In the scalar Fisher framework,
this scaling emerges naturally from the Bogomolny structure in the constant stiffness
limit.

Recall that in the cold Fisher limit (𝑇𝐹 → 0), the halo satisfies the Bogomolny bound.
For a region with approximately constant stiffness 𝛼(𝑟) ≈ 𝛼0, the effective Fisher halo
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mass 𝑀𝐹 (𝑟) becomes strictly proportional to the enclosed baryon mass:

𝑀𝐹 (𝑟) = 𝛾𝐹𝑀𝑏 (𝑟), with 𝛾𝐹 =
𝜆𝐹𝜅

8𝜋𝐺𝛼0
.

The parameter 𝛾𝐹 represents a vacuum amplification factor. Consequently, the total
dynamical mass 𝑀𝑡𝑜𝑡 (𝑟) = 𝑀𝑏 (𝑟) +𝑀𝐹 (𝑟) is a linear renormalization of the baryonic
mass:

𝑀𝑡𝑜𝑡 (𝑟) = (1 + 𝛾𝐹)𝑀𝑏 (𝑟).
The circular velocity for a test particle 𝑣𝑐 (𝑟) is determined by the total enclosed mass.
At a characteristic radius 𝑅 capturing the bulk of the galaxy, we have:

𝑣2
𝑐 (𝑅) =

𝐺𝑀𝑡𝑜𝑡 (𝑅)
𝑅

=
𝐺𝑒 𝑓 𝑓𝑀𝑏 (𝑅)

𝑅
,

where 𝐺𝑒 𝑓 𝑓 = 𝐺 (1 + 𝛾𝐹) is the effective coupling constant mediated by the Fisher
vacuum.

To recover the scaling between mass and velocity, we introduce the geometric
constraint typical of rotationally supported disks. Observational samples such as
SPARC demonstrate that the central surface mass density of disk galaxies, Σ0, varies
within a bounded range (related to Freeman’s Law). Approximating the baryonic
mass as 𝑀𝑏 ≈ 𝜋Σ0𝑅

2, we can eliminate the radius 𝑅 in favor of the mass and surface
density:

𝑅 ≈
(
𝑀𝑏

𝜋Σ0

)1/2
.

Substituting this geometric constraint into the velocity equation yields:

𝑣2
𝑐 ≈

𝐺𝑒 𝑓 𝑓𝑀𝑏

(𝜋Σ0)−1/2𝑀
1/2
𝑏

= 𝐺𝑒 𝑓 𝑓 (𝜋Σ0)1/2𝑀
1/2
𝑏
.

Squaring this relation reveals the characteristic fourth-power scaling of the BTFR:

𝑀𝑏 ≈
[

1
𝜋𝐺2(1 + 𝛾𝐹)2Σ0

]
𝑣4
𝑐 .

This derivation highlights three key physical insights:

• The Slope: The 𝑣4
𝑐 dependence is not a fit but a structural consequence of the linear

mass renormalization 𝑀𝐹 ∝ 𝑀𝑏 inherent to the constant-stiffness Bogomolny
sector.

• The Normalization: The zero-point of the BTFR is set by the Fisher amplification
𝛾𝐹 . A “softer” vacuum (lower 𝛼0) yields a larger 𝛾𝐹 , shifting the relation to higher
velocities for a given baryonic mass.

• The Scatter: Deviations from the exact law arise naturally from variations in the
effective stiffness 𝛼(𝑟) (radial dependence) and the finite Fisher temperature 𝑇𝐹 ,
which introduces non-linear corrections via the bounded entropy term.

Thus, the scalar Fisher theory provides a first-principles derivation of the BTFR slope,
grounded in the information geometry of the vacuum rather than ad-hoc feedback
efficiency.
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5.6 Structural inequalities and observational wedges

The scalar Fisher construction developed above already implies several structural
inequalities that can be phrased directly in terms of observable accelerations, free
energies and relaxation rates. In this subsection we collect three such consequences
that are particularly natural targets for comparison with galaxy data and for future
numerical work. They follow from the cold Bogomolny structure of Sec. 2.2, the
Bernoulli bounded entropy of Sec. 3, and the hypocoercivity bounds for UIH flows
developed in Ref. [4].

Static acceleration wedge. In the cold scalar limit with spherical symmetry and stiff-
ness profile 𝛼(𝑟), Sec. 2.2 shows that the Fisher contribution to the radial acceleration
can be written as

𝑔𝐹 (𝑟) :=
��gF(𝑟)

�� =
𝜆𝐹𝜅

8𝜋 𝛼(𝑟)
𝑀𝑏 (𝑟)
𝑟2 ,

where 𝑀𝑏 (𝑟) is the enclosed baryonic mass and 𝜆𝐹𝜅/(8𝜋) is a positive constant
built from the Fisher coupling and the scalar charge. Matching to a Newtonian form
𝑔𝐹 (𝑟) = 𝐺𝑀𝐹 (𝑟)/𝑟2 defines an effective Fisher mass profile

𝑀𝐹 (𝑟) = 𝐶𝐹

1
𝛼(𝑟) 𝑀𝑏 (𝑟), 𝐶𝐹 :=

𝜆𝐹𝜅

8𝜋𝐺
.

Assume that in a given vacuum phase the stiffness is bounded on the radial domain of
interest,

0 < 𝛼min ≤ 𝛼(𝑟) ≤ 𝛼max < ∞.
Then the effective Fisher to baryon mass ratio, and hence the Fisher to baryon
acceleration ratio in the cold limit, is trapped between two constants

𝛾min :=
𝐶𝐹

𝛼max
, 𝛾max :=

𝐶𝐹

𝛼min
,

so that
𝛾min ≤ 𝑔𝐹 (𝑟)

𝑔𝑏 (𝑟)
≤ 𝛾max, 𝑔𝑏 (𝑟) :=

𝐺𝑀𝑏 (𝑟)
𝑟2 .

When the Fisher and baryonic accelerations are aligned, the total radial acceleration
therefore satisfies the wedge inequality

(1 + 𝛾min) 𝑔𝑏 (𝑟) ≤ 𝑔tot(𝑟) ≤ (1 + 𝛾max) 𝑔𝑏 (𝑟),

where 𝑔tot = 𝑔𝑏 + 𝑔𝐹 .

Equation (5.6) is a purely structural statement: in any regime where the cold scalar
approximation is adequate and the stiffness lies in a common interval [𝛼min, 𝛼max]
across systems, all radial points in the baryon acceleration plane must lie inside a
pair of straight lines of the form 𝑔tot = (1 + 𝛾)𝑔𝑏. Here we are assuming smooth,
monotonically increasing enclosed mass profiles 𝑀𝑏 (𝑟) and 𝑀𝐹 (𝑟) so that 𝑔𝑏 (𝑟) and
𝑔𝐹 (𝑟) are non negative and radially aligned, and that the accelerations do not change
sign in the region of interest; these mild conditions are satisfied for the approximately
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spherical, cold configurations considered below.

In practice real disc galaxies are not spherical and the finite temperature Bernoulli
channel perturbs the cold relation, but (5.6) identifies a natural RAR envelope implied
by the scalar geometry itself. A simple way to implement this observationally is to
take a sample with Fisher halo fits, construct 𝑔tot(𝑅) and 𝑔𝑏 (𝑅) at the radii entering
the rotation curve, and determine an empirical wedge [𝛾min

obs , 𝛾
max
obs ] that contains a

fixed fraction of the points. The scalar Fisher picture predicts that, after removing low
surface density outliers and strongly non axisymmetric systems, this wedge should be
approximately common to all galaxies sharing a given vacuum phase.

The fitted susceptibilities in Sec. 5 can therefore be interpreted as sampling an
underlying interval [𝛾min, 𝛾max] set by the Fisher couplings and the stiffness range,
with persistent RAR points outside any such common wedge signalling either departures
from the cold branch or breakdown of the simple scalar reduction.

Free energy bounds and information packing. The Bernoulli channel introduces a
bounded entropy contribution 𝑆Bern(𝜎𝐹) that interpolates between a quadratic regime
at small field and a saturated two-state entropy at large |𝜎𝐹 |, with pointwise bounds

0 ≤ 𝑆Bern(𝜎𝐹 (𝑥)) ≤ log 2, 𝑥 ∈ 𝑉,

on any finite domain 𝑉 ⊂ R3 adapted to the baryon profile. Together with the
Bogomolny completion of Sec. 2.2, which yields a cold bound 𝐹cold [𝜎𝐹 ; 𝜌𝑏] ≥
−𝑄grav

𝐹
[𝜌𝑏] for fixed baryons, this implies a simple global lower bound for the

finite-temperature scalar free energy

𝐹 [𝜎𝐹 ; 𝜌𝑏] ≥ −𝑄grav
𝐹

[𝜌𝑏] − 𝑇𝐹 (log 2) Vol(𝑉),

where 𝐹 [𝜎𝐹 ; 𝜌𝑏] is the full free energy including the entropy term, 𝑄grav
𝐹

[𝜌𝑏] is the
Fisher charge functional fixed by the baryon distribution, and Vol(𝑉) is the effective
volume of the scalar channel. For one-scale baryon families with total mass 𝑀𝑏 and
scale radius 𝑅𝑏 the Bogomolny integral gives a scaling

𝑄
grav
𝐹

[𝜌𝑏] ∼ 𝜅2

16𝜋𝛼̄
𝑀2

𝑏

𝑅𝑏

𝐶shape,

where 𝛼̄ is a suitable stiffness average and𝐶shape is a dimensionless shape factor. In this
sense the Bernoulli bounded entropy acts as a finite information-packing mechanism:
it allows the scalar halo to lower the free energy relative to the cold Fisher charge by
at most a controlled amount of order 𝑇𝐹 log 2 per effective coarse-grained degree of
freedom, without opening the door to unbounded negative energies. This bound has
two consequences.

First, for any fixed baryon profile and Fisher temperature the scalar free energy cannot
be driven to arbitrarily negative values by rearranging the halo; the cold Bogomolny
charge fixes a floor that scales with𝑀2

𝑏
/𝑅𝑏, while the bounded entropy term contributes

at most a finite shift set by 𝑇𝐹 and the site weights. Second, in families where the
baryons become more compact at fixed mass, the Fisher charge increases roughly as
𝑀2

𝑏
/𝑅𝑏 while the entropy contribution is controlled by the bounded channel. Within

the scalar model this identifies 𝑀2
𝑏
/(𝑅𝑏 𝛼̄) and 𝑇𝐹 as the natural control parameters

for how much Fisher structure can be packed into the inner regions without leaving
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the Bernoulli regime. The numerics of Sec. 4 show that this competition manifests
as a smooth transition between cuspy and cored profiles, with the bounded entropy
preventing arbitrarily sharp central cusps at finite 𝑇𝐹 .

From a practical point of view, the free energy inequality can be turned into a direct test
once a baryon profile and a Fisher halo fit are available. The charge functional𝑄grav

𝐹
[𝜌𝑏]

can be evaluated from the same radial integrals that enter the BPS construction, while
an effective scalar free energy can be estimated from the reconstructed halo mass
distribution and potential depth. For each galaxy the combination

IFisher := 𝐹cold [𝜎𝐹 ; 𝜌𝑏] − 𝑇𝐹
∫

𝑆Bern(𝜎𝐹) d𝑥 +𝑄grav
𝐹

[𝜌𝑏] + 𝑇𝐹 log 2
∫

𝑢(𝑥) d𝑥

should be non negative within modelling uncertainties if the bounded entropy picture
is adequate. A population of systems requiring IFisher ≪ 0 in order to fit their inner
rotation curves would indicate that either the Bernoulli channel is incomplete or the
scalar Fisher sector itself needs to be modified.

A fully analytic bound on the central density in terms of 𝑀𝑏, 𝑅𝑏, 𝑇𝐹 and 𝛼̄ lies
beyond the present scope, but the free energy inequality already identifies the relevant
combinations and the direction of the effect.

Hypocoercive relaxation bounds. Finally, the UIH hypocoercivity results of Ref. [4]
provide structural bounds on relaxation toward Fisher halo equilibria. In the finite
dimensional UIH setting, the symmetric Fisher Dirichlet operator −𝐺 has a spectral
gap 𝜆𝐹 that sets the irreversible clock, and the full generator 𝐾 = 𝐺 + 𝐽 satisfies

𝜆hyp ≥ 𝑐1 𝜆𝐹 , 0 < 𝑐1 ≤ 1,

with 𝑐1 a dimensionless constant depending only on the hypocoercive couplings 𝑔1 and
𝑔2. In all examples studied in [4] the decay rate of perturbations under 𝐾 is bounded
below by such a positive multiple of the Fisher gap.

Treating the scalar halo as a coarse grained UIH sector driven by the same Fisher
geometry, it is natural to expect an analogous inequality for the relaxation of 𝜎𝐹

toward a Bogomolny or Bernoulli equilibrium. At the level of free energy this can be
expressed schematically as

𝐹 [𝜎𝐹 (𝑡); 𝜌𝑏] − 𝐹∗ [𝜌𝑏] ≤
(
𝐹 [𝜎𝐹 (0); 𝜌𝑏] − 𝐹∗ [𝜌𝑏]

)
exp

(
−2𝜆hyp 𝑡

)
,

where 𝐹∗ [𝜌𝑏] denotes the minimal scalar free energy for the given baryon distribution
and 𝜆hyp is a hypocoercive rate controlled from below by the Fisher gap as in (5.6). In
particular, non equilibrium distortions of a Fisher halo cannot persist for times much
longer than 𝜆−1

hyp without contradicting the UIH hypocoercivity picture.

Earlier we summarised three structural inequalities already implied by the scalar Fisher
geometry and the UIH framework. They can be viewed as envelopes or floors within
which more detailed galaxy by galaxy modelling must sit, and they provide concrete
targets for future tests that combine rotation curves, lensing and dynamical relaxation
diagnostics.
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5.7 A Fisher spectrometer for galaxies

The static Fisher halo model already provides, for each galaxy, a preferred scalar profile
𝜎★
𝐹
(𝑟) that minimises the free energy 𝐹 [𝜎𝐹 ; 𝜌𝑏] for the given baryon distribution.

In this subsection we outline how such halos can be assigned simple dimension-
less “spectral coordinates” that allow galaxies to be compared directly to the other
information-geometric systems studied in the UIH programme [3, 4].

We fix a finite outer radius 𝑅max large enough that both the baryon profile and the
Fisher halo density have decayed to negligible values and consider perturbations 𝛿𝜎
of the static solution 𝜎★

𝐹
supported in 0 ≤ 𝑟 ≤ 𝑅max. The second variation of the free

energy at 𝜎★
𝐹

defines a symmetric Dirichlet-type operator

𝐺𝐹𝛿𝜎 = −∇ ·
(
𝛼(𝑟) ∇𝛿𝜎

)
+𝑉 ′′

𝐼

(
𝜎★
𝐹 (𝑟)

)
𝛿𝜎,

acting on a suitable weighted 𝐿2 space of perturbations with homogeneous boundary
conditions at 𝑟 = 0 and 𝑟 = 𝑅max. Under the structural assumptions on 𝛼 and 𝑉𝐼
already imposed in Sections 2 and 3, 𝐺𝐹 is self-adjoint and non-negative, with a
discrete spectrum on [0, 𝑅max].
Let 𝜆halo

𝐹,1 (𝑅max) denote the smallest non-zero eigenvalue of 𝐺𝐹 on this interval. This
eigenvalue plays the role of an effective Fisher gap for perturbations of the halo on
scales 𝑟 ≲ 𝑅max. It is natural to define a dimensionless gap parameter by

Λhalo := 𝜆halo
𝐹,1 (𝑅max) 𝑟2

∗ ,

where 𝑟∗ is the stiffness scale introduced in Section 2. For fixed Fisher parameters
(𝜆𝐹 , 𝑇𝐹 , 𝛼0, 𝑟∗) and baryon compactness, Λhalo is expected to be an O(1) quantity
that depends only on the dimensionless control parameters (Θ𝐹 ,Ξ𝑏, 𝑅∗) introduced in
Section 3.

The susceptibility fits performed in Section 5 assign to each galaxy a single Fisher
amplitude 𝐶gal in the linear response relation between the baryon acceleration and the
Fisher halo contribution. To compare different galaxies in a way that factors out the
overall Fisher curvature scale, it is useful to form the dimensionless combination

𝑆halo :=
𝜆halo
𝐹,1 (𝑅max)

𝜅
𝐶gal,

where 𝜅 is the global coupling constant entering the free energy (2.1). The index
𝑆halo measures, in a single number, how strongly the halo responds to the baryon
source relative to the curvature scale set by 𝐺𝐹 . In the idealised limit where the linear
response is dominated by the softest mode of 𝐺𝐹 , 𝑆halo is expected to be of order unity;
stronger or weaker responses correspond to departures from this idealised limit.

Taken together, the pair (
Λhalo, 𝑆halo

)
assigns to each galaxy a point in a low-dimensional “Fisher spectrometer” plane. The
UIH analysis of quantum channels and Markov generators [3, 4] associates analogous
dimensionless gap and response indices to finite-dimensional systems, and shows that
many apparently different generators cluster into a small universality region in this
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plane. The Fisher halo programme suggests that realistic galaxies should likewise
populate a narrow band in (Λhalo, 𝑆halo), with residual scatter controlled by baryon
compactness and environment.

We do not attempt to compute Λhalo and 𝑆halo for the full SPARC sample in the
present work. The definitions (5.7)-(5.7) are intended as a concrete template for future
numerical work, and as a bridge to the UIH universality diagrams. In particular, a
robust inconsistency between the ranges of (Λhalo, 𝑆halo) inferred from Fisher halos and
those measured in laboratory realisations of Fisher-Kähler dynamics would count as a
tension for the unified information-geometric picture developed here and in Refs. [2–4].

5.8 Parameter economy and predictive structure

The Fisher susceptibility model for disc galaxies is deliberately constrained in its
parameter content. Once a global Fisher coupling scale, a Fisher temperature regime
and a simple family of stiffness profiles have been fixed, each galaxy in the SPARC-like
sample is described, at the level of rotation curves, by a single halo amplitude parameter
in addition to its baryonic mass model. The shape of the halo response is tied to the
cumulative Fisher functional built from the baryonic acceleration, and the Bernoulli
bounded entropy sector fixes how the scalar interpolates between cuspy and cored
regimes as surface density and Fisher temperature are varied.

This is in contrast with standard cold dark matter halo fitting, where two or more
shape parameters per galaxy are usually required, and with strongly phenomenological
modified gravity fits that may introduce additional knobs in the interpolating function
or environment dependence. In the Fisher picture the freedom resides primarily in
a small number of global parameters that set the Fisher gap, the effective Fisher
temperature and the stiffness hierarchy, while individual galaxies only probe different
parts of the same Fisher response curve. As a result, the scalar Fisher model makes
joint predictions for the radial acceleration relation, the baryonic Tully-Fisher slope
and zero point, and the distribution of inferred halo amplitudes across galaxy types
once the global Fisher parameters are chosen.

The structural inequalities derived from the Bogomolny completion and the bounded
entropy potential further restrict the allowed region of parameter space. For a given
choice of Fisher parameters there are upper bounds on core surface densities, central
slopes and total Fisher mass, and the susceptibility fits cannot exceed these bounds.
A full SPARC scale analysis that enforces these constraints would therefore provide
a sharp test of whether the scalar Fisher sector can simultaneously account for
rotation curves, maintain parameter economy and remain compatible with the Fisher
inequalities. Such an analysis lies beyond the scope of the present paper, but the
formalism has been arranged so that it can be carried out with minimal additional
modelling freedom.

5.9 A characteristic surface density scale and Freeman-type bounds

The scalar Fisher construction implies structural inequalities that can be phrased in
terms of a characteristic surface density. This provides a theoretical basis for the
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empirical upper envelope of disc surface brightness often referred to as Freeman’s law.

Consider an idealised, rotationally supported disc that is thin compared to its radial
extent and symmetric under 𝑧 ↦→ −𝑧. The total vertical acceleration just above the
midplane is fixed by Gauss’s law,

𝑔𝑧,tot(𝑅, 0+) = 2𝜋𝐺 Σtot(𝑅),

where Σtot(𝑅) is the total surface mass density (baryons plus effective halo) at
cylindrical radius 𝑅. The baryonic contribution alone is 𝑔𝑧,b = 2𝜋𝐺 Σb. The Fisher
contribution to the midplane field is therefore

𝑔𝑧,F(𝑅, 0+) := 𝑔𝑧,tot(𝑅, 0+) − 𝑔𝑧,b(𝑅, 0+) = 2𝜋𝐺
[
Σtot(𝑅) − Σb(𝑅)

]
.

In the scalar Fisher theory, the halo acceleration gF = −𝜆𝐹∇𝜎𝐹 is constrained by the
bounded entropy potential. The combination of the kinetic term 𝛼 |∇𝜎𝐹 |2 and the
potential𝑈 (𝜎𝐹) ensures that quasi-static scalar gradients cannot grow arbitrarily large.
To see this, consider the integral of the scalar field equation,

−∇ ·
(
2𝛼∇𝜎𝐹

)
+𝑈′(𝜎𝐹) = 𝜅 𝜌𝑏,

multiplied by 𝜎𝐹 over a volume 𝑉 containing the galaxy. Using the boundedness
of 𝜎𝐹 (enforced by the Bernoulli channel), the bounds on 𝑈′, and the finite baryon
mass, standard elliptic gradient estimates imply a universal upper bound on the scalar
gradient for static solutions. We denote this universal Fisher acceleration scale by 𝑎𝐹 :

|gF(x) | ≤ 𝑎𝐹 throughout the configuration.

Applying this bound to the vertical field in (5.9) gives

2𝜋𝐺
��Σtot(𝑅) − Σb(𝑅)

�� ≤ 𝑎𝐹 .

It is convenient to define the characteristic surface density

Σcrit :=
𝑎𝐹

2𝜋𝐺
.

Discs with central surface densities Σb(0) ≪ Σcrit sit in the "soft" regime where the
vacuum can easily provide the missing surface density. However, for high-surface-
brightness (HSB) discs where the inner region is baryon dominated (Σtot ≃ Σb), the
inequality implies that Σb(0) cannot arbitrarily exceed Σcrit without violating the Fisher
acceleration ceiling.

For a Fisher acceleration scale comparable to the empirical RAR scale, 𝑎𝐹 ∼
10−10 m s−2, one finds

Σcrit ∼ 102 𝑀⊙ pc−2.

This is of the same order as the classic Freeman central surface brightness limit when
translated to mass units. In the Fisher picture, this scale is not an ad hoc limit but
the midplane imprint of the same vacuum saturation scale 𝑎𝐹 that controls the halo
response in the outskirts.
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Vertical field and surface density ceiling. Consider now the gravitational field at
the disc midplane. In the thin-disc approximation the total vertical field just above the
plane is given by the Gauss-law result for a sheet,

𝑔tot,𝑧 (𝑅, 0+) = 2𝜋𝐺 Σtot(𝑅),

where Σtot(𝑅) is the total surface mass density at radius 𝑅, including baryons and any
effective halo contribution that can be coarse grained across the thin disc. Similarly
the vertical field from the baryons alone is

𝑔𝑏,𝑧 (𝑅, 0+) = 2𝜋𝐺 Σ𝑏 (𝑅).

The Fisher contribution to the vertical field at the plane is

𝑔𝐹,𝑧 (𝑅, 0+) = 𝑔tot,𝑧 (𝑅, 0+) − 𝑔𝑏,𝑧 (𝑅, 0+) = 2𝜋𝐺
(
Σtot(𝑅) − Σ𝑏 (𝑅)

)
.

By the universal Fisher bound (??) we know that |𝑔𝐹,𝑧 (𝑅, 0+) | ≤ 𝑎𝐹 for all 𝑅.
Combining (5.9) with this inequality gives

2𝜋𝐺
��Σtot(𝑅) − Σ𝑏 (𝑅)

�� ≤ 𝑎𝐹 .
In the central region of an HSB disc the mass budget is baryon dominated, so that
Σtot(0) ≃ Σ𝑏 (0) and the difference Σtot(0) −Σ𝑏 (0) is small compared to either. In this
regime the inequality (5.9) reduces to an upper bound on the total vertical field itself,

|𝑔tot,𝑧 (0, 0+) | ≃ |𝑔𝑏,𝑧 (0, 0+) | ≲ 𝑎𝐹 .

Using the sheet relation (5.9) at 𝑅 = 0 we obtain

2𝜋𝐺 Σtot(0) ≲ 𝑎𝐹 ,

and hence
Σ𝑏 (0) ≃ Σtot(0) ≲ Σcrit, Σcrit :=

𝑎𝐹

2𝜋𝐺
.

Equation (5.9) is a Freeman-type statement in baryonic variables: for HSB discs,
whose inner regions are baryon dominated, the Fisher scalar microphysics enforce a
galaxy-independent upper envelope on the central baryonic surface density. LSB discs,
in which the halo contributes a larger share of Σtot(0), naturally occupy Σ𝑏 (0) values
below Σcrit without ever violating the Fisher acceleration ceiling.

Relation to the classical Freeman value. The bound (5.9) expresses Σcrit purely
in terms of the universal Fisher acceleration scale 𝑎𝐹 and Newton’s constant. In the
next subsection we will see that the same 𝑎𝐹 controls the low-acceleration branch of
the RAR and sets the scale for the baryonic Tully-Fisher relation. When the Fisher
parameters are fixed by the halo fits, the resulting 𝑎𝐹 is of order 10−10 m s−2, so that
Σcrit = 𝑎𝐹/(2𝜋𝐺) is numerically of order 102 𝑀⊙ pc−2, consistent with the empirical
Freeman upper envelope when translated into surface brightness with realistic mass-
to-light ratios. We emphasise that Σcrit is not put in by hand: it is a derived scale, fixed
once the Fisher microphysics are chosen and the acceleration scale 𝑎𝐹 is calibrated
against the RAR.
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6 SPARC Numerics

To make these qualitative trends more concrete we have implemented a simple one
parameter Fisher fit to the rotation curves in the SPARC compilation of nearby disc
galaxies [26]. For each galaxy we take the published baryonic contribution 𝑣𝑏 (𝑅)
and observed circular velocity 𝑣obs(𝑅) at radii 𝑅𝑖 with quoted uncertainties 𝜎𝑖. The
baryonic acceleration is

𝑔𝑏 (𝑅𝑖) =
𝑣𝑏 (𝑅𝑖)2

𝑅𝑖
,

and we form the Fisher response functional

𝐼 (𝑅𝑖) =
1
𝑅𝑖

∫ 𝑅𝑖

0
𝑔𝑏 (𝑟)2 𝑟2 d𝑟,

discretised as in Sec. 5. The one parameter Fisher halo model then predicts

𝑔𝐹 (𝑅𝑖) = 𝐶 𝐼 (𝑅𝑖), 𝑣2
model(𝑅𝑖) = 𝑣

2
𝑏 (𝑅𝑖) + 𝐶 𝑅𝑖 𝐼 (𝑅𝑖),

with a single susceptibility parameter 𝐶 for each galaxy. We fix 𝐶 ≥ 0 and determine
the best fit 𝐶best by minimising the usual chi squared,

𝜒2(𝐶) =
∑︁
𝑖

[
𝑣obs(𝑅𝑖) − 𝑣model(𝑅𝑖;𝐶)

]2

𝜎2
𝑖

, 𝜒2
red =

𝜒2(𝐶best)
𝑁data − 1

.

No additional structural parameters are introduced at this stage: the disc, bulge and gas
components, distances and inclinations are taken directly from the SPARC modelling,
and the Fisher sector enters only through the single scalar 𝐶. We fit 𝐶 individually for
each galaxy to directly test the scalar theory’s prediction that vacuum susceptibility
saturates in high-density environments.

As a simple measure of the central baryon concentration we define a characteristic
inner baryonic acceleration

𝑔𝑏,0 := 𝑔𝑏 (𝑅min),
where 𝑅min is the innermost radius with a published rotation velocity. To quantify how
strongly the Fisher response integral is dominated by the inner disc we also define, for
each galaxy, an “inner Fisher fraction”

inner_I_frac =
1

𝐼 (𝑅max)
1

𝑅max

∫ 𝑅inner

0
𝑔𝑏 (𝑟)2 𝑟2 d𝑟, 𝑅inner =

1
2𝑅max,

where 𝑅max is the outermost radius in the SPARC data. This dimensionless number is
close to zero when the Fisher response is dominated by the outer disc and rises toward
unity when the inner bulge or bar controls the integral.

Applying this pipeline to the 175 galaxies in our SPARC subsample we find that the
Fisher halo model with a single positive susceptibility parameter provides a reasonable
description of a large fraction of the rotation curves, but breaks down systematically
in systems with very high central baryon accelerations. For orientation, the global
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median over the sample is

median(𝐶pos
best) ≃ 3.1 × 10−4 (km/s)−2, median(𝜒2

red) ≃ 6.5,

with a broad scatter toward both smaller and larger values. To reveal the dependence
on central baryon concentration more clearly we divide the sample into three equally
populated groups by the empirical quantiles of 𝑔𝑏,0, which we label “low density”,
“intermediate density” and “high density” for brevity.

In the low density group (58 galaxies, typically dwarfs and low surface brightness
discs) the inner baryonic accelerations cluster around

median(𝑔𝑏,0) ≃ 2.5 × 102,

in the natural SPARC units, and the Fisher response integral is almost entirely controlled
by the outer disc,

median(inner_I_frac) ≃ 0.01.
In this regime the fitted susceptibilities are typically of order

median(𝐶pos
best) ≃ 3.7 × 10−3 (km/s)−2,

with a median reduced chi squared median(𝜒2
red) ≃ 1.8. Thus for slowly rising rotation

curves whose baryonic contribution remains small at all radii, the one parameter Fisher
halo model provides statistically acceptable fits with a characteristic susceptibility
of the order of a few 10−3 (km/s)−2. We refer to this characteristic value as the soft
vacuum susceptibility,

𝐶soft ≃ 4.2 × 10−3 (km/s)−2,

defined more precisely as the median of𝐶best over the low density subsample, restricted
to galaxies with 𝐶best > 0.

In the intermediate density group (57 galaxies, typically late type spirals with modest
bulges) the central baryonic accelerations are larger,

median(𝑔𝑏,0) ≃ 1.2 × 103,

and the inner Fisher fraction rises to median(inner_I_frac) ≃ 0.05. The fitted
susceptibilities are correspondingly smaller,

median(𝐶pos
best) ≃ 4.9 × 10−4 (km/s)−2,

and the typical fit quality degrades to median(𝜒2
red) ≃ 4.1.

Crucially, this vanishing susceptibility is a direct signature of the Bernoulli saturation
limit: in deep baryonic potential wells, the vacuum degrees of freedom are fully
excited, leaving no capacity for an additional linear response.

The high density group (60 galaxies, which are predominantly high surface brightness
spirals and bulge dominated systems) shows a qualitatively different behaviour. The
inner baryonic accelerations are now very large,

median(𝑔𝑏,0) ≃ 2.1 × 104,
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and the Fisher response integral is strongly dominated by the innermost radii, with
median(inner_I_frac) ≃ 0.30. In this regime the constrained least squares procedure
very often drives the fit to the boundary 𝐶best = 0, and the median susceptibility over
the high density group is consistent with zero within our fitting resolution. At the
same time the fit quality becomes poor, with a median reduced chi squared of order
median(𝜒2

red) ≃ 64. The galaxies with the smallest non zero effective susceptibility

𝑠eff =
𝐶best
𝐶soft

are almost all high surface brightness or strongly bulge dominated systems with large
inner Fisher fractions; several of them also show independent evidence for non trivial
dynamical structure, such as counter rotating components or signs of recent mergers
in the literature.

From the point of view of the scalar Fisher theory these results are natural.

In slowly rotating dwarfs and low surface brightness discs the baryonic acceleration
remains small at all radii and the Fisher integral is dominated by the extended outer
disc. In such systems the vacuum can respond linearly with a susceptibility close to
𝐶soft, generating a smooth, cored halo that supports the observed flat rotation curve.

As the central baryon concentration is increased the Fisher response integral becomes
more and more dominated by the inner disc and bulge, so that any positive linear
response would effectively “pile up” vacuum mass in the central regions. Within the
scalar theory this corresponds to entering the high Fisher temperature regime, where
the halo is compressed into the inner potential well and no longer produces a large
extended mass at large radii. In our simple one parameter fits this compression is
expressed by the fit preferring 𝐶best ≃ 0 in many high density galaxies, and by the
systematic increase in 𝜒2

red as 𝑔𝑏,0 and the inner Fisher fraction rise.

We emphasise that this SPARC analysis is deliberately minimal. The baryonic
modelling, distances and inclinations are held fixed, no attempt is made to include non
circular motions or vertical structure, and each galaxy is allowed its own susceptibility
parameter 𝐶 rather than enforcing a global Fisher temperature.

The trends across the low, intermediate and high density subsamples are highly
structured: the Fisher susceptibility inferred from the simplest one parameter model is
close to a constant 𝐶soft in dwarf and low surface brightness galaxies, falls by an order
of magnitude in typical spirals with moderate bulges, and is effectively driven to zero
in strongly bulge dominated systems where the Fisher response integral is dominated
by the inner disc.

This pattern is consistent with the cusp core phase diagram of Sec. 4, and provides a
first quantitative indication that the vacuum response is genuinely non linear in the
high density regime, as expected from the bounded entropy structure of the scalar
Fisher theory.

It is useful to contrast this deliberately constrained analysis with earlier exploratory
Fisher fits to the same SPARC sample. In that preliminary work we allowed a more
flexible, kernel based Fisher halo model in which each galaxy was assigned both
an overall amplitude and an effective radial scale controlling how rapidly the Fisher
response saturates with radius. With two such halo parameters per system the Fisher
sector was able to reproduce individual rotation curves, the radial acceleration relation
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and the baryonic Tully-Fisher relation at a level comparable to standard two parameter
dark matter halo models. Those preliminary results established that Fisher type vacuum
responses are at least phenomenologically competitive with more conventional halo
parametrisations, but they did so by giving the vacuum a degree of freedom that is not
obviously enforced by the scalar field theory itself.

The present treatment is intentionally stricter. We have fixed the halo shape by
the scalar Fisher theory, encoded it in the cumulative response integral 𝐼 (𝑅), and
allowed each galaxy only a single susceptibility parameter 𝐶, constrained to be non
negative. In this regime the Fisher sector is not tuned to obtain cosmetically optimal
fits for every rotation curve; instead, the aim is to expose systematic trends across
a heterogeneous sample and to test whether the soft versus stiff vacuum behaviour
predicted by the scalar theory is already visible in existing data. The fact that many
low and intermediate density discs are well described by a common soft susceptibility
𝐶soft, while strongly bulge dominated systems are driven toward an effectively stiff
response with 𝐶best ≃ 0 and large 𝜒2

red, is therefore informative rather than problematic.
It suggests that the failures of the simplest one parameter Fisher fit in the high density
regime are not merely shortcomings of a toy model, but a signal of genuinely non
linear vacuum response that is consistent with the broader cusp-core and bounded
entropy picture developed in this paper.

6.1 Fisher Gauss law and effective stiffness universality

In the spherical Fisher halo model the static acceleration sourced by baryons can be
written as

𝑔F(𝑅) =
𝜆F 𝜅

8𝜋 𝛼(𝑅)
𝑀𝑏 (𝑅)
𝑅2 ,

where 𝛼(𝑅) is the Fisher stiffness, 𝜅 is the baryon coupling that appears in the free
energy, and 𝜆F is the Fisher acceleration scale. In the Newtonian sector one has

𝑔𝑏 (𝑅) =
𝐺 𝑀𝑏 (𝑅)

𝑅2 ,

so the susceptibility

𝐶 (𝑅) :=
𝑔F(𝑅)
𝑔𝑏 (𝑅)

reduces in this limit to
𝐶 (𝑅) =

𝜆F 𝜅

8𝜋 𝐺
1

𝛼(𝑅) .

Thus 𝐶 (𝑅) probes the inverse Fisher stiffness. In the Fisher regularised Madelung
picture the same stiffness can be written as

𝛼(𝑅) =
ℏeff (𝑅)2

2𝑚F
,

for some effective Fisher mass 𝑚F, so that

𝐶 (𝑅) ∝ 1
ℏeff (𝑅)2 .
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It is therefore natural to introduce an effective Planck profile (up to an overall constant
scale)

ℎeff (𝑅) ∝ 𝐶 (𝑅)−1/2, ℎ̂(𝑥) :=
ℎeff (𝑅)
ℎeff (𝑅0)

, 𝑥 :=
𝑅

𝑅0
,

where 𝑅0 is a galaxy dependent scale radius defined operationally from the observed
rotation curve. The dimensionless profile ℎ̂(𝑥) measures the running of the effective
Planck weighted Fisher coupling relative to its value at 𝑅0.

To test whether this combination is universal across galaxies we constructed ℎ̂(𝑥)
for each SPARC system using the fitted susceptibility profiles 𝐶 (𝑅) and the same
definition of 𝑅0 as in the stacked stiffness analysis. We then interpolated log10 ℎ̂(𝑥)
onto a common logarithmic grid in 𝑥 on the interval

0.3 ≤ 𝑥 ≤ 3,

and computed the mean and standard deviation across the sample at each grid point.
After applying basic quality cuts (finite 𝐶, positive 𝑔F, and at least five usable points
per galaxy) this procedure yields a working set of 142 galaxies.

On this sample the stacked profile shows a tight collapse of the effective Planck shape.
In bins that are populated by at least a quarter of the galaxies the median scatter of
log10 ℎ̂(𝑥) is

median
[
std

(
log10 ℎ̂(𝑥)

) ]
≃ 0.20,

corresponding to a typical galaxy to galaxy dispersion of order a factor ∼ 1.6 at fixed
𝑥. The mean profile ℎ̂(𝑥) is determined much more precisely, with an uncertainty on
the mean of order 0.02 dex over the same range. Within the error bars the stacked
ℎ̂(𝑥) is well described by a nearly scale free power law in the dimensionless radius,

ℎ̂(𝑥) ∝ 𝑥−𝛾★, 𝛾★ ≈ 0.3–0.4,

over almost a decade in radius.

These numbers show that the SPARC data are consistent with a single, nearly universal
running profile for the effective Planck weighted Fisher stiffness, with an intrinsic
scatter of order 0.2 dex. In particular a model in which ℎ̂(𝑥) is taken to be constant
in 𝑥 at leading order, and the residual running is absorbed into the observed scatter,
is compatible with the current data. In the present work we restrict ourselves to this
conservative reading and do not attempt a microscopic identification of ℏeff (𝑅) beyond
its role in the Fisher Gauss law (6.1).

6.2 Future orientation

The scalar Fisher halo model, Bernoulli bounded entropy channel, and Fisher sus-
ceptibility construction developed in this work establish a concrete bridge between
information geometry and galactic dynamics. Several key questions remain open.

First, the dependence of the effective Fisher susceptibility on baryon properties and
environment needs to be understood from first principles. This includes relating the
fitted amplitude 𝐶 to Fisher temperature and hypocoercive indices derived from the
full generator 𝐾, and determining whether galaxy to galaxy variations in 𝐶 can be
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collapsed onto a small number of universal Fisher parameters.

Second, the role of reversible Fisher currents and Fisher gravitomagnetism in rotating
systems needs to be explored. This requires lifting the scalar model to a complex
Fisher Kähler field with both amplitude and phase, and analysing the resulting vortex
and solenoidal structures in galactic halos.

Third, the optical metric associated with Fisher structured vacua must be constructed
explicitly and confronted with lensing observations. This involves computing light
deflection in Fisher halos derived from multi scale UIH models, and comparing with
systems where conventional dark matter scenarios invoke collisionless components to
explain lensing baryon offsets.

Addressing these questions will require a combination of analytical work on the
Fisher Kähler geometry of the universal generator, numerical experiments with time
dependent Fisher fields, and systematic comparison with galactic and cluster data. The
scalar Fisher halos studied here provide a starting point for this programme, illustrating
how bounded entropy, Fisher stiffness and baryonic sources conspire to generate cored
and cuspy halos that can be fitted directly to rotation curves through a single Fisher
susceptibility parameter.

7 Relativistic Completion and Lens and lensing

The scalar Fisher model developed so far captures the static response of a Fisher halo
to a fixed baryon distribution. A complete gravitational phenomenology requires two
further ingredients: a dynamical treatment of Fisher halos in time dependent situations,
and a description of how light propagates through Fisher structured vacua. This
section outlines the geometric structures required for these extensions and identifies
key questions for future work.

7.1 Optical metric and Fisher lensing

Light propagation in a Fisher structured vacuum can be treated by projecting the full
UIH dynamics onto the relativistic completion derived in Section 2.7. Rather than
positing a phenomenological optical metric, we derive the lensing signal directly from
the scalar energy–momentum tensor in the weak field limit.

The Einstein frame action for the Fisher scalar is

𝑆𝐹 =

∫
d4𝑥

√−𝑔
[
−1

2
𝑍 (𝜎F) 𝑔𝜇𝜈 ∇𝜇𝜎F ∇𝜈𝜎F −𝑉𝐼 (𝜎F) − 𝜅 𝜎F 𝜌𝑏

]
.

In the static, weak field regime we consider scalar configurations close to a minimum
of the bounded entropy potential 𝑉𝐼 , so that the dominant scalar contribution to the
stress–energy tensor 𝑇F

𝜇𝜈 comes from the spatial gradients of 𝜎F. The effective scalar
energy density is then

𝜌eff ≡ 𝑇F
00 ≈ 1

2
𝑍 (𝜎F) |∇𝜎F |2,

where we have neglected 𝑉𝐼 in the cold Fisher limit.
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Gravitational lensing is governed by the Weyl potential Φlens = (Φ + Ψ)/2, where Φ
and Ψ are the metric perturbations in the Newtonian gauge

d𝑠2 = −(1 + 2Ψ) d𝑡2 + (1 − 2Φ) 𝛿𝑖 𝑗 d𝑥𝑖d𝑥 𝑗 .

For a static scalar configuration in which the gradient energy dominates and the
anisotropic stress is small, the linearised Einstein equations imply that the lensing
potential satisfies a Poisson equation sourced by the scalar energy density,

∇2Φlens = 4𝜋𝐺 𝜌eff = 2𝜋𝐺 𝑍 (𝜎F) |∇𝜎F |2.

This relation is obtained in the static, weak field regime in which time derivatives of 𝜎F
are negligible, the bounded entropy potential 𝑉𝐼 (𝜎F) is small in the cold Fisher limit,
and the anisotropic stress from the scalar gradients is subdominant so that Φ ≈ Ψ.
Under these conditions the Fisher scalar contributes to the Weyl potential in precisely
the same way as a physical matter fluid with density 𝜌eff .

In this regime the Fisher vacuum lenses light in the same way as a standard matter fluid
with density 𝜌eff , even though the scalar force on non relativistic baryons is controlled
by the fifth force coupling 𝜅.

This derivation removes the need for an independent optical coupling parameter 𝛼𝐺 .
Once the scalar sector is written in Einstein frame and the kinetic prefactor 𝑍 (𝜎F) is
fixed by the microscopic completion, the lensing profile is rigidly determined by the
stiffness profile 𝑍 (𝜎F) and the scalar gradient ∇𝜎F, with the overall coupling strength
set by Newton’s constant 𝐺 and no additional optical degree of freedom. In spherical
symmetry this leads to a lensing convergence 𝜅lens that tracks the projected Fisher
energy density. A central challenge for future work is to compute these maps for
cluster mergers and test whether the Fisher parameters required for galactic rotation
curves produce the correct lensing offsets in colliding systems.

7.2 Reversible currents and Fisher gravitomagnetism

The scalar sector studied above is associated with the symmetric Fisher generator 𝐺
and describes an irreversible, gradient driven response of the halo to baryonic sources.
The full UIH generator 𝐾 = 𝐺 + 𝐽 includes an antisymmetric reversible sector 𝐽
that encodes symplectic transport on the Fisher Kähler manifold. In the presence of
rotation and large scale flows one expects this reversible sector to generate macroscopic
Fisher currents in the halo, analogous to gravitomagnetic fields in general relativity.

Any linear response description of these Fisher currents would inherit the same
causality structure as in the density sector. Under the usual analyticity assumptions the
corresponding susceptibility 𝜒(𝜔, 𝑘) obeys a Kramers-Kronig relation in frequency,
so that the in phase and out of phase components form a Hilbert transform pair. In the
UIH language this can be read as stating that the dissipative contribution from 𝐺 and
the reversible contribution from 𝐽 arise as two quadratures of a single causal Fisher
response kernel rather than as independent degrees of freedom.

From the scalar point of view, the Fisher temperature 𝑇𝐹 provides a coarse measure of
the magnitude of these reversible currents: higher effective 𝑇𝐹 corresponds to stronger
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reversible mixing and a more significant bounded entropy contribution. In a fully
dynamical treatment one would introduce a complex order parameter whose phase
encodes the Fisher current, with the scalar 𝜎F describing the amplitude. The resulting
equations would combine Fisher diffusion, bounded entropy, and phase dynamics, and
would support solenoidal halo flows and vortex structures.

Closure and activation conditions for the 𝐽 sector. To turn the 𝐽 sector from
a qualitative remark into a predictive component, one must specify a closed set of
state variables, an admissible Hamiltonian functional, and the boundary and forcing
data that determine when the reversible current is present rather than gauge. In UIH
language this is the problem of closing the antisymmetric component of 𝐾 = 𝐺 + 𝐽 on
a concrete Fisher–Kähler state space [3, 4].

A minimal closure is obtained by lifting the scalar Fisher field to a complex order
parameter

Ψ(𝑥, 𝑡) =
√︁
𝜌𝐹 (𝑥, 𝑡) 𝑒𝑖𝜑 (𝑥,𝑡 ) ,

with an amplitude map anchored to the Bernoulli manifold,

𝜌𝐹 (𝑥, 𝑡) = 𝜌0 𝑝(𝜎𝐹 (𝑥, 𝑡)), 𝑝(𝜎𝐹) =
1

1 + 𝑒−𝛽𝜎𝐹
.

The reversible current is then encoded by the phase gradient, and the 𝐽-sector energy
is taken to be the unique local quadratic compatible with phase shift symmetry,

𝐹𝐽 [𝜎𝐹 , 𝜑] =
1

2𝑚𝐽

∫
R3
𝜌𝐹 (𝜎𝐹) |∇𝜑 − 𝐴𝑏 |2 𝑑3𝑥,

where 𝑚𝐽 is a Fisher–Kähler inertial parameter and 𝐴𝑏 is an externally specified
driving potential generated by baryonic rotation and large scale flows (set 𝐴𝑏 ≡ 0 in
the non-rotating case). The full functional is

𝐹tot [𝜎𝐹 , 𝜑; 𝜌𝑏] = 𝐹scalar [𝜎𝐹 ; 𝜌𝑏] + 𝐹𝐽 [𝜎𝐹 , 𝜑] .

The closure condition is that both sectors are generated by this single 𝐹tot on the same
state space: the 𝐺 sector is the metric gradient flow and the 𝐽 sector is the Hamiltonian
flow obtained by rotating the Fisher–Kähler gradient by the complex structure, so that
the reversible and dissipative currents are two quadratures of one information current
rather than independent knobs [2, 3].

With this choice, a stationary halo requires two simultaneous conditions. First, the
dissipative current must vanish, which enforces spatial constancy of the effective
chemical potential 𝜇eff = 𝛿𝐹tot/𝛿𝜌𝐹 . Second, the 𝐽 sector must satisfy its compatibility
and boundary constraints. In particular, 𝐽 is activated only when the boundary and
forcing data imply nontrivial circulation or vorticity in 𝜑, namely∮

𝐶

(∇𝜑 − 𝐴𝑏) · 𝑑ℓ = 2𝜋𝑛

for some integer 𝑛 on loops 𝐶 linking the disc, together with a no-flux condition at
large radius (or on the numerical box boundary) ensuring finite 𝐹𝐽 . When 𝐴𝑏 is trivial
and the vortex number is zero, the phase can be chosen constant, 𝑣𝐽 ∝ ∇𝜑 vanishes,
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and the 𝐽 sector collapses back to the scalar theory. When baryonic rotation supplies
𝐴𝑏 or fixes a nonzero circulation class, the phase cannot be gauged away and the
reversible current becomes a physical, predictive component rather than a fit ansatz.
An explicit disc-level realisation of this closure, including the resulting continuity
form and the static conditions, is given in Appendix D, which can be viewed as the
first concrete activation model for Fisher gravitomagnetism in the present framework
[3, 4].

Developing such a model requires lifting the scalar Bernoulli construction to the full
Fisher Kähler geometry, in which the Fisher metric and symplectic form are combined
into a compatible triple and the dynamics of 𝐾 are represented as coupled gradient
and Hamiltonian flows on the state space. The scalar halo studied here then appears as
a projection of a more general Fisher Kähler mode. A key open problem is to derive
an effective description of these modes in galactic settings, and to determine whether
the resulting Fisher gravitomagnetic effects can account for observed phenomena such
as the tightness of the baryonic Tully-Fisher relation and correlations between rotation
and halo structure.

7.3 Covariant completion of the effective stress–energy tensor

We now give a covariant stress–energy description whose static, weak field limit
reduces to the sources used by the periodic lensing solver. Throughout we use signature
(−,+,+,+) and Newtonian gauge as in (7.1). We work relative to the Eulerian observer
field𝑈𝜇 orthogonal to constant-𝑡 slices. To linear order,𝑈𝜇 = (1 −Φ, 0, 0, 0) and the
spatial projector is

ℎ𝜇𝜈 := 𝑔𝜇𝜈 +𝑈𝜇𝑈𝜈 , ℎ
𝜇
𝜈𝑈

𝜈 = 0.
Any stress–energy tensor admits the standard 1 + 3 split

𝑇𝜇𝜈 = 𝜌𝑈𝜇𝑈𝜈 + 𝑝 ℎ𝜇𝜈 + 2𝑈(𝜇𝑞𝜈) + 𝜋𝜇𝜈 ,

where 𝜌 := 𝑇𝛼𝛽𝑈𝛼𝑈𝛽 is the energy density, 𝑞𝜇 := −ℎ𝜇𝛼𝑇 𝛼𝛽𝑈𝛽 is the momentum
density (spatial energy flux), 𝑝 := 1

3ℎ
𝛼𝛽𝑇𝛼𝛽 is the isotropic pressure, and 𝜋𝜇𝜈 is the

anisotropic stress,

𝜋𝜇𝜈 :=
(
ℎ 𝛼
𝜇 ℎ

𝛽
𝜈 − 1

3
ℎ𝜇𝜈ℎ

𝛼𝛽

)
𝑇𝛼𝛽, 𝜋

𝜇
𝜇 = 0, 𝜋𝜇𝜈𝑈

𝜈 = 0.

In the static weak field limit, the slip is sourced only by 𝜋𝑖 𝑗 while the Newtonian
potential is sourced by 𝜌 (cf. (A) and (A)). The solver corresponds to the quasi-static
regime where 𝑞𝜇 ≃ 0 and time derivatives are neglected.

Scalar sector from an action. Take a scalar field 𝜎𝐹 with Lagrangian density

L𝑠 = −1
2
𝑍 (𝜎𝐹) 𝑔𝜇𝜈𝜕𝜇𝜎𝐹 𝜕𝜈𝜎𝐹 −𝑉 (𝜎𝐹).
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The associated stress–energy tensor is

𝑇
(𝑠)
𝜇𝜈 = 𝑍 (𝜎𝐹) 𝜕𝜇𝜎𝐹 𝜕𝜈𝜎𝐹−𝑔𝜇𝜈

(
1
2
𝑍 (𝜎𝐹) (𝜕𝜎𝐹)2 +𝑉 (𝜎𝐹)

)
, (𝜕𝜎𝐹)2 := 𝑔𝛼𝛽𝜕𝛼𝜎𝐹𝜕𝛽𝜎𝐹 .

This tensor is covariantly conserved on shell:

∇𝜇𝑇
(𝑠)𝜇
𝜈 =

[
∇𝜇 (𝑍 (𝜎𝐹)∇𝜇𝜎𝐹) −𝑉 ′(𝜎𝐹)

]
∇𝜈𝜎𝐹 ,

so ∇𝜇𝑇
(𝑠)𝜇
𝜈 = 0 whenever 𝜎𝐹 satisfies its Euler–Lagrange equation.

In the static cold Fisher regime used by the solver, 𝜕𝑡𝜎𝐹 ≃ 0 and 𝑉 is negligible, so
(𝜕𝜎𝐹)2 ≃ |∇𝜎𝐹 |2 and

𝜌𝑠 := 𝑇 (𝑠)
𝜇𝜈 𝑈

𝜇𝑈𝜈 ≃ 1
2
𝑍 (𝜎𝐹) |∇𝜎𝐹 |2,

while the spatial stress reads

𝑇
(𝑠)
𝑖 𝑗

≃ 𝑍 (𝜎𝐹) 𝜕𝑖𝜎𝐹 𝜕 𝑗𝜎𝐹 − 𝛿𝑖 𝑗
1
2
𝑍 (𝜎𝐹) |∇𝜎𝐹 |2.

The traceless spatial part is therefore exactly the object used in the proof module and
solver,

Π
(𝑠)
𝑖 𝑗

:= 𝑇 (𝑠)
𝑖 𝑗

− 1
3
𝛿𝑖 𝑗𝑇

(𝑠)𝑘
𝑘

= 𝑍 (𝜎𝐹)
(
𝜕𝑖𝜎𝐹 𝜕 𝑗𝜎𝐹 − 1

3
𝛿𝑖 𝑗 |∇𝜎𝐹 |2

)
,

and in this quasi-static setup the momentum density 𝑞 (𝑠)
𝑖

is negligible since 𝑇 (𝑠)
0𝑖 ∝

𝜕𝑡𝜎𝐹 𝜕𝑖𝜎𝐹 ≃ 0.

Kähler current sector as an imperfect fluid closure. The Kähler current module is
not introduced as a new propagating field in the solver. Covariantly it is most cleanly
represented as an effective imperfect fluid with energy density 𝜌𝐽 and anisotropic
stress 𝜋 (𝐽 )𝜇𝜈 , comoving with𝑈𝜇 and with negligible momentum flux,

𝑞
(𝐽 )
𝜇 ≃ 0, 𝑇

(𝐽 )
𝜇𝜈 = 𝜌𝐽 𝑈𝜇𝑈𝜈 + 𝑝𝐽 ℎ𝜇𝜈 + 𝜋 (𝐽 )𝜇𝜈 .

We encode the solver’s moment closure by introducing a purely spatial symmetric
tensor 𝑀𝜇𝜈 with 𝑀𝜇𝜈𝑈

𝜈 = 0, and define

𝜋
(𝐽 )
𝜇𝜈 := 𝜌𝐽

(
𝑀𝜇𝜈 −

1
3
ℎ𝜇𝜈

)
, 𝑀𝜇𝜈 :=

1
𝑁

𝑁∑︁
𝑎=1

𝑢
(𝑎)
𝜇 𝑢

(𝑎)
𝜈 , 𝑢

(𝑎)
𝜇 𝑈𝜇 = 0, 𝑢

(𝑎)
𝜇 𝑢 (𝑎)𝜇 = 1.

In the Eulerian frame this reduces exactly to the solver definition Π
(𝐽 )
𝑖 𝑗

= 𝜌𝐽 (𝑀𝑖 𝑗 −
𝛿𝑖 𝑗/3) with 𝑀𝑖 𝑗 =

1
𝑁

∑
𝑎 𝑢

(𝑎)
𝑖
𝑢
(𝑎)
𝑗

.

The solver further imposes the algebraic density loading

𝜌𝐽 = 𝑓 𝜌𝑠, 𝜌tot = 𝜌𝑠 + 𝜌𝐽 = (1 + 𝑓 )𝜌𝑠 .

The pressure 𝑝𝐽 is not used by the slip diagnostic. The minimal choice consistent with
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the interpretation “mass loading with minimal coherent stress” is 𝑝𝐽 ≃ 0 (dust-like
loading), since any large 𝑝𝐽 would enter the trace sector and, in dynamical situations,
feed time evolution of the potentials. With 𝑝𝐽 ≃ 0 and 𝑞 (𝐽 )𝜇 ≃ 0, the only channel by
which the current sector can drive slip is 𝜋 (𝐽 )𝜇𝜈 .

Conservation and the controlled approximation. For the scalar sector, conservation
is exact on shell by (7.3). For the current sector, the closure (7.3)–(7.3) is an effective
description: its consistency requires ∇𝜇𝑇

(𝐽 )𝜇
𝜈 ≃ 0. In the quasi-static regime with

𝑈𝜇 approximately time-like Killing and 𝑞 (𝐽 )𝜇 ≃ 0, the leading potential source of
nonconservation is the divergence of the anisotropic stress,

∇𝜇𝑇
(𝐽 )𝜇
𝜈 ≃ −∇𝜇𝜋

(𝐽 )𝜇
𝜈 (quasi-static, 𝑝𝐽 ≃ 0, 𝑞 (𝐽 ) ≃ 0).

In the isotropy regime established in Section 7.5, 𝑀𝜇𝜈 ≈ 1
3ℎ𝜇𝜈 so 𝜋 (𝐽 )𝜇𝜈 is small in the

same sense that the measured anisotropy floor is small. Writing Δ𝑀𝜇𝜈 := 𝑀𝜇𝜈 − 1
3ℎ𝜇𝜈 ,

one has 𝜋 (𝐽 )𝜇𝜈 = 𝜌𝐽Δ𝑀𝜇𝜈 and therefore the departure from exact conservation is
suppressed by ∥Δ𝑀 ∥ and its gradients. This is precisely the controlled approximation
already quantified empirically: increasing 𝑁 and ℓ drives Δ𝑀 to zero in the masked
region, so any residual violation of (7.3) conservation is parametrically tied to the
same 𝜀(ℓ, 𝑁) that sets the slip floor.

Static limit matching to solver sources. In the Eulerian frame used by the periodic
box solver, the sources entering (A) are

𝜌 ≡ 𝑇𝜇𝜈𝑈𝜇𝑈𝜈 ≃ 𝜌𝑠 + 𝜌𝐽 , Π𝑖 𝑗 ≡ 𝜋𝑖 𝑗 ≃ Π
(𝑠)
𝑖 𝑗

+ Π
(𝐽 )
𝑖 𝑗
, 𝑇0𝑖 ≃ 0.

Thus the solver is probing a consistent subsector of linearised GR in which the
gravitational potentials are determined by (𝜌,Π𝑖 𝑗) while the momentum and time-
derivative channels are suppressed. The next stage of “full GR recovery” is to
promote (7.3) from an effective static closure to a dynamical sector by specifying
an evolution law for 𝑈𝜇 and 𝑀𝜇𝜈 such that ∇𝜇𝑇

(𝐽 )𝜇
𝜈 = 0 holds to the desired order,

thereby controlling vector and time-dependent scalar channels in addition to the static
constraints.

Empirical diagnostic from the sweep. In the parameter sweep we measure 𝑅 on a
high density mask (median or upper quantiles of |𝑆 |/|Ψ| over masked cells) and find
that as 𝑓 increases from 0 to 1 to 2 to 4, the measured 𝑅 drops by factors consistent
with the (1 + 𝑓 )−1 scaling, with weak dependence on random seed and on 𝑁fields once
𝑁fields ≳ 𝑂 (10). A compact plot that captures the scaling is log 𝑅 versus log(1 + 𝑓 ),
which should have slope close to −1 when the isotropy regime is reached.
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7.4 Dynamical completion of the Kähler current sector

We now extend the “constraints only” closure (static Poisson channel plus traceless
slip constraint) to a dynamical, covariantly conserved effective matter sector. The
guiding requirement is non negotiable:

∇𝜇𝐺
𝜇
𝜈 = 0 ⇒ ∇𝜇𝑇

𝜇

tot𝜈 = 0,

with
𝑇
𝜇𝜈

tot = 𝑇
𝜇𝜈

(𝑏) + 𝑇
𝜇𝜈

(𝑠) + 𝑇
𝜇𝜈

(𝐽 ) .

Here 𝑇 𝜇𝜈

(𝑏) denotes the baryonic sector, 𝑇 𝜇𝜈

(𝑠) the scalar Fisher sector of Section 7.3,
and 𝑇 𝜇𝜈

(𝐽 ) the Kähler current sector. We work in Newtonian gauge (7.1) and use the
1 + 3 split relative to a unit timelike field𝑈𝜇 with projector ℎ𝜇𝜈 = 𝑔𝜇𝜈 +𝑈𝜇𝑈𝜈 and
decomposition (7.3).

Coupled conservation with exchange currents. In the static solver regime, 𝜌𝑏 is
treated as an externally specified source, so one never confronts energy momentum
exchange explicitly. In dynamics this must be made explicit. We therefore allow
covariant exchange currents 𝑄 (𝐴)

𝜈 between sectors 𝐴 ∈ {𝑏, 𝑠, 𝐽},

∇𝜇𝑇
𝜇

(𝐴) 𝜈 = 𝑄
(𝐴)
𝜈 , 𝑄

(𝑏)
𝜈 +𝑄 (𝑠)

𝜈 +𝑄 (𝐽 )
𝜈 = 0,

so that (7.4) holds identically. The static solver corresponds to a regime in which the
exchange currents do not need to be resolved explicitly because time derivatives and
momentum flow are neglected.

Scalar sector with baryon forcing. A covariant completion consistent with the
screened solve used by the solver is obtained by taking the scalar Lagrangian

L𝑠 = −𝛼
2
𝑔𝜇𝜈𝜕𝜇𝜎𝐹𝜕𝜈𝜎𝐹 − 𝑚2

2
𝜎2
𝐹 −𝑉nl(𝜎𝐹) + 𝜅 𝜎𝐹 𝜌𝑏,

where 𝑉nl collects any nonlinear bounded entropy corrections which are negligible in
the cold Fisher regime. Varying 𝜎𝐹 yields

𝛼□𝜎𝐹 − 𝑚2𝜎𝐹 −𝑉 ′
nl(𝜎𝐹) = −𝜅 𝜌𝑏 .

In the static weak field limit, □𝜎𝐹 ≃ ∇2𝜎𝐹 , recovering the solver equation (𝛼∇2 −
𝑚2)𝜎𝐹 = −𝜅𝜌𝑏 and hence the Fourier response 𝜎𝐹,k ∝ (𝛼𝑘2 +𝑚2)−1𝜌𝑏,k. The stress
tensor derived from L𝑠 reduces in the cold static regime to 𝜌𝑠 ≃ 1

2𝛼 |∇𝜎𝐹 |2 and
Π

(𝑠)
𝑖 𝑗

= 𝛼(𝜕𝑖𝜎𝐹𝜕 𝑗𝜎𝐹 − 𝛿𝑖 𝑗 |∇𝜎𝐹 |2/3), matching the solver source channel.

However, once 𝜌𝑏 is dynamical, 𝑇 (𝑠)
𝜇𝜈 is not conserved by itself. Instead it participates

in the exchange (7.4). The detailed form of 𝑄 (𝑠)
𝜈 depends on the covariant completion

of the baryon coupling, but the only fact needed for the programme is that the coupled
system (𝑏+ 𝑠) is conserved, and the static solver limit corresponds to a regime in which
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the exchange does not introduce significant momentum density or time derivative
sources in the metric equations.

Current sector in the Landau energy frame. For dynamics, it is useful to fix the
frame so that “negligible momentum density” is not merely assumed. We take𝑈𝜇 to
be the Landau energy frame of the effective dark sector (𝑠 + 𝐽), defined by vanishing
energy flux,

𝑞
(𝑠)
𝜇 + 𝑞 (𝐽 )𝜇 = 0, 𝑞

(𝐴)
𝜇 := −ℎ𝜇𝛼𝑇 𝛼𝛽

(𝐴)𝑈𝛽 .

In the quasi static regime𝑈𝜇 ≃ (1 −Φ, 0, 0, 0), so this reduces to the Eulerian frame
used by the solver.

We keep the current sector as an imperfect fluid with anisotropic stress,

𝑇
(𝐽 )
𝜇𝜈 = 𝜌𝐽𝑈𝜇𝑈𝜈 + 𝑝𝐽ℎ𝜇𝜈 + 𝜋 (𝐽 )𝜇𝜈 , 𝜋 (𝐽 )𝜇𝜇 = 0, 𝜋

(𝐽 )
𝜇𝜈 𝑈

𝜈 = 0,

and we retain the moment closure already implemented,

𝜋
(𝐽 )
𝜇𝜈 = 𝜌𝐽 Δ𝑀𝜇𝜈 , Δ𝑀𝜇𝜈 := 𝑀𝜇𝜈 −

1
3
ℎ𝜇𝜈 , 𝑀𝜇𝜈 :=

1
𝑁

𝑁∑︁
𝑎=1

𝑢
(𝑎)
𝜇 𝑢

(𝑎)
𝜈 ,

with 𝑢 (𝑎)𝜇 𝑈𝜇 = 0 and 𝑢 (𝑎)𝜇 𝑢 (𝑎)𝜇 = 1. The isotropy lemma and concentration estimate
in Section 7.5 are exactly the statement that Δ𝑀𝜇𝜈 is small in the masked high density
region, with amplitude controlled by 𝑁 and the smoothing scale ℓ.

Dynamical closure I: fast relaxation of the density loading. The static solver
imposes 𝜌𝐽 = 𝑓 𝜌𝑠 algebraically. In dynamics this must be replaced by a controlled
relaxation which reduces to the algebraic relation in the fast limit and which makes the
exchange current explicit. We therefore postulate

𝜏𝜌 𝐷𝜌𝐽 + 𝜌𝐽 = 𝑓 𝜌𝑠, 𝐷 := 𝑈𝜇∇𝜇,

with relaxation time 𝜏𝜌. In the quasi static limit relevant to cluster lensing, 𝜏𝜌 is
taken short compared with the macroscopic evolution time, so that 𝜌𝐽 ≃ 𝑓 𝜌𝑠 and
𝜌tot ≃ (1 + 𝑓 )𝜌𝑠, recovering exactly the Poisson channel rescaling measured in the
solver runs.

Equation (7.4) is equivalent to specifying the timelike component of the exchange
current in (7.4). Projecting ∇𝜇𝑇

𝜇

(𝐽 ) 𝜈 = 𝑄
(𝐽 )
𝜈 along𝑈𝜈 yields the current sector energy

balance,

𝑈𝜈𝑄
(𝐽 )
𝜈 = −

(
𝐷𝜌𝐽 + (𝜌𝐽 + 𝑝𝐽 )𝜃 + 𝜋 (𝐽 )𝜇𝜈 𝜎

𝜇𝜈
)
, 𝜃 := ∇𝜇𝑈

𝜇,

so (7.4) fixes 𝑈𝜈𝑄
(𝐽 )
𝜈 up to terms suppressed in the quasi static regime 𝜃 ≃ 0 and

𝜋
(𝐽 )
𝜇𝜈 𝜎

𝜇𝜈 ≃ 0.

Dynamical closure II: causal isotropisation of the anisotropic stress. To upgrade
the static isotropy statement to a dynamical one, we give 𝜋 (𝐽 )𝜇𝜈 a relaxation dynamics
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toward isotropy. A minimal causal closure is a Maxwell Cattaneo type equation for
the projected symmetric traceless part,

𝜏𝑀 𝐷𝜋
(𝐽 )
⟨𝜇𝜈⟩ + 𝜋

(𝐽 )
𝜇𝜈 = −2𝜂 𝜎𝜇𝜈 + 𝜉𝜇𝜈 .

Here 𝜏𝑀 is a relaxation time, 𝜂 is an effective shear response coefficient, 𝜎𝜇𝜈 is the
shear of𝑈𝜇, angle brackets denote projected symmetric traceless with respect to𝑈𝜇,
and 𝜉𝜇𝜈 is an optional noise term encoding the finite 𝑁 fluctuations of the moment
field after smoothing at ℓ. In the static solver regime, 𝜎𝜇𝜈 is negligible and 𝜋 (𝐽 )𝜇𝜈

reduces to a small stochastic field whose amplitude is controlled by 𝜀(ℓ, 𝑁). Your
empirical result that the slip floor is tiny, and decreases with increasing ℓ and 𝑁 , is
precisely a bound on the stationary ratio ∥𝜋 (𝐽 ) ∥/𝜌𝐽 , and hence on the effective noise
strength relative to 𝜏𝑀 .

Using 𝜋 (𝐽 )𝜇𝜈 = 𝜌𝐽Δ𝑀𝜇𝜈 , and assuming 𝜌𝐽 varies slowly on the timescale 𝜏𝑀 , (7.4) can
be viewed as an evolution law for Δ𝑀𝜇𝜈 ,

𝜏𝑀 𝐷Δ𝑀⟨𝜇𝜈⟩ + Δ𝑀𝜇𝜈 ≃ −2𝜂
𝜌𝐽
𝜎𝜇𝜈 +

1
𝜌𝐽
𝜉𝜇𝜈 .

The fast isotropisation limit 𝜏𝑀 → 0 with small shear drives Δ𝑀𝜇𝜈 to zero up to the
stochastic floor, matching the isotropy regime measured in the solver.

Reduction to the periodic solver. The periodic lensing solver corresponds to the
regime in which (i) time derivatives of the metric potentials are negligible, (ii) the
momentum density channel is negligible in the chosen frame, and (iii) the relaxation
times are short compared with macroscopic evolution times, so that

𝜏𝜌 → 0 ⇒ 𝜌𝐽 → 𝑓 𝜌𝑠, 𝜏𝑀 → 0 ⇒ 𝜋
(𝐽 )
𝜇𝜈 → 𝜌𝐽Δ𝑀𝜇𝜈 with Δ𝑀𝜇𝜈 small.

In this limit the field equations reduce to the constraint system already used by
the proof module, ∇2Φ = 4𝜋𝐺𝜌 and ∇4𝑆 = 12𝜋𝐺 𝐷𝑖 𝑗Π𝑖 𝑗 , with 𝜌 = 𝜌𝑠 + 𝜌𝐽 and
Π𝑖 𝑗 = Π

(𝑠)
𝑖 𝑗

+ Π
(𝐽 )
𝑖 𝑗

, and hence the scaling |𝑆 |/|Φ| ≃ 𝑅0/(1 + 𝑓 ).

What new GR channels are activated by dynamics. Once time dependence is
included, the metric potentials in Newtonian gauge are sourced not only by the density
𝜌 and anisotropic stress 𝜋𝜇𝜈 , but also by the momentum density and by time derivative
terms in the Einstein equations. The first dynamical failure mode of any “benign
mass loading” claim is therefore generation of a significant momentum density 𝑇0𝑖,
equivalently a non negligible 𝑞𝑖 in a physically preferred frame. The present completion
controls this by a frame choice (7.4) and by enforcing conservation through (7.4), (7.4),
and (7.4). The second failure mode is slow isotropisation, 𝜏𝑀 not small on the relevant
timescale, which would permit coherent 𝜋 (𝐽 )𝜇𝜈 to persist and drive time dependent slip.

First falsifiable dynamical prediction. In a quasi static cluster regime with charac-
teristic evolution time 𝑇dyn satisfying 𝜏𝜌 ≪ 𝑇dyn and 𝜏𝑀 ≪ 𝑇dyn, and with small shear
in the Landau frame, the Weyl potential remains close to the GR expectation even as
𝜌tot is increased, because 𝜌𝐽 loads the density channel while 𝜋 (𝐽 )𝜇𝜈 remains suppressed.
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Quantitatively, the static slip law remains valid up to corrections controlled by the
small ratios 𝜏𝜌/𝑇dyn, 𝜏𝑀/𝑇dyn, and the measured stationary floor in ∥Δ𝑀 ∥ at fixed
(ℓ, 𝑁).

Second falsifiable dynamical prediction. In cosmological settings, observables
depend on the time evolution of the Weyl potential Φlens = (Φ + Ψ)/2. The closure
(7.4)–(7.4) makes the evolution predictive once 𝜏𝜌, 𝜏𝑀 , 𝜂, and the noise covariance of
𝜉𝜇𝜈 are specified. The model predicts that substantial effective density loading can
occur with suppressed slip provided 𝜏𝑀 is short and the stationary amplitude of ∥Δ𝑀 ∥
remains small, and it predicts a distinctive departure in the Weyl evolution if either 𝜏𝑀
is long or 𝜉𝜇𝜈 has long range coherence.

7.5 Stress decomposition and isotropy mechanism for the Kähler moment field

The solver writes the total anisotropic stress as a sum of two trace-free pieces,

Π𝑖 𝑗 = Π
(𝑠)
𝑖 𝑗

+ Π
(𝐽 )
𝑖 𝑗
.

The scalar-gradient contribution is the trace-free part of the gradient stress:

𝜌s := 1
2𝑍0 |∇𝜎 |2, Π

(𝑠)
𝑖 𝑗

:= 𝑍0

(
𝜕𝑖𝜎 𝜕 𝑗𝜎 − 1

3𝛿𝑖 𝑗 |∇𝜎 |
2
)
.

The current sector is modelled by a local energy density proportional to 𝜌s and a
randomised, smoothed, divergence-free unit-vector field 𝑢𝑖 (𝑥):

𝜌J := 𝑓J 𝜌s, Π
(𝐽 )
𝑖 𝑗

:= 𝜌J

(
𝑢𝑖𝑢 𝑗 − 1

3𝛿𝑖 𝑗

)
,

where 𝑓J is the parameter current_frac in the code path. The field 𝑢 is constructed
by averaging 𝑁 independent divergence-free Gaussian vector fields after applying a
Gaussian spectral filter of width ℓ (in grid cells), and then normalising pointwise so
|𝑢 | = 1 up to an 𝜖 floor.

The mechanism for slip suppression is moment isotropy. For an exactly isotropic
distribution on the unit sphere,

E[𝑢𝑖𝑢 𝑗] = 1
3𝛿𝑖 𝑗 .

With 𝑁 independent samples, the empirical moment matrix 𝑀𝑖 𝑗 := 1
𝑁

∑𝑁
𝑎=1 𝑢

(𝑎)
𝑖
𝑢
(𝑎)
𝑗

concentrates about 𝛿𝑖 𝑗/3 with fluctuations of order 𝑁−1/2 (pointwise, and likewise
in any coarse-grained sense). In the solver language this implies that the residual
anisotropy Δ𝑀𝑖 𝑗 := 𝑀𝑖 𝑗 − 𝛿𝑖 𝑗/3 is small, and therefore Π

(𝐽 )
𝑖 𝑗

= 𝜌JΔ𝑀𝑖 𝑗 is small
compared with 𝜌J. Through (A), this suppresses 𝑆 even when 𝜌J strongly loads
the Poisson channel (A). The Gaussian filter scale ℓ suppresses small-scale angular
structure before projection and normalisation, and empirically reduces stress-divergence
diagnostics, but the primary clean control parameter for the slip ratio is 𝑁 .

68



7.6 Recovering Einstein geometrodynamics from Fisher kinematics

In the main text we adopted the Einstein–Hilbert term as a minimal covariant completion
for the scalar Fisher sector. Here we record a stronger statement: once the kinematics
are fixed by the Fisher geometry, and one demands genuine refoliation invariance (no
preferred foliation), the gravitational backbone is essentially forced to be Einstein
geometrodynamics.

Fisher–DeWitt kinematics on the space of metrics. A Fisher information construc-
tion on the space of spatial metrics produces a DeWitt-type quadratic form on metric
perturbations. Concretely, for ℎ𝑖 𝑗 a symmetric perturbation of a Riemannian metric
𝑔𝑖 𝑗 on a slice Σ, one obtains

𝐺 (ℎ, ℎ) = 𝛼
∫
Σ

(
ℎ𝑖 𝑗ℎ

𝑖 𝑗 + 𝛽ℎ2
)√
𝑔 𝑑3𝑥, ℎ := ℎ𝑖 𝑖 , 𝛼 > 0,

for constants 𝛼 and 𝛽. This matches, up to constants, the algebraic structure of the
DeWitt supermetric used in canonical gravity.

It is therefore natural within UIH to take (7.6) as the kinematical Fisher metric on the
configuration space of spatial geometries.

Reversible generator as hypersurface deformation algebra. To obtain a relativistic
(refoliation invariant) dynamics, the reversible generator on (𝑔𝑖 𝑗 , 𝜋𝑖 𝑗) must represent
the hypersurface deformation (Dirac) algebra of constraints. Denoting by 𝐷 [ ®𝑁]
the diffeomorphism constraint and by 𝐻 [𝑁] the Hamiltonian constraint, refoliation
invariance requires

{𝐷 [ ®𝑁1], 𝐷 [ ®𝑁2]} = 𝐷 [[ ®𝑁1, ®𝑁2]],
{𝐷 [ ®𝑁], 𝐻 [𝑀]} = 𝐻 [L ®𝑁𝑀],
{𝐻 [𝑁], 𝐻 [𝑀]} = 𝐷

[
𝑔𝑖 𝑗 (𝑁𝜕 𝑗𝑀 − 𝑀𝜕 𝑗𝑁)

]
.

This algebra expresses path-independence of evolution between slices.

Rigidity and selection of the Einstein–Hilbert potential. Assuming locality and
restricting to potentials with at most two spatial derivatives, the hypersurface deforma-
tion algebra essentially fixes the form of the Hamiltonian constraint. One obtains the
ADM constraint of Einstein gravity (with cosmological constant),

H =
1
√
𝑔

(
𝜋𝑖 𝑗𝜋𝑖 𝑗 −

1
2
𝜋2
)
− √

𝑔(𝑅 − 2Λ) + Hmatter ≈ 0,

together with the momentum constraint H𝑖 = −2∇ 𝑗𝜋
𝑗
𝑖 +Hmatter

𝑖
≈ 0. The coefficient

1/2 in (7.6) corresponds to the general-relativistic DeWitt metric (the refoliation-
invariant value of the supermetric parameter). Legendre transformation of this
canonical system yields the covariant Einstein–Hilbert action, with Newton’s constant
and Λ remaining as free couplings.
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In this sense, once the Fisher kinematics on the space of metrics are adopted and
refoliation invariance is imposed, the Einstein–Hilbert backbone is not an external
assumption but the unique local reversible completion compatible with the hypersurface
deformation structure.

Lemma (moment isotropy). Assume that for each fixed x the distribution of 𝑢(x) is
rotationally invariant on the unit sphere and that the draws 𝑢 (𝑎) are independent across
𝑎. Then

E[𝑢𝑖𝑢 𝑗] =
1
3
𝛿𝑖 𝑗 , E[𝑀𝑖 𝑗] =

1
3
𝛿𝑖 𝑗 .

Proof. Rotational invariance forces E[𝑢𝑖𝑢 𝑗] = 𝑐 𝛿𝑖 𝑗 . Tracing gives 1 = E[|𝑢 |2] = 3𝑐,
hence 𝑐 = 1/3. Linearity and independence give the statement for 𝑀𝑖 𝑗 .

Lemma (large 𝑁 concentration for i.i.d. isotropic draws). Define Δ𝑀𝑖 𝑗 :=
𝑀𝑖 𝑗 − 𝛿𝑖 𝑗/3. For i.i.d. isotropic unit vectors,

E∥Δ𝑀 ∥2
𝐹 =

2
3𝑁

, so typically ∥Δ𝑀 ∥𝐹 ∼
√︂

2
3𝑁

.

Proof. Write Δ𝑀 = 𝑁−1 ∑𝑁
𝑎=1 𝐴

(𝑎) with 𝐴(𝑎) := 𝑢 (𝑎)𝑢 (𝑎) 𝑇 − 𝐼/3, mean zero and
traceless. Since 𝑢𝑢𝑇 is a rank one projector, tr((𝑢𝑢𝑇 )2) = 1 and tr(𝑢𝑢𝑇 ) = 1, giving
∥𝐴(𝑎) ∥2

𝐹
= 2/3. Independence kills cross terms, yielding (7.6). In the implemented

filtered divergence-free construction, ℓ controls how well the effective i.i.d. isotropy
assumptions hold locally: increasing ℓ improves local isotropy and suppresses residual
discretisation anisotropy.

Role of the screening mass 𝑚 and the current correlation length ℓ. The scalar
baseline 𝑅0 depends on the spectral weighting induced by the screened solve. In
Fourier space,

𝜎k ∝
𝜌𝑏,k

𝛼𝑘2 + 𝑚2 , ∇𝜎 weights modes by
𝑘

𝛼𝑘2 + 𝑚2 .

Since Π𝑠
𝑖 𝑗

is quadratic in 𝜕𝑖𝜎, varying 𝑚 shifts the mode balance between the density-
sourced channel (Ψ) and the traceless contraction channel (𝑁k), thereby shifting 𝑅0.
By contrast, ℓ primarily controls the approach to the isotropy regime and the size of
the floor term in (??).

Mapping the solver diagnostic to GR and PPN language. In the conventions (7.1),
the local post-Newtonian ratio is

𝛾eff (x) :=
Φ(x)
Ψ(x) = 1 + 𝑆(x)

Ψ(x) .

Thus the solver observable 𝑅(x) = |𝑆 |/|Ψ| is precisely the magnitude |𝛾eff − 1|
pointwise, and quantiles of 𝑅 on a high-density mask are quantiles of |𝛾eff − 1| in
the region that dominates the source. In the same conventions, the fractional lensing
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deviation relative to the Newtonian potential is

Φlens − Ψ

Ψ
=

𝑆

2Ψ
,

����Φlens − Ψ

Ψ

���� = 1
2
𝑅.

So the scaling (??) directly quantifies how close lensing and dynamics remain as the
effective gravitating density is increased.

Empirical confirmation and fitted constants. For the toy bullet field at (𝑛𝑥 , 𝐿) =
(128, 1) with (𝛼, 𝜅, 𝑍0) = (1, 1, 1), 𝑚 = 1, ℓcells = 2, 𝑁 = 64, and the 90th percentile
density mask, the sweep in 𝑓 shows an essentially exact mass-loading law in the
density channel and an essentially exact (1 + 𝑓 )−1 suppression in the slip channel.
Concretely, the diagnostic gives

median( |Ψ|)
1 + 𝑓

= 4.567477,
𝑄90( |Ψ|)

1 + 𝑓
= 6.391986,

to printed precision over 𝑓 ∈ {0, 0.5, 1, 2, 4, 8}, while the slip amplitude remains
approximately fixed:

median( |𝑆 |) ≃ 4.256 ± 0.004, 𝑄90( |𝑆 |) ≃ 14.524 ± 0.013.

Therefore the masked slip ratios obey

𝑄50(𝑅) ≃
0.9837
1 + 𝑓

, 𝑄90(𝑅) ≃
2.2798
1 + 𝑓

,

with log-log slopes (excluding 𝑓 = 0)

𝑑 log𝑄50(𝑅)
𝑑 log(1 + 𝑓 ) ≃ −1.00026,

𝑑 log𝑄90(𝑅)
𝑑 log(1 + 𝑓 ) ≃ −1.00024.

Pushing to 𝑓 = 32 with seeds 0, 1, 2 gives a small but measurable seed scatter consistent
with a weak floor: (1 + 𝑓 )𝑄50(𝑅) lies in [0.979, 0.992] and (1 + 𝑓 )𝑄90(𝑅) lies in
[2.246, 2.279], while |Ψ| continues to obey exact mass loading. This is the expected
onset of the second term in (??) while remaining in the isotropy-dominated regime.

Effective stress-energy interpretation. The Kähler current module is an effective
component contributing primarily to 𝑇00 with density 𝜌𝐽 = 𝑓 𝜌𝑠, while its coherent
traceless stress fraction is suppressed by moment isotropy:

∥Π𝐽 ∥
𝜌𝐽

∼ ∥Δ𝑀 ∥ ∼ 𝜀(ℓ, 𝑁), 𝜀(ℓ, 𝑁) ∼ 𝑁−1/2,

with further suppression as ℓ increases. It is therefore a controlled mass-loading
mechanism that increases the Poisson source for Ψ while minimally exciting the slip
channel.

Continuum limit and renormalisation statement. To make the slip claim grid
independent, refinement must hold fixed the physical control groups: the morphology
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class of 𝜌𝑏 at fixed 𝐿, the dimensionless screening 𝑚𝐿, and the physical current
correlation length ℓphys := ℓ 𝑑𝑥 with 𝑑𝑥 = 𝐿/𝑛𝑥 . Under refinement 𝑛𝑥 → 2𝑛𝑥 at
fixed 𝐿, one rescales ℓ → 2ℓ to keep ℓphys fixed and holds 𝑚 fixed in physical units
(equivalently 𝑚𝐿 fixed). The density mask is defined by a fixed percentile of 𝜌tot so
that the mask converges under refinement.

A sufficient convergence criterion is stability of masked quantiles of 𝑅 and stability of
the scaling slope. Writing𝑄 (𝑛𝑥 )

𝑝 (𝑅) for the 𝑝th quantile of 𝑅 on the mask at resolution
𝑛𝑥 , require �����𝑄 (2𝑛𝑥 )

𝑝 (𝑅) −𝑄 (𝑛𝑥 )
𝑝 (𝑅)

𝑄
(𝑛𝑥 )
𝑝 (𝑅)

����� ≤ 𝜖𝑅 for 𝑝 ∈ {50, 90},

and require that the fitted slope of log𝑄50(𝑅) versus log(1 + 𝑓 ) is stable under
refinement and close to −1 over the range where the floor term in (??) is negligible.
When (7.6) holds, the observed (1 + 𝑓 )−1 slip suppression is a statement about the
continuum closure, not a lattice artefact.

Minimal falsifiable sequence for lensing tests. The claims above reduce to two
falsifiable ingredients: concentration of Δ𝑀 in the isotropy regime and dominance of
the scalar baseline slip. A minimal sequence is: verify 𝑁−1/2 concentration of a norm
of Δ𝑀 on the high-density mask at fixed ℓphys; verify that (1 + 𝑓 )𝑄𝑝 (𝑅) is constant
over a range of 𝑓 until saturation at a floor consistent with 𝜀(ℓ, 𝑁); repeat across a
controlled family of baryon morphologies (single clump, double clump, axisymmetric
disc) to show that 𝑓 controls slip while 𝑚 and morphology shift only the baseline;
and verify (7.6) directly in projected lensing maps by comparing Φlens and Ψ and
checking that their difference tracks 𝑆/2 with the same scaling in amplitude. Only
once these conditions hold under (7.6) should the module be applied to real cluster
lensing maps, since at that point the model makes a sharp prediction: mass loading
via 𝑓 increases the effective gravitating density while keeping |𝛾eff − 1| small in the
high-density region, preserving near equality of lensing and dynamical potentials.

7.7 A hypocoercive Fisher generator for halo perturbations

The previous subsection treated the scalar Fisher halo as a static minimiser of the
free energy. For dynamical questions, such as the relaxation of halos after a baryonic
rearrangement or the response to a merger, it is natural to view the halo as one more
instance of a metriplectic Fisher system in the sense of the UIH programme [3, 4]. In
this subsection we outline the structure of the corresponding generator.

We work in a finite Fisher-active region, defined as a ball 𝐵𝑅max containing the baryonic
disc and the core of the Fisher halo. Outside 𝐵𝑅max both the baryon density and the
Fisher halo density are negligible on the scales probed by rotation curves, and the
Bernoulli occupancy 𝑝 associated to 𝜎★

𝐹
is exponentially close to 0 or 1. In this outer

region the Fisher metric degenerates and the scalar is effectively frozen. Inside 𝐵𝑅max
the Bernoulli occupancy satisfies 𝜀 ≤ 𝑝 ≤ 1 − 𝜀 for some small 𝜀 > 0, and the Fisher
metric is strictly positive.

On the Fisher-active region we define a weighted Hilbert space of perturbations with
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inner product(
𝛿𝜎1, 𝛿𝜎2

)
𝐹
=

∫
𝐵𝑅max

𝑤𝐹 (𝑥) 𝛿𝜎1(𝑥) 𝛿𝜎2(𝑥) d3𝑥, 𝑤𝐹 (𝑥) = 𝑝∗(𝑥)
(
1 − 𝑝∗(𝑥)

)
,

where 𝑝∗ is the Bernoulli occupancy corresponding to the static halo 𝜎★
𝐹

. Relative to
this inner product the operator 𝐺𝐹 defined in (5.7) is self-adjoint and non-positive.
The smallest non-zero eigenvalue 𝜆halo

𝐹,1 (𝑅max) coincides with the gap introduced in
(5.7).

To incorporate reversible dynamics we consider an effective skew-adjoint operator 𝐽𝐹
on the same Hilbert space, representing advection and phase rotation in the complex
Fisher order parameter. In the simplest barotropic picture 𝐽𝐹 takes the form of a
transport operator

𝐽𝐹𝛿𝜎 = −𝑢(𝑥) · ∇𝛿𝜎 + (lower order terms),

where 𝑢 is an effective halo flow field, chosen so that 𝐽𝐹 is skew-adjoint with respect
to (·, ·)𝐹 and conserves the free energy 𝐹 [𝜎𝐹 ; 𝜌𝑏] to leading order. The precise
microscopic origin of 𝑢 and the lower order terms is not important for the present
discussion; the only essential point is that 𝐽𝐹 is 𝐹-skew and leaves the Fisher metric
invariant.

The linearised dynamics of small perturbations around the static halo can then be
written in the familiar hypocoercive form

𝜕𝑡𝛿𝜎 = 𝐾𝐹 𝛿𝜎, 𝐾𝐹 := 𝐺𝐹 + 𝐽𝐹 ,

with 𝐺𝐹 self-adjoint and non-positive and 𝐽𝐹 skew-adjoint in the Fisher inner product
(7.7). Under mild regularity assumptions on 𝛼, 𝑉𝐼 and 𝑢, the abstract hypocoercivity
results of Ref. [4] apply. In particular there exists a constant 𝑐hyp ∈ (0, 1], depending
only on the geometry of 𝐺𝐹 and the structure of 𝐽𝐹 , such that the spectrum of 𝐾𝐹 lies
in the half-plane

Re𝜆 ≤ −𝑐hyp 𝜆
halo
𝐹,1 (𝑅max),

and such that all perturbations orthogonal to the neutral directions decay at least as
fast as exp

(
−𝑐hyp𝜆

halo
𝐹,1 𝑡

)
in the Fisher norm.

This structure has two immediate consequences for halo dynamics. First, stability of
the static halo is equivalent to the positivity of 𝐺𝐹 on the Fisher-active region, that
is to the existence of a genuine gap 𝜆halo

𝐹,1 (𝑅max) > 0. This is precisely the convexity
condition on the free energy already discussed in Sections 2-3. Second, the slowest
relaxation timescale for perturbations of the halo is controlled by the effective Fisher
gap and the hypocoercive constant,

𝜏relax ∼ 1
𝑐hyp 𝜆

halo
𝐹,1 (𝑅max)

,

up to algebraic prefactors. Since the leading eigenvalues of 𝐺𝐹 scale as 𝜆halo
𝐹,1 ∼

𝐷eff/𝑅2
core, with an effective Fisher diffusivity 𝐷eff set by (𝛼0, 𝑇𝐹) and a core size

𝑅core, the relaxation time scales approximately as 𝜏relax ∝ 𝑅2
core/𝐷eff .

For galactic halos with 𝑅core of order a few kiloparsec and Fisher parameters in
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Setting median R p90 R max R median |∇ · Π |/|∇𝜌 |
ℓ = 8, 𝑁 = 64 0.0373 0.0784 0.1303 0.2252
ℓ = 16, 𝑁 = 64 0.0478 0.0890 0.1441 0.1285
ℓ = 16, 𝑁 = 256 0.0339 0.0701 0.1154 0.0715

Table 1: Slip diagnostics in the toy Bullet box for 𝑚 = 1 and 𝑓J = 32.0. Increasing the
number of Kähler fields 𝑁 suppresses the anisotropy and improves slip, consistent with the
𝑁−1/2 concentration mechanism. Increasing the smoothing length ℓ reduces stress-divergence
diagnostics but does not by itself guarantee a smaller slip ratio at fixed 𝑁 , because 𝑆 depends
on the quadrupolar projection (A) rather than on |∇ · Π | alone.

the cored phase of the Bernoulli model, 𝜏relax can comfortably sit below a Hubble
time, so that halos are at least approximately aligned with their baryon sources. For
cluster-scale Fisher structures with characteristic radii of order megaparsec, the same
Fisher parameters imply much longer relaxation times, allowing large-scale Fisher
condensates to lag behind rapidly moving gas during major mergers. A detailed
numerical study of 𝐺𝐹 and 𝐽𝐹 in realistic cluster geometries lies beyond the scope of
the present work, but the hypocoercive structure (7.7) shows that these questions can
be addressed within the same information-geometric framework as the static halo fits.

In particular, once 𝐺𝐹 and 𝐽𝐹 have been specified for a given system, the time-
dependent halo profile 𝜎𝐹 (𝑡, 𝑥) and the associated Fisher halo density 𝜌𝐹 (𝑡, 𝑥) can
in principle be evolved under (7.7), and the corresponding evolution of the lensing
convergence and shear can be obtained from the usual weak-field Einstein equations
with source 𝜌𝑏 + 𝜌𝐹 .

The present subsection is intended to make clear that this dynamical Fisher halo
problem is a well-posed instance of the general hypocoercive dynamics developed in
Ref. [4], rather than an ad hoc extension of the static fits.

7.8 Observed slip suppression in the toy Bullet configuration

We report diagnostics for the periodic toy Bullet baryon configuration in a 1283 box
with 𝐿 = 1, 𝑚 = 1, 𝛼 = 1, 𝜅src = 1, 𝑍0 = 1, and zero_mode=physical. The slip
ratio is measured on a high-density mask defined by the upper 10% of 𝜌tot (quantile
𝑞 = 0.9):

R :=
|𝑆 |
|Ψ|

���
𝜌tot≥𝑞

, 𝑞 = 0.9.

Table 2 summarises three representative runs (all with current_frac=32.0 and
kahler_dtype=float32).

These runs show percent-level median slip in dense regions even with large Poisson
loading. The decisive controlled statement, and the one required to elevate this from a
static diagnostic to a predictive theory module, is a parametric bound of the form

R ≲ F ( 𝑓J) 𝜀(ℓ, 𝑁, 𝑑𝑥, 𝐿, 𝑚),

with 𝜀 → 0 in a clear continuum or many-field limit and with an explicit regime
statement describing which modes (in 𝑘) dominate the mask statistic (7.8). The

74



empirical results already indicate that increasing 𝑁 is the cleanest route to shrinking 𝜀
at fixed numerical resolution.

8 Cluster scale Fisher halos and colliding systems

The scalar Fisher mechanism that produces cored halos in galaxies extends naturally
to cluster scales, where baryons are dominated by hot plasma rather than stars and gas
discs. In these environments the Fisher temperature, stiffness and bounded entropy
operate on larger spatial and temporal scales, and the reversible sector of the generator
becomes more important. This section outlines how the Fisher scalar model generalises
to clusters and how it can accommodate systems where baryons and inferred mass are
spatially offset.

A two clump Fisher scalar toy model for colliding clusters. To make the cluster
phenomenology more concrete it is useful to study a minimal two clump configuration.
In the weak field and small amplitude regime the Fisher scalar equation linearises to a
screened Poisson equation

(−∇2 + 𝑚2
𝐹) 𝜎𝐹 (x) = 𝜅 𝜌𝑏 (x),

where 𝑚𝐹 = 𝜆−1
𝐹

is the Fisher screening mass and 𝜌𝑏 is the total baryon density of
collisionless galaxies plus hot gas. The solution of (8) is a Yukawa convolution

𝜎𝐹 (x) = 𝜅
∫
R3
𝐺𝑚(x − x′) 𝜌𝑏 (x′) 𝑑3𝑥′, 𝐺𝑚(r) =

𝑒−𝑚𝐹 |r |

4𝜋 |r| .

Consider a simple model of a Bullet style collision in which 𝜌𝑏 is the sum of two
narrow, dense galaxy clumps of mass 𝑀𝑔 and characteristic size 𝑅𝑔, centred at ±𝑑/2
along the collision axis, plus a broader, lower density gas component of mass 𝑀gas
and characteristic size 𝑅gas ≫ 𝑅𝑔 centred near the origin. Evaluating (8) at the centre
of one galaxy clump gives contributions

𝜎gal,self ∼ 𝜅
𝑀𝑔

4𝜋𝑅𝑔

𝑒−𝑚𝐹𝑅𝑔 , 𝜎gas ∼ 𝜅
𝑀gas

4𝜋𝑅gas
𝑒−𝑚𝐹𝑅gas ,

up to order one geometric factors. Even when 𝑀gas is comparable to or larger than
𝑀𝑔, the ratio

𝜎gal,self

𝜎gas
∼

𝑀𝑔/𝑅𝑔

𝑀gas/𝑅gas
exp

[
−𝑚𝐹 (𝑅𝑔 − 𝑅gas)

]
favours the compact collisionless clumps if 𝑅gas ≫ 𝑅𝑔 and 𝜆𝐹 is not vastly larger than
the cluster. In other words, the Fisher scalar responds more strongly to dense, compact
galaxy subclusters than to diffuse gas, and the scalar profile 𝜎𝐹 (x) will exhibit maxima
near the galaxy clumps rather than the gas peak.

At finite Fisher temperature 𝑇𝐹 > 0 the full scalar equation

−∇ · (𝛼∇𝜎𝐹) +𝑈′(𝜎𝐹 ;𝑇𝐹) = 𝜅𝜌𝑏

adds a convex restoring term 𝑈′(𝜎𝐹 ;𝑇𝐹) that smooths and slightly shifts the peaks
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of 𝜎𝐹 , but does not reverse the hierarchy between compact and diffuse sources for
the same Fisher parameters that fit galactic halos. The associated Fisher halo density
𝜌𝐹 (x) = 𝑓 (𝜎𝐹 (x)) is therefore also peaked near the collisionless clumps.

Mapping to weak lensing. Given 𝜌𝐹 (x), the lensing relevant quantity is the projected
surface mass density

Σ𝐹 (𝝃) =
∫

𝜌𝐹 (𝝃, 𝑧) 𝑑𝑧,

where 𝝃 are coordinates in the lens plane and 𝑧 is the line of sight. The total surface
density entering the convergence 𝜅(𝝃) and shear 𝛾(𝝃) is

Σtot(𝝃) = Σgal(𝝃) + Σgas(𝝃) + Σ𝐹 (𝝃).

In the two clump configuration described above the collisionless galaxies are compact
and largely retain their identities through the collision, while the hot gas is ram pressure
stripped and displaced. For reasonable Fisher parameters the Yukawa convolution (8)
and the nonlinear correction (8) yield 𝜌𝐹 peaks that track the collisionless clumps, so
Σ𝐹 and hence Σtot acquire local maxima close to the galaxy subclusters rather than the
gas. This reproduces qualitatively the observed structure of Bullet like lensing maps,
in which convergence peaks sit near the collisionless components.

As a simple numerical check on this picture we solved the linearised Fisher equation
(8) on a three dimensional periodic box for a minimal two clump configuration, using
the Yukawa solver fisher_bullet_cluster_yukawa.py in the code archive. The
domain is a cube of side 𝐿 = 4𝑑 resolved with 1283 grid points, where 𝑑 is the
separation between the two galaxy centroids along the collision axis.

The baryon density 𝜌𝑏 is taken to be the sum of two narrow Gaussian galaxy clumps
of equal mass 𝑀gal and characteristic radius 𝑅gal = 0.2𝑑 centred at 𝑥 = ±𝑑/2,
together with a broader Gaussian gas component of mass 𝑀gas = 5𝑀gal and radius
𝑅gas = 0.4𝑑. In the symmetric case the gas is centred at the midpoint, while in
displaced configurations the gas centroid is shifted by 0.1𝑑 or 0.2𝑑 along the collision
axis, mimicking a simple Bullet style offset between hot plasma and galaxies. For each
configuration we solve

(−∇2 + 𝑚2
𝐹) 𝜎𝐹 (𝑥) = 𝜅 𝜌𝑏 (𝑥)

by FFT, with𝑚𝐹𝑑 varied between 0.5 and 2.0, construct the Fisher density 𝜌𝐹 = 𝐶𝜎𝜎𝐹 ,
and form the projected surface densities Σ𝑏, Σ𝐹 and Σtot = Σ𝑏 + Σ𝐹 along the line of
sight.

In the symmetric configuration the projected baryon surface density has two equal
peaks at 𝑥 ≃ ±0.41𝑑, while the gas and total baryon centres of mass lie near 𝑥 = 0.
The two dominant peaks of Σtot occur at the same positions, so that the nearest total
peak lies a distance Δ𝑥gal ≃ 0.09𝑑 from each galaxy centroid but Δ𝑥gas ≃ 0.41𝑑 from
the gas centroid. When the gas component is displaced by 0.1𝑑 or 0.2𝑑 the projected
baryon and total centres of mass move between the galaxies and the gas, as expected
once most baryon mass is in the plasma, but the dominant peaks of Σtot remain locked
to the collisionless clumps: for the range 𝑚𝐹𝑑 ∈ [0.5, 2.0] the nearest total peak
to each galaxy lies within Δ𝑥gal ≃ 0.06-0.09𝑑 of the corresponding galaxy centroid,
while the same peaks lie Δ𝑥gas ≃ 0.24-0.64𝑑 from the gas centroid, even though
𝑀gas = 5𝑀gal. The Yukawa sector therefore produces a Bullet style configuration in
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which the effective gravitating peaks track the compact collisionless clumps rather
than the extended gas, without introducing separate couplings for galaxies and plasma
or modifying the source term in (8). A more realistic treatment of colliding clusters
would require time dependent Fisher fields and hydrodynamical plasma simulations,
but this minimal experiment already confirms that the simplest implementation of the
scalar Fisher mechanism naturally admits Bullet like lensing geometries.

Conversely, a robust observational pattern in which, for a given set of Fisher parameters
compatible with galactic halos, the lensing convergence peaks in colliding clusters
systematically coincide with the gas rather than with dense galaxy components would
be very difficult to accommodate within (8). Such systems would directly challenge
the Fisher halo picture and provide a sharp falsifier for this sector of the theory.

To check how robust this Bullet like behaviour is to changes in the relative size and
mass of the gas component we carried out a small parameter scan with the script
fisher_bullet_measure.py in the code archive. We fix two identical Gaussian
galaxy clumps of radius 𝑅gal at 𝑥 = ±𝑑/2 and place a gas Gaussian at 𝑥 = 0 with
radius 𝑅gas = 𝜇𝑅𝑅gal and mass 𝑀gas = 𝜇𝑀𝑀gal. For each triple (𝑚𝐹𝑑, 𝜇𝑀 , 𝜇𝑅)
with 𝑚𝐹𝑑 ∈ {0.25, 0.5, 1.0, 2.0}, 𝜇𝑀 ∈ {1, 3, 5, 10} and 𝜇𝑅 ∈ {1.5, 2, 3} we solve
the linearised Fisher equation (8) on a 643 periodic box, construct the total surface
density Σtot = Σ𝑏 + Σ𝐹 along the line of sight, and extract the two dominant peaks
of Σtot along the collision axis 𝑦 = 0. For each peak we measure its distance to the
nearest galaxy centroid, Δgal, and to the gas centroid, Δgas, and define a dimensionless
“Bullet-likeness” ratio

𝑅Bullet =
Δgas

Δgal
,

with the conventions that peaks coincident with the gas have 𝑅Bullet = 0 and peaks
coincident with a galaxy are reported as 𝑅Bullet ≫ 1. Configurations with 𝑅Bullet ≫ 1
have total convergence peaks much closer to the galaxies than to the gas, while values
𝑅Bullet ≃ 0 correspond to gas dominated peaks.

In this simple model the phase structure is almost entirely controlled by the relative
size of the gas component. When the gas is only mildly more extended than the
galaxies, 𝑅gas/𝑅gal = 1.5, the total peaks become gas dominated once 𝑀gas ≳ 5𝑀gal,
while for 𝑀gas ∼ 3𝑀gal one peak sits near the gas and the other near a galaxy. When
the gas is twice as extended, 𝑅gas/𝑅gal = 2, there is a broad band of mass ratios
1 ≤ 𝑀gas/𝑀gal ≤ 5 in which both peaks of Σtot lie between 7 and 100 times closer to
the galaxy centroids than to the gas centroid, independently of 𝑚𝐹𝑑 in the scanned
range. For still more extended gas, 𝑅gas/𝑅gal = 3, the Fisher Yukawa sector remains
Bullet like even when the gas mass is ten times that of either clump: for 𝑀gas = 10𝑀gal
both peaks of Σtot are separated from the gas centroid by a distance Δgas approximately
seven times larger than their separation Δgal from the nearest galaxy centroid. These
experiments therefore indicate that, once the gas is a few times more extended than
the collisionless clumps, there is a wide and rather insensitive region of parameter
space in which a single Fisher scalar with a universal source term generically produces
Bullet like convergence maps, without introducing separate couplings for galaxies and
plasma.
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8.1 Fisher scalar structure in clusters

Consider a cluster with baryonic mass density 𝜌𝑏 (𝑥) supported by an intracluster
medium and galaxies. The scalar Fisher field obeys the static equation

−∇ ·
(
2𝛼(𝑥)∇𝜎𝐹 (𝑥)

)
+ 𝑇𝐹 𝜕𝜎𝐹

𝑆Bern(𝜎𝐹 (𝑥)) = 𝜅𝜌𝑏 (𝑥)

with the same bounded entropy and stiffness structure as in the galactic case, but now
with 𝛼(𝑥) and 𝑇𝐹 varying on megaparsec scales. The effective Fisher density and
gravitational acceleration are obtained from the scalar gradients in the same way as in
the spherical toy model, by matching the Fisher acceleration to a Newtonian potential.

Clusters differ from galaxies in two important respects. First, the baryon distribution
is often extended and multimodal, with subclusters and filaments contributing to the
overall potential. Second, the dynamical time and collisional time of the intracluster
medium can be comparable to the Fisher relaxation timescale. As a result, the scalar
field may not reach a fully static equilibrium during major mergers, and its configuration
can retain memory of prior baryon distributions.

In the simplest approximation, one can treat the scalar as quasistatic on scales larger
than the core of each subcluster. Within each subcluster the scalar responds to the local
baryons through (8.1), generating an effective Fisher halo that tracks the coarse baryon
configuration. On larger scales the halos associated with different subclusters interact
and superpose, with the nonlinear bounded entropy term regulating the combined
structure.

8.2 Off centre baryons and Fisher relaxation

In colliding cluster systems, baryons and collisionless tracers such as galaxies can
become spatially separated during the merger. In a conventional dark matter scenario
this separation is taken as evidence for a collisionless dark component, whose mass
distribution tracks the galaxies rather than the plasma. In the Fisher picture the situation
is more subtle, because the scalar responds to the coarse grained baryonic acceleration
field and is governed by a hypocoercive generator with both reversible and irreversible
sectors.

A schematic description can be developed by considering two subclusters with baryon
densities 𝜌𝑏,1(𝑥) and 𝜌𝑏,2(𝑥) that pass through each other along a collision axis. Before
the collision the scalar field is approximately the sum of two static solutions 𝜎F,1(𝑥)
and 𝜎F,2(𝑥), each solving (8.1) with its own baryon source. During the collision, ram
pressure and shocks can displace the baryon peaks relative to the galaxies. The scalar
field, however, evolves under the full generator 𝐾 = 𝐺 + 𝐽, and its relaxation toward a
new configuration is controlled by the hypocoercive interplay between Fisher diffusion
and reversible transport.

If the effective Fisher temperature is low in the overlap region, the scalar halos
associated with each subcluster are stiff and respond slowly. In this case the Fisher
mass distribution retains a memory of the pre collision configuration for a significant
time, with halo peaks that can remain closer to the collisionless galaxy components

78



than to the displaced plasma. The bounded entropy term prevents arbitrarily sharp
features, but does not immediately erase the off set structure. In this regime the Fisher
halo behaves qualitatively like a collisionless component on merger timescales, even
though it is ultimately sourced by baryonic information and governed by a diffusive
operator.

If the Fisher temperature is higher and reversible currents are strong, the scalar field
relaxes more rapidly toward a configuration aligned with the post collision baryon
distribution. The halo then follows the plasma more closely and does not exhibit large
offsets. The degree of misalignment between Fisher halos and baryons in a given
system is therefore a diagnostic of the local Fisher temperature and hypocoercive
index.

A full quantitative treatment requires solving the time dependent scalar equation
coupled to the baryon hydrodynamics in merging clusters, with 𝛼(𝑥, 𝑡) and 𝑇𝐹 (𝑥, 𝑡)
determined by the underlying UIH dynamics. This provides a natural setting in which
to study how Fisher halos interpolate between collisionless and collisional behaviour
depending on the local balance of reversible and irreversible sectors.

Finally, the relativistic completion and lensing analysis in Section 7.2 confirms that the
projected surface density Σtot used in this section is the correct input for the lensing
convergence. The same scalar energy density 𝜌eff ≈ 1

2𝑍 (𝜎F) |∇𝜎F |2 that sources the
Weyl potential also underlies the Fisher contribution to Σtot, so the peak structure in
our Bullet like geometries directly encodes the Fisher lensing signal.

8.3 BPS type bounds at cluster scales

The static scalar equation (8.1) can be written in a form that admits BPS type inequalities
at cluster scales. In particular, for suitable choices of 𝛼 and 𝜅 one can complete the
Fisher free energy into a sum of squares and a topological term, leading to an inequality
of the form

F [𝜎F] ≥ FBPS [𝜌𝑏],
with equality when a first order Bogomolny equation is satisfied. In spherical symmetry
this reduces to the scalar Bogomolny equation studied earlier, while in more general
geometries it provides bounds on the integrated Fisher energy and halo mass in terms
of baryonic invariants.

At cluster scales these bounds constrain the possible Fisher configurations for a given
baryon distribution, and can be used to estimate how much Fisher mass can be displaced
relative to the baryons during a merger without violating the Fisher BPS inequality.
This suggests a programme in which cluster mergers are used as laboratories to probe
the Fisher BPS structure and the associated hypocoercive relaxation.

Global stability of Fisher halos. The Bogomolny completion for the Fisher free
energy implies a lower bound of the form

𝐹 [𝜎𝐹] ≥ 𝐹BPS [𝜌𝑏] = −𝑄𝐹 [𝑞𝜌𝑏 ],

where 𝑄𝐹 is the pure Fisher charge determined by the baryon source sector. In
particular, at fixed baryon distribution the Fisher scalar cannot relax to energies below
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𝐹BPS [𝜌𝑏], and configurations that solve the scalar BPS equation are global minimisers
of the Fisher free energy.

When the scalar sector is embedded in the density manifold described in the metriplectic
analysis, with a curvature coercivity bound 𝜅min ≥ 𝜅∗ > 0 along the gradient flow, the
Bakry-Émery framework then yields exponential relaxation of 𝐹 [𝜎𝐹] towards this
minimum. In the Fisher gravity picture, a BPS Fisher halo is therefore a globally stable
attractor of the scalar gradient dynamics: perturbations that respect the positivity and
ellipticity hypotheses decay in the natural 𝐻−1 geometry, and the halo cannot evaporate
or collapse below the Fisher charge set by the baryons. Cluster-scale mergers probe
this stability by driving the system far from the BPS configuration and allowing the
hypocoercive Fisher dynamics to relax back towards a new halo that again saturates
the Bogomolny bound for the post-merger baryon distribution.

8.4 Dwarf galaxy clustering and the Fisher Freeman bound

Recent work on dwarf galaxy clustering has identified a striking inversion relative to
the behaviour of massive galaxies. Using deep wide field data, Zhang et al. [31] report
that diffuse, low surface brightness blue dwarfs exhibit significantly stronger spatial
clustering than compact dwarfs at fixed stellar mass. In a standard cold dark matter
picture the amplitude of clustering is primarily controlled by halo mass, so dwarf
galaxies of similar stellar mass are expected to occupy halos of comparable mass and
to show similar two point correlations. The observed reversal, in which low surface
density dwarfs are more strongly clustered than high surface density dwarfs, therefore
poses a non trivial challenge for formation models built on collisionless dark matter.

In the Fisher framework this anomaly has a natural interpretation in terms of the surface
density driven phase structure of the scalar vacuum. The scalar sector developed above
singles out a critical acceleration scale 𝑎𝐹 and the associated Fisher Freeman bound,
which may be written in the form

Σcrit =
𝑎𝐹

2𝜋𝐺
,

where Σcrit is the characteristic central baryon surface density at which the Fisher
response saturates. For central surface densities Σ𝑏 (0) ≪ Σcrit the bounded entropy
sector remains in its linear regime and the Fisher vacuum behaves as a soft medium that
supports extended scalar halos. For Σ𝑏 (0) ≳ Σcrit the Bernoulli occupation number is
driven towards saturation, the bounded entropy term stiffens, and the scalar gradients
are constrained by the Fisher acceleration ceiling. In this stiff regime the extra force is
effectively screened outside the dense core and the Fisher halo is compressed relative
to the linear case.

To make contact with the ons in [31] it is useful to introduce a dimensionless Fisher
saturation ratio

RΣ :=
Σ0
Σcrit

=
2𝜋𝐺 Σ0
𝑎𝐹

,

where Σ0 is a characteristic central baryon surface density. For a simple disc like
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configuration one may take
Σ0 ≈ 𝑀𝑏

𝜋𝑅2
eff
,

with 𝑀𝑏 the baryonic mass and 𝑅eff an effective radius that captures the inner surface
density scale. The exact profile dependence only enters through order one factors; the
classification into soft and stiff regimes is controlled by the ratio RΣ.

As a representative example, consider two dwarf populations at fixed stellar mass
𝑀★ ≈ 2 × 108 𝑀⊙, reflecting the diffuse and compact systems discussed by Zhang et
al [31]. A diffuse dwarf with effective radius 𝑅eff ≈ 2.0 kpc has

Σdiff
0 ≈ 2 × 108 𝑀⊙

𝜋(2000 pc)2 ≈ 1.6 × 101 𝑀⊙ pc−2,

while a compact dwarf with 𝑅eff ≈ 0.5 kpc has

Σ
comp
0 ≈ 2 × 108 𝑀⊙

𝜋(500 pc)2 ≈ 2.5 × 102 𝑀⊙ pc−2.

Taking 𝑎𝐹 ∼ 10−10 m s−2 as in the Fisher Freeman analysis above gives a critical
surface density

Σcrit ≈ 102 𝑀⊙ pc−2,

so that the corresponding saturation ratios are

Rdiff
Σ ≈

Σdiff
0

Σcrit
∼ 0.1 and Rcomp

Σ
≈

Σ
comp
0
Σcrit

∼ 2.5.

Within the Fisher scalar theory the diffuse dwarfs with RΣ ≪ 1 therefore lie cleanly in
the soft, linear response regime, whereas the compact dwarfs with RΣ ≳ 1 probe the
stiff, saturated regime in which the Fisher acceleration is bounded by 𝑎𝐹 .

This separation has direct consequences for the range and strength of the scalar
mediated force. In the soft regime the bounded entropy sector remains unsaturated and
the Fisher scalar explores the interior of its potential well. The associated halos are
extended, with screening length set by 𝑚−1

𝐹
, and the effective Fisher mass can reach

far beyond the stellar component.

Diffuse dwarfs below the Freeman scale are therefore expected to carry long range
Fisher clouds that overlap and interact over larger separations, enhancing their two
point clustering at fixed baryon mass. In the stiff regime the high central surface
density drives the vacuum towards saturation, suppresses scalar gradients in order to
respect the Fisher acceleration ceiling, and compresses the halo into the inner regions.
Compact dwarfs above the Freeman scale then behave more like screened systems
in which the extra force beyond Newtonian gravity has a shortened effective range,
reducing their large scale Fisher mediated correlations relative to diffuse dwarfs of the
same stellar mass.

In a cold dark matter framework the difference in clustering between diffuse and
compact dwarfs must be attributed to differences in the underlying halo population, for
example through assembly bias or environment dependent feedback, since halo mass is
the primary control parameter. In the Fisher picture the controlling variable is instead
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the central baryon surface density through the dimensionless ratio RΣ. The reversal
reported by Zhang et al [31], in which low surface density dwarfs cluster more strongly
than high surface density dwarfs at fixed stellar mass, is then a natural qualitative
consequence of the surface density driven phase structure of the Fisher vacuum. A
detailed comparison will require embedding the Fisher halo model into a full large
scale structure calculation, but the existing data already point to dwarf clustering as a
promising regime in which the Fisher Freeman bound and the associated soft and stiff
phases can be tested.

9 Summary and outlook

Universal Information Hydrodynamics [3] provides a framework in which weak field
gravity on galactic scales can be viewed as the response of a Fisher structured vacuum
to the presence of baryons. The Fisher Kähler construction supplies the geometric
backbone, combining a monotone information metric and a symplectic form into
a single Fisher structure that links reversible and irreversible sectors through the
universal generator

𝐾 = 𝐺 + 𝐽,
with 𝐺 a Fisher gradient part and 𝐽 a reversible current part coupled to a bounded
entropy functional.

In the scalar reduction studied here the fast microscopic sector is integrated out,
leaving an effective scalar Fisher field 𝜎𝐹 coupled to baryonic matter through a free
energy functional that combines a Fisher gradient term, a Bernoulli bounded entropy
channel and a linear coupling to the baryon density. The corresponding Euler-Lagrange
equation defines a Fisher scalar halo model in which the gradients of 𝜎𝐹 generate an
additional acceleration via the Fisher coupling. In spherical symmetry this model
admits a Bogomolny completion and BPS type bounds that relate the halo profile to
baryonic quantities. The Bogomolny structure yields inequalities that bound the total
Fisher halo mass, inner slopes and characteristic core surface densities in terms of the
baryon distribution and a small set of Fisher parameters. Within this scalar theory one
can therefore define a characteristic Fisher surface density scale and Freeman-type
bounds that constrain how strongly the vacuum can respond to a given baryonic disc.

A radial gradient flow implementation shows that the Bernoulli bounded entropy
channel produces a smooth transition between cuspy and cored halos as the Fisher
temperature and baryon compaction are varied. In the low temperature, high surface
density regime the scalar halo behaves like a stiff cold component with cuspy profiles.
At intermediate Fisher temperature the entropy penalty generates flat cores whose
profiles are well approximated by empirical cored halo families. At high Fisher
temperature the scalar mass is compressed into the inner regions, with little extended
Fisher halo at large radii, reflecting strong reversible mixing and bounded entropy
saturation. The Bernoulli model thus provides a controlled cusp to core mechanism
in which the choice between cusps, cores and compressed configurations is fixed by
Fisher parameters and baryon structure rather than by ad hoc profile fitting.

At the level of disc galaxy rotation curves the scalar Fisher theory motivates a simple
one parameter response in which the halo contribution to the circular velocity is
proportional to a cumulative nonlocal functional of the baryonic acceleration. The
shape of this Fisher response is fixed by the baryonic rotation curve, while the overall
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susceptibility is set by a single amplitude parameter per galaxy. In the weak amplitude,
screened regime this response can be written as a Helmholtz type convolution with a
Yukawa kernel, and the combination of the nonlocal Fisher functional with the empirical
size-mass relation yields a baryonic Tully-Fisher scaling as a derived consequence
rather than a fitted input. Within the same framework the scalar inequalities translate
into bounds on core surface densities and on the shape of the radial acceleration
relation for any admissible choice of global Fisher parameters.

A deliberately constrained application of this response model to a heterogeneous
SPARC-like sample, using one Fisher susceptibility parameter per galaxy and fixed
baryonic mass models, reveals structured trends. Gas dominated dwarfs and low
surface brightness systems favour a nonzero soft susceptibility and develop extended
cored rotation curves. Intermediate spirals require modest Fisher corrections that
smooth the transition between inner and outer regions. High surface density, strongly
bulge dominated systems are often driven toward an effectively stiff regime in which the
best fit susceptibility is close to zero, consistent with Fisher halos that are compressed
into the inner potential wells. These patterns are consistent with the cusp-core phase
diagram and with the bounded entropy picture developed earlier, and they illustrate
how a single Fisher response sector can interpolate between cored and effectively halo
free behaviour as surface density is varied.

On cluster scales the same scalar mechanism extends to more complex baryon
distributions and merging environments. In the screened, weak field limit the Fisher
scalar obeys a Helmholtz type equation with a Fisher screening length that can be
comparable to cluster core sizes. In such regimes the scalar field can retain memory of
prior baryon configurations on merger timescales, especially at low Fisher temperature
where the halo is stiff. This opens the possibility of systems in which the effective Fisher
mass distribution exhibits offsets relative to the plasma without invoking additional
collisionless species. The Bogomolny bounds provide control on how much Fisher
mass can be displaced relative to the baryons during a merger, and the relaxation
back toward a new BPS configuration is governed by the same hypocoercive Fisher
dynamics that appear in the broader UIH setting.

A direct Fisher Gauss law test on the SPARC rotation curve sample supports this
picture. By converting the fitted susceptibility profiles 𝐶 (𝑅) into an effective Planck
weighted stiffness ℎ̂(𝑥), as defined in Section 6.1, we find that 142 galaxies collapse
onto a single dimensionless running profile with a median scatter of about 0.2 dex in
log10 ℎ̂. In the Fisher regularised Madelung setting the same stiffness scale controls
the quantum pressure term through 𝛼 = ℏ2

eff/(2𝑚F), so this universality is consistent
with the idea that microscopic Fisher regularisation and macroscopic halo response
are governed by a common set of information geometric parameters. We have not used
this identification to introduce any new free parameters in the present analysis, but it
provides a natural target for future work on the microphysical completion of the model.

A natural next step is to move beyond spherical symmetry and analyse rotating disc
halos as two dimensional Fisher Kähler media. In that setting the complex Fisher order
parameter ΨF =

√
𝜌F 𝑒

i𝜑 lives on a Kähler information manifold and the full generator
𝐾 = 𝐺 + 𝐽 can support hypocoercive toroidal solitons with quantised circulation. The
same Fisher stiffness that appears in the scalar halo sector would then control both the
core size and the vortex spectrum of disc halos, providing a geometric link between
the scalar Fisher halos studied here and a richer class of toroidal UIH configurations.
Working out this Fisher Kähler soliton structure, and comparing it with the effective
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Planck universality seen in Section 6.1, is left to future work.

Several directions for further work are clear. A first priority is to connect the effective
Fisher susceptibility used in rotation curve fits, and the structural inequalities and
surface density scale derived here, to the spectral data of the universal generator. In
particular, the halo gap and Fisher response indices (Λhalo, 𝑆halo) introduced in the
Fisher spectrometer construction provide concrete dimensionless invariants that should
be computable both from microscopic UIH models and from halo fits. This requires a
detailed analysis of the spectrum of 𝐾 in the presence of baryonic sources, and of how
the Fisher parameters flow under coarse graining.

A second priority is to lift the scalar model to a full Fisher Kähler field theory with
both amplitude and phase, capturing Fisher currents, vortices and gravitomagnetic
effects in rotating systems. This would allow direct modelling of non spherical halo
structures, bars and spiral features, and the coupling between halo flows and disc
dynamics within the same Fisher geometric framework. A third priority is to construct
the optical metric associated with Fisher structured vacua, to compute lensing in Fisher
halos derived from microscopic UIH models, and to confront those predictions with
systems in which baryons and lensing mass are offset.

Finally, a systematic comparison between Fisher halo predictions and large galaxy
and cluster samples that explicitly enforces the Fisher inequalities and Freeman-type
bounds will be essential. The scalar Fisher model and susceptibility based response
developed here provide practical tools for such comparisons, embedding empirical fits
within a geometric framework that links them to information hydrodynamics, bounded
entropy and UIH universality diagrams. As these tools are refined and extended, they
will either identify a small set of information geometric parameters that organise gravity
from laboratory Fisher channels to galaxies and clusters, or reveal where additional
degrees of freedom and couplings are required. In either case the scalar Fisher sector
provides a controlled starting point for recasting gravitational phenomena in terms of
universal information flows rather than additional elementary dark components.

Three tests of vacuum stiffness. The scalar Fisher framework links halo phe-
nomenology to baryon surface density and environment rather than to total mass alone.
This suggests three qualitative tests that we leave for future work.

First, the saturation scale derived from the Freeman surface density bound predicts a
sharp transition in effective halo mass-to-light ratios as a function of central surface
density, potentially explaining why diffuse dwarf spheroidals appear dark matter
dominated while compact globular clusters of similar stellar mass show little evidence
for an extended halo [35]. Second, because the Fisher halo is an emergent response to
the baryon distribution rather than an independently assembling particle component,
early structure formation at high redshift should track baryon collapse timescales more
closely than halo virialisation, providing an alternative angle on the abundance of very
massive systems reported in recent JWST surveys [36].

Third, the stiffness profile is sensitive to the large scale environment, so the same
vacuum sector that supports extended halos for isolated ultra diffuse galaxies can be
partially screened in the vicinity of massive hosts, offering a possible route to reconcile
dark matter poor satellites such as DF2 and DF4 with the Fisher picture [37]. Together
these density and environment driven effects provide a set of falsifiable signatures that
distinguish Fisher gravity from standard cold dark matter at fixed baryon mass.
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A Weak-field Einstein relations by solver

We treat the simulation box as a static weak-field configuration with negligible time
derivatives. In Fourier space, with ∇2 → −𝑘2, the solver implements the Poisson
relation

𝑘2Ψ(k) = −4𝜋𝐺 𝜌tot(k), 𝜌tot := 𝜌s + 𝜌J,

where 𝜌s is the scalar gradient energy density and 𝜌J is the auxiliary “current” energy
density.

The slip field is sourced by the trace-free anisotropic stress Π𝑖 𝑗 via

𝑘4𝑆(k) = 12𝜋𝐺
(
𝑘𝑖𝑘 𝑗 − 1

3𝛿𝑖 𝑗 𝑘
2
)
Π𝑖 𝑗 (k).

Equation (A) makes the isotropy condition explicit: if Π𝑖 𝑗 is locally isotropic, meaning
it is proportional to 𝛿𝑖 𝑗 so that its trace-free part vanishes, then 𝑆(k) ≡ 0 for all k ≠ 0
and the metric perturbations coincide, Φ = Ψ.

B Vacuum universality and analogue probes

The unifying claim of the broader UIH programme [1–4] is that many apparently
different physical systems share a common information-geometric structure. Each
system carries a Fisher metric on its state space, a metriplectic generator 𝐾 = 𝐺 + 𝐽
combining reversible currents and Fisher-gradient dissipation, and a small set of
spectral and response invariants that classify its behaviour under coarse-graining. The
Fisher halo theory developed here suggests that galactic and cluster halos are another
member of this family.

The static analysis in Section 5 and the dynamical structure outlined in Section 7.7
associate to each realistic Fisher halo a dimensionless gap parameter Λhalo and a
susceptibility index 𝑆halo via (5.7)-(5.7). The same UIH methods applied to quantum
channels and classical Markov generators [3, 4] yield analogous dimensionless gaps
and response exponents for those finite-dimensional systems. One can therefore view
both laboratory systems and galactic halos as points in a common “Fisher universality
plane” with coordinates (Λ, 𝑆).
We do not expect these points to coincide numerically. Universality classes are regions,
not single values, and systems at very different scales probe different parts of the
same Fisher geometry. What the unified picture does suggest is that, after appropriate
rescaling, the points corresponding to laboratory realisations of Fisher-Kähler dynamics
and those corresponding to Fisher halos should occupy a compatible region in the
(Λ, 𝑆) plane and exhibit similar qualitative scaling under coarse-graining. For example,
systems that flow under Fisher-preserving renormalisation group maps to the same
diffusive fixed point in the sense of Ref. [4] should display comparable relations
between their gap, their hypocoercive index and their static response exponents.

This perspective turns the idea of laboratory “vacuum microscopes” into a concrete
consistency requirement. Given a sufficiently broad collection of laboratory systems
for which the Fisher gap and response exponents can be measured, one can delineate an
empirical universality region Ulab in the (Λ, 𝑆) plane. The Fisher halo fits then define
an empirical region Uhalo via the coordinates (Λhalo, 𝑆halo) extracted from galaxies
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and clusters. If these two regions are grossly incompatible, in the sense that Uhalo
lies well outside any reasonable coarse-grained extension of Ulab, then one of two
conclusions is natural: either the vacuum degrees of freedom underlying Fisher halos
do not belong to the same Fisher universality class as the laboratory systems studied
so far, or the entire UIH unification of quantum, Markov and gravitational sectors is
incomplete.

Conversely, if future numerical work finds that Uhalo and Ulab are compatible after
taking into account the obvious differences of scale and environment, this would
provide non-trivial support for the information-geometric picture developed here.
In that case condensed-matter systems, carefully engineered GKLS channels and
classical stochastic processes would genuinely act as analogue probes of the same
Fisher-Kähler vacuum geometry that governs Fisher halos, with the gap and response
spectra measured in the laboratory helping to constrain the plausible ranges of Fisher
parameters in the galactic and cosmological sectors.

The present paper does not attempt such a cross-scale comparison. The definitions of
Λhalo and 𝑆halo are provided as a template for future numerical and experimental work
rather than as claimed measurements. They do, however, make precise in what sense the
Fisher halo sector can be said to belong to the same information-geometric universality
class as the UIH systems already studied, and how the combined programme could in
principle be falsified by a mismatch of Fisher invariants across scales.

C Fisher-Kähler disc halos with phase and vortices

The phase lift and its topological sectors follow the reversible classification and
circulation quantisation developed in [1], while the density-level no-work and weighted-
Liouville constraints on reversible currents are as in [2], embedded in the full Fisher–
Kähler UIH framework [3].

The scalar Fisher gravity model treats the halo as a real field 𝜎𝐹 with free energy

𝐹scalar [𝜎𝐹 ; 𝜌𝑏] =
∫
R3

[
𝛼(𝑥) |∇𝜎𝐹 |2 − 𝑇𝐹𝑆Bern(𝜎𝐹) − 𝜅 𝜎𝐹 (𝑥) 𝜌𝑏 (𝑥)

]
𝑑3𝑥.

To incorporate reversible Fisher currents more explicitly it is natural to lift this scalar
field to a complex Fisher-Kähler order parameter

Ψ(𝑥) =
√︁
𝜌𝐹 (𝑥) 𝑒𝑖𝜑 (𝑥 ) ,

where 𝜌𝐹 is a halo density and 𝜑 is a phase whose gradients encode J-sector currents.
A simple choice compatible with the Bernoulli structure is to map the scalar field 𝜎𝐹

to the halo density via

𝜌𝐹 (𝑥) = 𝜌0 𝑝(𝜎𝐹 (𝑥)), 𝑝(𝜎𝐹) =
1

1 + 𝑒−𝛽𝜎𝐹
,

so that 𝜌𝐹 inherits both the bounded entropy and the BKM mobility of the Bernoulli
manifold.
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We then consider the augmented free energy

𝐹tot [𝜎𝐹 , 𝜑; 𝜌𝑏] = 𝐹scalar [𝜎𝐹 ; 𝜌𝑏] + 𝐹𝐽 [𝜎𝐹 , 𝜑],

with J-sector contribution

𝐹𝐽 [𝜎𝐹 , 𝜑] =
1

2𝑚𝐽

∫
R3
𝜌𝐹 (𝜎𝐹 (𝑥)) |∇𝜑(𝑥) |2 𝑑3𝑥.

The metric gradient flow of 𝐹tot in the Fisher-Wasserstein geometry defines the G-sector,
while the Hamiltonian flow generated by 𝐹𝐽 defines the reversible J-sector. On a time
slice, the corresponding continuity equation for the halo density can be written in the
form

𝜕𝑡 𝜌𝐹 + ∇ · (𝜌𝐹𝑣𝐺 + 𝜌𝐹𝑣𝐽 ) = 0,
with

𝑣𝐺 = −𝐺 ∇𝜇eff , 𝑣𝐽 =
1
𝑚𝐽

∇𝜑,

where 𝐺 is the Fisher mobility operator and

𝜇eff = 𝜇scalar(𝜎𝐹 ; 𝜌𝑏) +
1

2𝑚𝐽

|∇𝜑|2

is the effective chemical potential obtained by varying 𝐹tot with respect to 𝜌𝐹 . Here
𝜇scalar denotes the chemical potential of the pure scalar theory.

A static halo configuration satisfies two conditions. First, the G-sector current must
vanish, which requires 𝜇eff to be spatially constant. Second, the J-sector current must
be divergence free,

∇ · (𝜌𝐹∇𝜑) = 0.
The first condition can be written as

𝜇scalar(𝜎𝐹 ; 𝜌𝑏) +
1

2𝑚𝐽

|∇𝜑|2 = 𝜇0,

for some constant 𝜇0, and shows that the scalar sector experiences an additional
effective potential

𝑉𝐽 (𝑥) :=
1

2𝑚𝐽

|∇𝜑(𝑥) |2

due to reversible Fisher circulation.

In an axisymmetric disc plus halo it is natural to adopt cylindrical coordinates (𝑅, 𝜃, 𝑧)
and to consider a vortex type phase field

𝜑(𝑅, 𝜃, 𝑧) = ℓ 𝜃 + 𝜑0(𝑅, 𝑧),

where ℓ ∈ Z is a winding number and 𝜑0 is a smooth correction. For the pure vortex
𝜑0 ≡ 0 one has

∇𝜑 =
ℓ

𝑅
𝜃, |∇𝜑|2 =

ℓ2

𝑅2 , 𝑣𝐽 =
ℓ

𝑚𝐽𝑅
𝜃.
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The weighted continuity equation for the J-sector,

∇ · (𝜌𝐹𝑣𝐽 ) = 0,

reduces in this case to

1
𝑅

𝜕

𝜕𝑅

(
𝑅𝜌𝐹 (𝑅, 𝑧) 𝑣 𝜃𝐽 (𝑅, 𝑧)

)
+ 𝜕

𝜕𝑧

(
𝜌𝐹𝑣

𝑧
𝐽

)
= 0.

With 𝑣𝑧
𝐽
= 0 and 𝑣 𝜃

𝐽
= ℓ/(𝑚𝐽𝑅) this simplifies to

ℓ

𝑚𝐽

1
𝑅

𝜕

𝜕𝑅
𝜌𝐹 (𝑅, 𝑧) = 0,

so that any halo profile 𝜌𝐹 (𝑅, 𝑧) which is radially slowly varying over the radii of
interest admits such a vortex current as an approximately divergence free J-sector
solution.

Inserting the vortex ansatz into (C) shows that the scalar chemical potential obeys

𝜇scalar(𝜎𝐹 ; 𝜌𝑏) +
ℓ2

2𝑚𝐽𝑅
2 = 𝜇0.

Compared with the pure scalar case this introduces a centrifugal term ℓ2/(2𝑚𝐽𝑅
2)

which diverges as 𝑅 → 0 for ℓ ≠ 0. To keep the effective chemical potential 𝜇eff finite
the scalar field 𝜎𝐹 and its associated Bernoulli density 𝜌𝐹 must adjust so that the
combination remains bounded. In particular, nonzero winding ℓ suppresses the halo
density in the central region, providing a natural Fisher-Kähler mechanism for core
formation in disc halos with significant J-sector circulation.

A full analysis of these Fisher-Kähler disc halos would require solving the coupled
amplitude-phase system for (𝜎𝐹 , 𝜑) in a realistic disc geometry and matching the
resulting rotation curves and density profiles to observations. The simple construction
above shows that the UIH framework already contains the necessary geometric
ingredients to support vortex supported, cored disc halos as stationary hypocoercive
bound states of the combined G and J sectors.

D Fisher cosmology roadmap

The scalar Fisher halo model developed in this paper has been formulated entirely in the
weak field, quasi Newtonian regime on approximately static backgrounds. To assess
whether the same Fisher structure can also account for cosmological dark components
one must embed the scalar sector in a homogeneous and isotropic space-time and
follow both the background expansion and the growth of perturbations. We briefly
outline a minimal roadmap for such a Fisher cosmology, without attempting a full
implementation.

A natural starting point is a spatially flat Friedmann-Robertson-Walker metric

d𝑠2 = −d𝑡2 + 𝑎(𝑡)2 d®𝑥 2,

together with a coarse-grained homogeneous Fisher scalar 𝜎𝐹 = 𝜎𝐹 (𝑡) representing
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the vacuum order parameter at cosmological scales and an averaged baryon density
𝜌̄𝑏 (𝑡). At this level the scalar sector is described by the same bounded entropy free
energy used for galactic halos, specialised to spatially homogeneous configurations,

𝐹FRW [𝜎𝐹 ; 𝜌̄𝑏] =
∫
Σ𝑡

𝑎(𝑡)3
(
𝛼0 |∇𝜎𝐹 |2 +𝑉𝐼 (𝜎𝐹) − 𝜅 𝜎𝐹 𝜌̄𝑏

)
d3𝑥,

with 𝛼0 > 0 constant and 𝑉𝐼 the Bernoulli bounded entropy potential introduced
in Section 3. For strictly homogeneous fields the gradient term drops out of the
background dynamics and the scalar behaves as an effective fluid with energy density
and pressure of the form

𝜌𝐹 (𝜎𝐹 , ¤𝜎𝐹) =
1
2
¤𝜎 2
𝐹 +𝑉𝐼 (𝜎𝐹), 𝑃𝐹 (𝜎𝐹 , ¤𝜎𝐹) =

1
2
¤𝜎 2
𝐹 −𝑉𝐼 (𝜎𝐹),

up to model dependent normalisations set by the underlying Fisher metric. The
equation of motion for 𝜎𝐹 then takes the usual damped form

¥𝜎𝐹 + 3𝐻 ¤𝜎𝐹 +𝑉 ′
𝐼 (𝜎𝐹) = 𝜅 𝜌̄𝑏 (𝑡), 𝐻 :=

¤𝑎
𝑎
,

in which the bounded entropy channel and the baryon coupling jointly determine the
effective equation of state parameter

𝑤𝐹 (𝑡) :=
𝑃𝐹

𝜌𝐹
∈ [−1,+1],

with the accessible range restricted by the Bernoulli geometry and the Fisher temperature
𝑇𝐹 .

A first cosmological test of the scalar Fisher sector would therefore proceed at the
level of the homogeneous background. For any given choice of Fisher parameters
(𝜆𝐹 , 𝑇𝐹 , 𝛼0, 𝜅) one can integrate the coupled Friedmann and scalar equations to obtain
an effective Hubble history 𝐻 (𝑎) and compare it to the background expansion inferred
from supernovae, baryon acoustic oscillations and late time distance ladders. The
bounded entropy structure of 𝑉𝐼 strongly restricts the allowed time evolution of 𝑤𝐹 (𝑡);
background histories that fall far outside the observationally allowed band would
falsify that choice of Fisher parameters or potential sector.

The second stage is to study linear perturbations of the Fisher scalar and the metric
around the FRW background. At this level the scalar Fisher vacuum behaves as a dark
component with a specific sound speed and clustering scale, again fixed by the same
Fisher stiffness and bounded entropy parameters that appear in the galactic theory. The
questions are then whether the resulting matter power spectrum, CMB anisotropies
and lensing potentials can be brought into agreement with data for any admissible
Fisher parameter set, and whether the scalar sector can simultaneously support the
BPS halo structure used in this paper. Failure to achieve such a joint fit would signal
that the present scalar Fisher model is at best an effective description of late-time,
weak-field halos and that additional degrees of freedom or modified couplings are
required at cosmological scales.

Finally, the wider UIH framework suggests a more microscopic route to Fisher
cosmology. The same universal generator 𝐾 = 𝐺 + 𝐽 and Fisher-Kähler geometry
used to describe GKLS channels and scalar halos define an information theoretic
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state space for the vacuum. In principle one can coarse-grain this state space on
cosmological scales and derive effective Fisher parameters and bounded entropy
channels directly from the spectrum of 𝐾 in a slowly evolving FRW background.
Pursuing this programme lies beyond the scope of the present work, but it provides a
concrete way to connect early-universe Fisher cosmology, late-time Fisher halos and
laboratory UIH experiments within a single information geometric framework. As
such it forms an essential falsifier and extension of the scalar Fisher gravity picture
developed here.

A broader motivation for the scalar Fisher programme is the possibility of a genuinely
universal information theoretic description of irreversible dynamics across scales. In
the finite dimensional UIH setting, the same Fisher gap and hypocoercive indices that
control relaxation in quantum channels and classical Markov processes organise a rich
phase diagram of approach to equilibrium. The Fisher scalar halos studied here can be
viewed as infinite dimensional, weak field, coarse grained realisations of the same UIH
geometry, with the Fisher temperature and stiffness hierarchy encoding the effective
strength of reversible currents in the vacuum sector.

This suggests a concrete falsifier programme that goes beyond fitting individual
galaxies. One can ask whether a single family of Fisher parameters, calibrated for
example on hypocoercive experiments in controlled laboratory systems, can be run
through the scalar Fisher construction to describe disc galaxy rotation curves, cluster
scale lensing and merger offsets, and eventually a Fisher cosmology, without leaving
the regime allowed by the Fisher bounds and guardrails. Failure to find such a common
Fisher phase would point either to missing structure in the scalar reduction or to
a breakdown of the assumed cross scale universality. Success, by contrast, would
identify a small set of information geometric parameters that organise gravity from
quantum channels to galaxies. The present work takes the first steps in this direction by
showing that a bounded entropy Fisher scalar, constrained by Bogomolny structure and
simple guardrails, already reproduces several key halo phenomena while remaining
tightly linked to the underlying UIH geometry.

E Soft Fisher vacuum, local voids and the 𝐻0 tension

Several recent works have argued that the tension between local distance ladder
determinations of the Hubble constant and the Planck ΛCDM value may be signalling a
large scale departure from homogeneity in the nearby Universe. Banik and Samaras [33]
show that early time modifications such as early dark energy are disfavoured once the
cosmic age and matter density are constrained self consistently. In their analysis the
remaining viable late time solutions all require a gigaparsec scale local underdensity,
of the KBC type, whose evacuation proceeds more rapidly than in standard gravity. In
effect the data demand an enhancement of structure growth on scales of order 100 to
300 Mpc.

In the Fisher scalar framework this type of behaviour arises naturally from the density
dependence of the stiffness profile 𝛼(𝑥). Overdense regions such as walls and filaments
drive the Fisher occupation towards saturation and enter a stiff, screened regime in
which the scalar contribution to the acceleration is suppressed. In underdense regions
the baryon density is lower, the Fisher occupation remains in the linear regime, and
the effective stiffness drops. As discussed in Section 2.5, a smaller 𝛼 enhances the
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Fisher response and increases the total gravitational acceleration,

𝑔tot = 𝑔N + 𝑔F ≈ 𝑔N (1 + 𝛾vac),

with 𝛾vac inversely related to the local stiffness. Voids therefore correspond to a soft
Fisher vacuum in which the evacuation towards the surrounding walls proceeds faster
than in a purely Newtonian setting. The same soft vacuum mechanism that produces
extended halos for diffuse dwarf galaxies thus provides a concrete field theoretic
realisation of the enhanced void growth required in Ref. [33].

Mazurenko et al. [34] refine this picture by comparing specific local void models with
the redshift dependence of the inferred Hubble parameter 𝐻0(𝑧) reconstructed from
Type Ia supernovae and other distance indicators. For an observer near the centre of a
KBC scale void the local expansion inferred under the assumption of homogeneity
is elevated at low redshift and gradually relaxes towards the Planck value at higher
redshift, as light rays probe regions outside the underdensity. Mazurenko et al. show
that this 𝐻0(𝑧) behaviour is broadly consistent with void profiles that also fit bulk flow
constraints, provided structure formation is enhanced in the void interior.

In a Fisher cosmology the same qualitative pattern is expected once the scalar sector is
promoted to an evolving background. Inside the underdense region the soft Fisher
vacuum amplifies the outflow, raising the locally inferred expansion rate. As one
moves outwards, the baryon density increases, the vacuum stiffens, and the Fisher
contribution to the acceleration is screened. The effective gravitational coupling along
the line of sight then interpolates from 𝐺eff ≈ 𝐺 (1 + 𝛾vac) in the void interior back
to 𝐺 in the homogeneous exterior, producing a mild decline of 𝐻0(𝑧) from the local
ladder value towards the Planck value. In this sense the Fisher soft vacuum provides a
controlled mechanism for the kind of enhanced late time structure growth and redshift
dependent 𝐻0 evolution that the void based resolutions of the Hubble tension require,
while remaining consistent with the gigaparsec scale smoothness of the Fisher scalar
implied by local solar system tests.
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