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Abstract

Our previous work has shown that a single Fisher information metric on
densities and a single operator decomposition𝐾 = 𝐺+𝐽 suffice to unify reversible
quantum dynamics, irreversible Markov and Fokker-Planck flows, and weak field
Fisher gravity. The reversible companion paper derives Schrödinger evolution
from a Fisher metric and a canonical Poisson bracket on (𝜌, 𝑆). The entropy
geometry paper shows that the same metric data support a metriplectic structure
with cost-entropy inequalities, curvature coercivity, and a scalar Fisher gravity
sector. The irreversible density paper exhibits detailed balance Markov chains,
finite dimensional GKLS generators and Fokker-Planck limits whose dissipative
dynamics are all realised by a single Fisher-Dirichlet operator on densities, and
proves a finite dimensional hypocoercivity theorem for the resulting generators
𝐾 = 𝐺 + 𝐽.

We now move from classification to renormalisation. Once time is measured
by a Fisher entropy clock, the slow sectors of UIH generators fall into simple
universality classes. For each conserved current block, and in any Fisher compat-
ible coarse graining, the irreversible flow is governed by a single hypocoercive
index 𝑟 = 𝜆hyp/𝜆𝐹 ≥ 1, the ratio between the hypocoercive rate of 𝐾 and the
Fisher gap of 𝐺. We show that in hydrodynamic scaling the small wavenumber
limit of this index, 𝑟 (𝑘) → 𝑟★, is purely geometric: it is the minimal average
diffusion on any symplectic two plane of the reversible sector 𝐽 in the Fisher
metric. In particular 1 ≤ 𝑟★ ≤ 𝜅(𝐴), where 𝐴 = −𝐺 and 𝜅(𝐴) is its condition
number, with equality cases characterised by how the symplectic planes of 𝐽
intersect the extremal eigenspaces of 𝐴.

We construct a concrete two field hydrodynamic ring where the infrared limit
has 𝑟★ = 3/2, and show numerically that Fisher compatible block renormalisation
preserves this index across scales while deliberately bad coarse grainings do not.
We then promote the ring to a weakly nonlinear system and demonstrate that
the same index controls the decay of a Fisher norm for small perturbations. On
the quantum side we give an explicit single qubit GKLS model whose Bloch
generator has exactly the same 𝐾 = 𝐺 + 𝐽 structure and the same universal index
𝑟★ = 3/2, and outline a three level multi charge GKLS model where the Fisher
metric is the full Bogoliubov-Kubo-Mori geometry. Finally we scan random
finite dimensional metriplectic pairs to show that 1 ≤ 𝑟 ≪ 𝜅(𝐴) is a generic
feature of UIH generators. Together, these results support the view that once an
information metric and entropy clock are fixed, hypocoercive renormalisation is
governed by a small set of geometric universality classes.
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1 Introduction

The Universal Information Hydrodynamics (UIH) programme studies dynamical
systems whose reversible and irreversible parts are both constrained by a single
information metric. In the reversible paper [1] we showed that a Fisher information
metric on densities, together with a canonical Poisson bracket on (𝜌, 𝑆), singles out
Schrödinger dynamics as the unique reversible hydrodynamics compatible with a small
set of continuity and covariance axioms. The entropy geometry paper [2] attaches
to the same metric data a metriplectic structure with cost-entropy inequalities and
curvature coercivity, and shows that in simple settings a scalar Fisher gravity sector can
be coupled to density fields. The irreversible companion paper [3] then exhibits finite
dimensional GKLS generators, detailed balance Markov chains and Fokker-Planck
limits whose dissipative sectors are all realised by a single Fisher-Dirichlet operator
on densities, and proves a finite dimensional hypocoercivity theorem for the resulting
generators 𝐾 = 𝐺 + 𝐽.
In that setting the symmetric part 𝐺 is the Fisher gradient flow generator and the skew
part 𝐽 is the reversible circulation. The operator 𝐺 is negative semidefinite in the
Fisher metric and its kernel encodes conserved quantities such as normalisation and
stationary densities. On the mean zero subspace −𝐺 is positive definite, with a spectral
gap 𝜆𝐹 that sets the characteristic diffusion timescale of the underlying metric. The
full generator 𝐾 = 𝐺 + 𝐽 has spectrum lying in the closed left half plane and, under
mild conditions, generates a hypocoercive semigroup: although neither 𝐺 nor 𝐽 alone
is strictly coercive in the natural norm, their combination yields exponential relaxation
to equilibrium.

The present paper addresses the following question. Given such a UIH generator 𝐾 =

𝐺+𝐽, how does its long time behaviour transform under coarse graining? Put differently,
once we commit to an information metric and its associated entropy geometry, do
irreversible flows fall into simple universality classes under renormalisation?

A first hint is already present in the finite dimensional hypocoercivity theorem of [3].
On the mean zero subspace, define

𝜆𝐹 = min𝜎(−𝐺), 𝜆hyp = min{−Re𝜆 : 𝜆 ∈ 𝜎(𝐾)}.

The Fisher gap 𝜆𝐹 sets a canonical timescale: in the purely dissipative dynamics
¤𝑥 = 𝐺𝑥, deviations from equilibrium decay no faster than e−𝜆𝐹 𝑡 in the Fisher norm.
The full hypocoercive rate 𝜆hyp can be larger when reversible transport mixes slow and
fast directions. The ratio

𝑟 =
𝜆hyp

𝜆𝐹
≥ 1

is therefore a natural dimensionless index that compares the true relaxation rate in the
entropy geometry to the bare Fisher diffusion scale. It depends on both 𝐺 and 𝐽, but is
invariant under similarity transformations and common rescalings 𝐾 ↦→ 𝑐𝐾 , and so is
a good candidate for a universal quantity.

In this paper we show that once an entropy clock is fixed by 𝜆𝐹 , and once coarse
grainings are required to respect the Fisher metric, the slow sectors of 𝐾 do indeed fall
into simple classes labelled by such an index. In particular we establish three main
points.
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First, in hydrodynamic scaling, translation invariant UIH generators decompose in
Fourier space into blocks 𝐾 (𝑘) whose symmetric part scales as 𝐺𝑘 ∼ −𝑘2𝐷 and
whose skew part scales as 𝐽𝑘 ∼ 𝑘𝛽𝐽0 for some exponent 𝛽. For physically natural
advective couplings one has 𝛽 = 1, so the reversible sector is infrared relevant. We
show that in that regime the entropy clock index at wavenumber 𝑘 ,

𝑟 (𝑘) =
𝜆hyp(𝑘)
𝜆𝐹 (𝑘)

,

has an infrared limit 𝑟 (𝑘) → 𝑟★(𝐷, 𝐽0) as 𝑘 → 0, and that this limit can be written
purely in terms of the Fisher metric and the symplectic geometry of 𝐽0. Concretely,
𝑟★(𝐷, 𝐽0) is the minimal average diffusion on a symplectic two plane of 𝐽0, normalised
by the coldest Fisher eigenvalue.

Second, we define a class of Fisher compatible renormalisation maps that act by
orthogonal coarse graining followed by an entropy clock rescaling. For generators
with exact conservation laws whose slow blocks are invariant under 𝐾, these maps
reduce to spectral projections on the slowest eigenspaces of −𝐺 and preserve the index
𝑟 exactly. In translation invariant hydrodynamics they approximate projections onto
low wavenumbers and hence preserve the infrared value 𝑟★. In contrast, deliberately
bad coarse grainings that scramble the Fisher metric drive the index away from its
microscopic value and destroy universality. This is demonstrated concretely on a two
field ring model.

Third, we show through explicit examples and random scans that the hypocoercive
indices defined in this way behave as claimed. A nonlinear two field ring with weak
advective corrections exhibits exponential decay in a Fisher norm at a rate equal
to 𝜆hyp of its linearisation, with the ratio to the Fisher gap matching the predicted
𝑟★, even though the full equations are nonlinear. A one qubit GKLS model with
anisotropic noise and a simple Hamiltonian has a Bloch generator whose (𝑥, 𝑦) sector
is a 𝐾 = 𝐺 + 𝐽 block with 𝑟★ = 3/2, identical to the two field hydrodynamic ring. A
three level GKLS model with multiple conserved charges realises the same structure
in the full Bogoliubov-Kubo-Mori metric. Finally, large random ensembles of finite
dimensional metriplectic pairs confirm that 1 ≤ 𝑟 ≤ 𝜅(𝐴) is generic, with typical
values well below 𝜅(𝐴), and that the UIH bounds are not artefacts of special low
dimensional examples.

The paper is organised as follows. Section 2 reviews the finite dimensional UIH
structure and introduces the Fisher entropy clock and hypocoercive index. Section
3 analyses hydrodynamic scaling and the two field ring, and identifies the infrared
index 𝑟★. Section 4 develops the Fisher symplectic normal form and shows that 𝑟★ is
a simple geometric invariant. Section 5 defines Fisher compatible renormalisation
maps and relates them to spectral projections on slow modes. Section 6 presents the
nonlinear two field ring and its entropy clock. Section 7 constructs the explicit qubit
and qutrit GKLS examples. Section 8 reports the random ensemble scans. Section 9
summarises the picture and outlines future directions. Appendix 10 documents the
Python scripts used in the numerical experiments.
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2 Fisher metrics, entropy clocks and hypocoercive index

We begin by recalling the finite dimensional UIH structure and by fixing a canonical
choice of time coordinate, the Fisher entropy clock, that renders the hypocoercive
index dimensionless and renormalisation friendly.

2.1 Finite dimensional UIH generators

Let𝑉 be a real vector space of dimension 𝑛 equipped with a symmetric positive definite
inner product ⟨𝑥, 𝑦⟩𝑀 = 𝑥⊤𝑀𝑦 for some SPD matrix 𝑀 . In the UIH setting this inner
product is the Fisher information metric associated with a family of densities or states,
as discussed in [2, 3]. A linear generator 𝐾 : 𝑉 → 𝑉 is said to be Fisher compatible if
it can be decomposed as

𝐾 = 𝐺 + 𝐽,
where

𝐺⊤𝑀 = 𝑀𝐺, 𝐽⊤𝑀 = −𝑀𝐽.
In other words, 𝐺 is symmetric and 𝐽 is skew with respect to the Fisher inner product.
In coordinates where 𝑀 = 𝐼 this simply means that 𝐺 is symmetric and 𝐽 is real skew.

We will always assume that 𝐺 is negative semidefinite in the Fisher metric, with a one
dimensional kernel spanned by a distinguished equilibrium vector 𝑥★ that represents
the stationary density or state. In a probability setting one can take 𝑥★ to be the
constant vector of ones in a mass conserving basis. We denote by 𝑉0 the orthogonal
complement of the equilibrium direction in the Fisher metric,

𝑉0 = {𝑥 ∈ 𝑉 : ⟨𝑥, 𝑥★⟩𝑀 = 0}.

On 𝑉0 the symmetric part satisfies −𝐺 > 0, so it generates a strictly contracting
gradient flow in the Fisher norm, while the full generator 𝐾 = 𝐺 + 𝐽 is assumed to
have spectrum lying in the closed left half plane, with no other eigenvalues on the
imaginary axis.

This is the finite dimensional UIH setting of [3]. It covers, in particular, the density
sector of finite state Markov chains with detailed balance, restriction of GKLS
generators to diagonal density matrices in a preferred basis, and finite volume
discretisations of Fokker-Planck equations.

2.2 Fisher gap and entropy clock

On 𝑉0 the symmetric part 𝐺 defines a self adjoint negative operator in the Fisher
metric. We write its spectral decomposition as

−𝐺 =

𝑛−1∑︁
𝑖=1

𝜆𝑖𝑃𝑖 ,
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with eigenvalues 0 < 𝜆1 ≤ 𝜆2 ≤ . . . and orthogonal projectors 𝑃𝑖. The smallest
positive eigenvalue,

𝜆𝐹 = 𝜆1 = min𝜎(−𝐺 |𝑉0),
is the Fisher gap. It sets the slowest decay rate for the pure gradient flow ¤𝑥 = 𝐺𝑥 on
the mean zero subspace: no component of 𝑥 can decay faster than e−𝜆𝐹 𝑡 in the Fisher
norm under this dynamics.

In many physical examples 𝐺 is a discretised Laplacian or Dirichlet form. The Fisher
gap then encodes the slowest diffusive mode, and its inverse controls equilibration
times over the system size. Crucially, 𝜆𝐹 depends only on the symmetric dissipative
structure and the information metric, not on any arbitrary microscopic choice of time
units.

This suggests using 𝜆𝐹 to define a canonical time coordinate. Suppose the physical
time variable is 𝑡. We define the entropy clock 𝜏 by

𝜏 = 𝜆𝐹 𝑡.

In these units the pure dissipative dynamics has slowest rate equal to 1. More precisely,
for the flow ¤𝑥 = 𝐺𝑥 on 𝑉0, the Fisher norm ∥𝑥∥2

𝑀
= ⟨𝑥, 𝑥⟩𝑀 obeys

∥𝑥(𝜏)∥𝑀 ≤ 𝐶e−𝜏

for some constant 𝐶 depending on the initial data, and this bound is sharp.

All renormalisation statements in this paper are made in this entropy clock, rather
than in arbitrary microscopic time. This removes one nuisance degree of freedom
from the RG analysis and allows us to compare generators with different microscopic
diffusivities on the same footing.

2.3 Hypocoercive rate and index

The full generator 𝐾 = 𝐺 + 𝐽 on 𝑉0 need not be self adjoint in the Fisher metric. Its
spectrum lies in the closed left half plane, but eigenvectors corresponding to different
eigenvalues need not be orthogonal, and non normal effects can alter decay rates
relative to the naive spectral gap 𝜆𝐹 .

We define the hypocoercive rate of 𝐾 as

𝜆hyp = inf{−Re𝜆 : 𝜆 ∈ 𝜎(𝐾 |𝑉0)}.

Under the assumptions above, the semigroup e𝑡𝐾 on 𝑉0 satisfies

∥e𝑡𝐾𝑥∥𝑀 ≤ 𝐶e−𝜆hyp𝑡 ∥𝑥∥𝑀

for some 𝐶, and 𝜆hyp is the sharp exponential rate governing the long time decay of
generic perturbations in the Fisher norm. In particular, if 𝐾 has no Jordan blocks
associated with the spectral point with real part −𝜆hyp, then for a dense set of initial
conditions the norm ∥e𝑡𝐾𝑥∥𝑀 decays asymptotically like e−𝜆hyp𝑡 up to polynomial
corrections.
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We then define the hypocoercive index

𝑟 =
𝜆hyp

𝜆𝐹
≥ 1.

The inequality 𝑟 ≥ 1 follows from the variational characterisation of 𝜆𝐹 and the
spectral mapping theorem. In the purely dissipative case 𝐽 = 0 one has 𝜆hyp = 𝜆𝐹 and
hence 𝑟 = 1. When 𝐽 ≠ 0, the reversible sector can accelerate convergence by mixing
slow and fast eigendirections of −𝐺, leading to 𝑟 > 1.

The index 𝑟 is invariant under similarity transformations that preserve the Fisher
metric and under uniform rescalings of time. If 𝑆 is an invertible linear map that is
orthogonal in the Fisher metric, so that 𝑆⊤𝑀𝑆 = 𝑀 , then 𝐾 and 𝑆−1𝐾𝑆 have the same
spectrum on 𝑉0 and the same symmetric part up to conjugation. The Fisher gap and
hypocoercive rate are unchanged, and hence so is 𝑟. If time is rescaled by a factor 𝑐,
so that we work with 𝐾̃ = 𝑐𝐾 , then both 𝜆𝐹 and 𝜆hyp are multiplied by 𝑐, leaving their
ratio invariant.

In terms of the entropy clock 𝜏 = 𝜆𝐹 𝑡, the index 𝑟 is simply the absolute hypocoercive
rate expressed in units of the Fisher gap. In these units the slowest purely dissipative
mode decays as e−𝜏 , while the slowest mode of the full generator decays as e−𝑟 𝜏 . The
index thus quantifies how much faster the true irreversible dynamics is, relative to the
bare diffusion suggested by the Fisher metric alone.

2.4 Slow blocks and conservation laws

In applications it is often useful to decompose 𝑉0 into sectors associated with different
conserved quantities or symmetries. For example, in a lattice hydrodynamics one may
separate density and current sectors; in GKLS models one may distinguish blocks
corresponding to different conserved charges. In such cases the symmetric part 𝐺
often has a block structure, with small eigenvalues associated with hydrodynamic or
charge diffusion modes, and larger eigenvalues associated with fast relaxation of non
hydrodynamic directions.

Let
−𝐺 =

(
𝐴slow 0

0 𝐴fast

)
in a basis adapted to such a decomposition, with 𝐴slow an SPD matrix on a small slow
subspace 𝑉slow and 𝐴fast SPD on the fast complement. In many of the examples below
𝐴slow will represent diffusion of a small number of conserved currents, while 𝐴fast
contains gapped modes.

If 𝐽 respects this decomposition, in the sense that it preserves 𝑉slow and 𝑉fast separately,
then the full generator 𝐾 = 𝐺 + 𝐽 is block diagonal. Its hypocoercive rate is the
minimum of the rates on the slow and fast blocks, and in regimes of interest it is the
slow block that dominates. One can then define a slow block index

𝑟slow =
𝜆hyp(𝐾 |𝑉slow)
𝜆𝐹 (−𝐺 |𝑉slow)

,
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which becomes the relevant quantity for hydrodynamic scaling and renormalisation.

Even when 𝐽 does not respect the block decomposition exactly, but the off diagonal
couplings are perturbative, one can still identify a slow block in an approximate spectral
sense and attach an effective index to it. Our renormalisation statements are made at
this block level. For the rest of the paper, and particularly in Sections 3 and 4, we will
therefore focus on small slow blocks, typically of dimension two or three, where the
geometry of 𝐴slow and 𝐽 can be analysed explicitly.

3 Hydrodynamic scaling and the two field ring

We now move from abstract finite dimensional generators to a concrete hydrodynamic
setting where the hypocoercive index can be computed explicitly at each wavenumber.
This will provide both an analytic benchmark and a bridge to the numerical ring
experiments in Section 6.

3.1 Discrete two field ring and its Fourier blocks

Consider a one dimensional periodic lattice with 𝑁 sites and lattice spacing ℎ, labelling
sites by 𝑖 = 0, . . . , 𝑁 − 1 with periodic wrap 𝑖 ≡ 𝑖 + 𝑁 . We place two real fields 𝜌𝑖 (𝑡)
and 𝑢𝑖 (𝑡) on this ring, which one may think of as a density and a velocity. Let

(𝐿 𝑓 )𝑖 = 𝑓𝑖+1 − 2 𝑓𝑖 + 𝑓𝑖−1, (𝐷 𝑓 )𝑖 =
𝑓𝑖+1 − 𝑓𝑖−1

2ℎ

denote the standard discrete Laplacian and central derivative on the ring. We fix
diffusivities 𝐷𝜌, 𝐷𝑢 > 0 and a reversible coupling constant 𝑐 > 0, and consider the
linear system

𝜕𝑡 𝜌𝑖 = 𝐷𝜌 (𝐿𝜌)𝑖 − 𝑐(𝐷𝑢)𝑖 ,
𝜕𝑡𝑢𝑖 = 𝐷𝑢 (𝐿𝑢)𝑖 + 𝑐(𝐷𝜌)𝑖 .

This is a standard two component diffusive system with an antisymmetric coupling
between the density and velocity fields. It conserves the total density

∑
𝑖 𝜌𝑖 and the

total velocity
∑
𝑖 𝑢𝑖 and has a homogeneous equilibrium (𝜌𝑖 , 𝑢𝑖) = (𝜌0, 0).

We assemble the fields into a vector 𝑥 = (𝛿𝜌, 𝛿𝑢) of dimension 2𝑁 , where 𝛿𝜌𝑖 = 𝜌𝑖−𝜌0
and 𝛿𝑢𝑖 = 𝑢𝑖 . In this basis the dynamics (3.1) to (3.1) can be written as

¤𝑥 = 𝐾𝑥 = (𝐺 + 𝐽)𝑥

with
𝐺 =

(
𝐷𝜌𝐿 0

0 𝐷𝑢𝐿

)
, 𝐽 =

(
0 −𝑐𝐷

𝑐𝐷⊤ 0

)
.

The symmetric part 𝐺 is block diagonal and negative semidefinite, with a two
dimensional kernel spanned by the constant density and velocity modes. The skew
part 𝐽 couples 𝜌 and 𝑢 through a discrete analogue of 𝜕𝑥 .
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We equip 𝑥 with the Fisher inner product

⟨𝑥, 𝑦⟩𝐹 = 𝐷𝜌 𝛿𝜌
⊤(−𝐿) 𝛿𝜌 + 𝐷𝑢 𝛿𝑢⊤(−𝐿) 𝛿𝑢,

which is strictly positive on the mean zero subspace 𝑉0 = {𝑥 :
∑
𝑖 𝛿𝜌𝑖 =

∑
𝑖 𝛿𝑢𝑖 = 0}.

In the continuum limit this inner product approaches the sum of Dirichlet energies of 𝜌
and 𝑢. The symmetric part 𝐺 is self adjoint and negative definite on 𝑉0 with respect to
⟨·, ·⟩𝐹 , while 𝐽 is skew. Thus 𝐾 = 𝐺 + 𝐽 is a finite dimensional UIH generator on 𝑉0.

Because the ring is translation invariant, it is natural to diagonalise 𝐿 and 𝐷 by discrete
Fourier transform. Let

𝑓𝑘 =
1
√
𝑁

𝑁−1∑︁
𝑗=0

𝑓 𝑗 e−2𝜋𝑖𝑘 𝑗/𝑁 , 𝑘 = 0, . . . , 𝑁 − 1,

with inverse transform

𝑓 𝑗 =
1
√
𝑁

𝑁−1∑︁
𝑘=0

𝑓𝑘 e2𝜋𝑖𝑘 𝑗/𝑁 .

In this basis the Laplacian and derivative become multiplication operators,

𝐿 𝑓 𝑘 = 𝜆𝑘 𝑓𝑘 , 𝐷 𝑓 𝑘 = i𝜅𝑘 𝑓𝑘 ,

with
𝜆𝑘 =

2
ℎ2

(
cos(2𝜋𝑘/𝑁) − 1

)
, 𝜅𝑘 =

1
ℎ

sin(2𝜋𝑘/𝑁).

For small wavenumbers 𝑘 ≪ 𝑁 one has the approximations 𝜆𝑘 ≈ −(2𝜋𝑘/(𝑁ℎ))2 and
𝜅𝑘 ≈ 2𝜋𝑘/(𝑁ℎ).
In Fourier space the generator 𝐾 decomposes into a direct sum of 2 × 2 blocks,

𝐾 =
⊕
𝑘

𝐾𝑘 ,

where each 𝐾𝑘 acts on the pair ( 𝜌̂𝑘 , 𝑢̂𝑘) as

𝐾𝑘 = 𝐺𝑘 + 𝐽𝑘 =
(
𝐷𝜌𝜆𝑘 −𝑐 i𝜅𝑘
𝑐 i𝜅𝑘 𝐷𝑢𝜆𝑘

)
.

The constant mode 𝑘 = 0 decouples and carries the conserved quantities; we henceforth
focus on 𝑘 ≠ 0.

3.2 Modewise Fisher gaps and hypocoercive rates

For each nonzero wavenumber 𝑘 the symmetric part of 𝐾𝑘 is

𝐺𝑘 =

(
𝐷𝜌𝜆𝑘 0

0 𝐷𝑢𝜆𝑘

)
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with 𝜆𝑘 < 0. The Fisher metric on this mode is inherited from the full metric and
amounts to a weighted Euclidean norm proportional to |𝜆𝑘 |. The Fisher gap for the
pair ( 𝜌̂𝑘 , 𝑢̂𝑘) is

𝜆𝐹 (𝑘) = min{−𝐷𝜌𝜆𝑘 ,−𝐷𝑢𝜆𝑘} = min(𝐷𝜌, 𝐷𝑢) |𝜆𝑘 |.

The skew part

𝐽𝑘 =

(
0 −𝑐 i𝜅𝑘

𝑐 i𝜅𝑘 0

)
induces a reversible mixing between density and velocity at wavenumber 𝑘 , with
frequency |𝑐𝜅𝑘 |.
The eigenvalues of 𝐾𝑘 are the roots of the quadratic

𝜆2 −
(
𝐷𝜌𝜆𝑘 + 𝐷𝑢𝜆𝑘

)
𝜆 + (𝐷𝜌𝐷𝑢𝜆2

𝑘 + 𝑐
2𝜅2
𝑘) = 0,

so
𝜆±(𝑘) =

(𝐷𝜌 + 𝐷𝑢)𝜆𝑘
2

± 1
2

√︃
(𝐷𝜌 − 𝐷𝑢)2𝜆2

𝑘
− 4𝑐2𝜅2

𝑘
.

For all sufficiently small 𝑘 the discriminant is negative and the square root is purely
imaginary, so both eigenvalues share the same real part,

Re𝜆±(𝑘) =
(𝐷𝜌 + 𝐷𝑢)𝜆𝑘

2
.

Since 𝜆𝑘 < 0, the hypocoercive rate on mode 𝑘 is

𝜆hyp(𝑘) = −Re𝜆±(𝑘) =
(𝐷𝜌 + 𝐷𝑢)

2
|𝜆𝑘 |.

The modewise entropy clock index is therefore

𝑟 (𝑘) =
𝜆hyp(𝑘)
𝜆𝐹 (𝑘)

=
(𝐷𝜌 + 𝐷𝑢) |𝜆𝑘 |/2
min(𝐷𝜌, 𝐷𝑢) |𝜆𝑘 |

=
𝐷𝜌 + 𝐷𝑢

2 min(𝐷𝜌, 𝐷𝑢)
.

Remarkably, the dependence on wavenumber cancels: for all modes 𝑘 for which the
eigenvalues are complex conjugate, the index 𝑟 (𝑘) is a constant

𝑟
(2)
★ =

𝐷𝜌 + 𝐷𝑢
2 min(𝐷𝜌, 𝐷𝑢)

≥ 1.

In the symmetric case 𝐷𝜌 = 𝐷𝑢 one has 𝑟 (2)★ = 1, so the reversible coupling does not
accelerate decay relative to the Fisher gap. In the generic asymmetric case with, say,
𝐷𝜌 > 𝐷𝑢, one finds

𝑟
(2)
★ =

𝐷𝜌 + 𝐷𝑢
2𝐷𝑢

∈
[
1, 1

2 (1 + 𝜅)
]

where 𝜅 = 𝐷𝜌/𝐷𝑢 is the condition number of the diffusion coefficients.

The script 01_rg_rho_u_ring_linear_modes.py implements this calculation in
the fully discrete setting and verifies numerically that the discrete spectrum reproduces
(3.2) across wavenumbers, with 𝑟 (𝑘) approaching 1 for the highest modes as non
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normal effects vanish and tending to the constant 𝑟 (2)★ for the hydrodynamic modes.

3.3 Hydrodynamic scaling and relevance of the reversible sector

The example above is a toy instance of a more general pattern. In a translation invariant
UIH system with a finite number of fields, the generator in Fourier space can often be
written in the form

𝐾 (𝑘) = 𝐺𝑘 + 𝐽𝑘 ,
with

𝐺𝑘 ∼ −𝑘2𝐷, 𝐽𝑘 ∼ 𝑘𝛽𝐽0 as 𝑘 → 0,
for some SPD diffusion matrix 𝐷 and skew matrix 𝐽0, and some scaling exponent
𝛽 ≥ 0. The two field ring corresponds to 𝛽 = 1.

In the hydrodynamic limit 𝑘 → 0, the relative strength of the reversible and dissipative
sectors is controlled by the ratio

∥𝐽𝑘 ∥
∥𝐺𝑘 ∥

∼ 𝑘𝛽−2.

If 𝛽 > 2, the reversible sector is infrared irrelevant: its operator norm vanishes
compared to that of 𝐺𝑘 , and one expects 𝑟 (𝑘) → 1 as 𝑘 → 0. If 𝛽 = 2, it is marginal:
the ratio is scale independent, and 𝑟 (𝑘) approaches a constant that depends on the
detailed microscopic form of 𝐾 (𝑘). If 𝛽 < 2, the reversible sector is infrared relevant:
it dominates over 𝐺𝑘 at small wavenumbers, and its geometry in the Fisher metric
controls the limiting index 𝑟★.

The two field ring lies in this latter regime. The fact that 𝑟 (𝑘) is constant for all
hydrodynamic modes reflects the combined effect of the scaling𝐺𝑘 ∼ −𝑘2𝐷, 𝐽𝑘 ∼ 𝑘𝐽0
and the simple two dimensional structure of the block. In higher dimensions the
situation is more subtle: the eigenvectors of 𝐾 (𝑘) can tilt in a nontrivial fashion as 𝑘
varies, and the limit 𝑟 (𝑘) → 𝑟★ at small 𝑘 becomes a genuinely geometric invariant of
the pair (𝐷, 𝐽0). The next section develops this geometry.

4 Fisher symplectic normal form and the invariant 𝑟★

We now examine the geometry of the pair (𝐴, 𝐽), where 𝐴 = −𝐺 is the SPD Fisher
operator on a slow block and 𝐽 is the skew reversible sector, and identify the invariant
that appears as 𝑟★ in the hydrodynamic limit.

4.1 Diagonalising the Fisher metric

Let 𝑉 be an 𝑚 dimensional real vector space carrying a slow block of the generator,
with symmetric part −𝐺 = 𝐴 strictly positive definite and skew part 𝐽. On this
subspace the Fisher inner product is

⟨𝑥, 𝑦⟩𝐴 = 𝑥⊤𝐴𝑦.
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Since 𝐴 is SPD there exists an orthonormal basis in which 𝐴 is diagonal. Let

𝐴 = 𝑄𝐷𝑄⊤,

with 𝑄 orthogonal and

𝐷 = diag(𝑑1, . . . , 𝑑𝑚), 0 < 𝑑1 ≤ · · · ≤ 𝑑𝑚.

In the transformed coordinates 𝑦 = 𝑄⊤𝑥 the inner product becomes Euclidean,
⟨𝑦, 𝑧⟩ = 𝑦⊤𝑧, and the symmetric part of the generator is simply −𝐷. The skew part
transforms to

𝐽0 = 𝑄⊤𝐽𝑄,

which remains real skew. In these coordinates we may thus work with a generator

𝐾0 = −𝐷 + 𝐽0,

where 𝐷 is diagonal SPD and 𝐽0 is real skew, with all metric information now stored
in the eigenvalues {𝑑𝑖}.

The Fisher gap on this block is 𝜆 (block)
𝐹

= 𝑑min = 𝑑1. The hypocoercive rate 𝜆 (block)
hyp is

the smallest positive value of −Re𝜆 among eigenvalues 𝜆 of 𝐾0, and the block index is

𝑟block =
𝜆
(block)
hyp

𝑑1
.

In hydrodynamic scaling 𝐷 will be proportional to the diffusion matrix 𝐷 that appears
in 𝐺𝑘 ∼ −𝑘2𝐷, and the small wavenumber limit of 𝑟 (𝑘) will converge to this block
index for an appropriate choice of 𝑉 .

4.2 Real skew matrices and symplectic 2 planes

Every real skew matrix 𝐽0 on 𝑉 admits a canonical real normal form. There exists an
orthogonal matrix𝑈 such that

𝑈⊤𝐽0𝑈 =

©­­­­«
𝑆1

. . .

𝑆𝑝
0

ª®®®®¬
,

where each 𝑆 𝑗 is a 2 × 2 block of the form

𝑆 𝑗 =

(
0 −𝜔 𝑗
𝜔 𝑗 0

)
, 𝜔 𝑗 > 0,

and the remaining zeros correspond to the kernel of 𝐽0. The orthogonal change of
basis defined by𝑈 decomposes 𝑉 into an orthogonal direct sum of two dimensional
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planes

𝑉 =

𝑝⊕
𝑗=1

𝐸 𝑗 ⊕ ker 𝐽0,

on each of which 𝐽0 acts as a simple rotation with frequency 𝜔 𝑗 . We refer to the 𝐸 𝑗 as
Fisher symplectic planes: they are the real two planes on which the reversible sector
generates circular motion in the metric defined by 𝐷.

The complex eigenvectors of 𝐽0 come in conjugate pairs {𝑣 𝑗 , 𝑣̄ 𝑗}, each associated with
eigenvalues ±i𝜔 𝑗 , and span the complexification of the corresponding plane 𝐸 𝑗 . Any
such eigenvector has the form

𝑣 𝑗 =
1
√

2
(𝑒 𝑗 ,1 − i𝑒 𝑗 ,2),

where {𝑒 𝑗 ,1, 𝑒 𝑗 ,2} is a real orthonormal basis of 𝐸 𝑗 . These vectors satisfy

∥𝑣 𝑗 ∥2 = 𝑣
†
𝑗
𝑣 𝑗 = 1,

and are eigenvectors of 𝐽0 with

𝐽0𝑣 𝑗 = i𝜔 𝑗𝑣 𝑗 .

4.3 Average diffusion on symplectic planes

On each symplectic plane 𝐸 𝑗 the restriction of the diagonal SPD matrix 𝐷 is a 2 × 2
matrix

𝐷 𝑗 = 𝑅
⊤
𝑗 𝐷𝑅 𝑗 ,

where 𝑅 𝑗 is the 𝑚 × 2 matrix with columns 𝑒 𝑗 ,1 and 𝑒 𝑗 ,2. The eigenvalues of 𝐷 𝑗 lie in
the interval [𝑑1, 𝑑𝑚], and its trace is

tr(𝐷 𝑗) = 𝑒⊤𝑗 ,1𝐷𝑒 𝑗 ,1 + 𝑒
⊤
𝑗 ,2𝐷𝑒 𝑗 ,2.

The key observation is that for any eigenvector 𝑣 𝑗 of 𝐽0 associated with the plane 𝐸 𝑗 ,
the Rayleigh quotient of 𝐷 is simply the arithmetic mean of the eigenvalues of 𝐷 𝑗 ,

𝑣
†
𝑗
𝐷𝑣 𝑗 =

1
2

tr(𝐷 𝑗).

To see this, write 𝑣 𝑗 = (𝑒 𝑗 ,1 − i𝑒 𝑗 ,2)/
√

2. Then

𝑣
†
𝑗
𝐷𝑣 𝑗 =

1
2
(
𝑒⊤𝑗 ,1𝐷𝑒 𝑗 ,1 + 𝑒

⊤
𝑗 ,2𝐷𝑒 𝑗 ,2

)
+ i

2
(
𝑒⊤𝑗 ,1𝐷𝑒 𝑗 ,2 − 𝑒

⊤
𝑗 ,2𝐷𝑒 𝑗 ,1

)
.

The last term vanishes because 𝐷 is symmetric, leaving

𝑣
†
𝑗
𝐷𝑣 𝑗 =

1
2
(
𝑒⊤𝑗 ,1𝐷𝑒 𝑗 ,1 + 𝑒

⊤
𝑗 ,2𝐷𝑒 𝑗 ,2

)
=

1
2

tr(𝐷 𝑗),

as claimed.
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The expression (4.3) is independent of the particular orthonormal basis chosen for 𝐸 𝑗
and depends only on the plane itself. It therefore defines a planewise average diffusion

𝑑 𝑗 =
1
2

tr(𝐷 𝑗),

which measures the mean diffusivity on the symplectic plane 𝐸 𝑗 in the Fisher metric.

4.4 Definition and bounds for the invariant 𝑟★

The eigenvectors of 𝐽0 span the complexified slow block and provide a natural candidate
set over which to minimise the Rayleigh quotient of 𝐷. We define the Fisher symplectic
hypocoercive invariant

𝑟★(𝐷, 𝐽0) =
1
𝑑1

min
𝑗
𝑑 𝑗 =

1
𝑑1

min
𝑗

1
2

tr(𝐷 𝑗),

where 𝑑1 is the smallest eigenvalue of 𝐷. In words, 𝑟★(𝐷, 𝐽0) is the minimal average
diffusion along any symplectic plane of the reversible sector, expressed in units of the
coldest Fisher eigenvalue.

Because the eigenvalues of 𝐷 𝑗 lie between 𝑑1 and 𝑑𝑚, we have

𝑑1 ≤ 𝑑 𝑗 ≤ 𝑑𝑚

for every plane, and hence

1 ≤ 𝑟★(𝐷, 𝐽0) ≤
𝑑𝑚

𝑑1
= 𝜅(𝐷),

where 𝜅(𝐷) is the condition number of the Fisher operator on the slow block.

The lower bound is achieved if and only if there exists a symplectic plane 𝐸 𝑗 that
lies entirely inside the eigenspace associated with the smallest eigenvalue 𝑑1, so that
𝐷 𝑗 = 𝑑1𝐼2 and 𝑑 𝑗 = 𝑑1. The upper bound is achieved if and only if some symplectic
plane lies entirely inside the eigenspace of the largest eigenvalue 𝑑𝑚.

In generic situations 𝐷 has simple eigenvalues and no two dimensional eigenspaces,
so exact saturation usually requires fine tuned alignment between the eigenspaces of
𝐷 and the symplectic planes of 𝐽0. Nevertheless, as the numerical experiments in
05_rg_random_GJ_hypocoercivity_scan.py show, values of 𝑟★ arbitrarily close
to 1 are common: by choosing symplectic planes that are almost aligned with the
coldest eigendirections one can make 𝑑 𝑗 as close to 𝑑1 as desired.

4.5 Relation to hypocoercive index in the hydrodynamic limit

The definition of 𝑟★(𝐷, 𝐽0) above is purely geometric and makes no direct reference to
the spectrum of 𝐾0 = −𝐷 + 𝐽0. It becomes physically relevant via the hydrodynamic
scaling of Section 3.
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Suppose that for small wavenumber 𝑘 the slow block of the generator has the form

𝐾slow(𝑘) = −𝐺𝑘 + 𝐽𝑘 ∼ −𝑘2𝐷 + 𝑘𝐽0,

where 𝐷 and 𝐽0 are fixed matrices as before. In the regime where the reversible sector
is infrared relevant, the eigenvectors of 𝐾slow(𝑘) tilt towards the eigenvectors of 𝐽0 as
𝑘 → 0, while the real parts of the eigenvalues are of order 𝑘2. A standard perturbative
analysis then shows that the smallest nonzero real part behaves as

𝜆hyp(𝑘) ∼ 𝑑min 𝑘
2,

where 𝑑min = min 𝑗 𝑑 𝑗 is exactly the minimal planewise average diffusion. The Fisher
gap on the slow block scales as

𝜆𝐹 (𝑘) ∼ 𝑑1𝑘
2.

Thus the modewise index satisfies

𝑟 (𝑘) =
𝜆hyp(𝑘)
𝜆𝐹 (𝑘)

→ 𝑑min
𝑑1

= 𝑟★(𝐷, 𝐽0) as 𝑘 → 0.

In particular, the constant value 𝑟 (2)★ found for the two field ring in (3.2) is precisely
the special case of 𝑟★(𝐷, 𝐽0) in dimension two, where there is a single symplectic
plane and 𝐷1 = 𝐷.

In higher dimensions the same invariant governs the infrared hypocoercive behaviour
of multi current hydrodynamics: different symplectic planes correspond to differ-
ent pairs of coupled currents, and the slowest decaying combination is the one
with the smallest average diffusion in the Fisher metric. The numerical scan in
05_rg_random_GJ_hypocoercivity_scan.py confirms that this invariant lies be-
tween 1 and 𝜅(𝐷) and that typical values cluster near 1 for moderate condition
numbers.

In the next section we turn to renormalisation and show that Fisher compatible coarse
grainings preserve this invariant on slow blocks, while non compatible ones do not.

5 Fisher compatible renormalisation maps

We now define a class of coarse grainings that respect the Fisher structure and the
entropy clock, and study their effect on slow blocks. In the translation invariant
setting these maps approximate spectral projections onto small wavenumbers and
hence preserve the infrared invariant 𝑟★(𝐷, 𝐽0).

5.1 Coarse graining in the Fisher metric

Let𝑉 be a finite dimensional real vector space with Fisher inner product ⟨𝑥, 𝑦⟩𝐴 = 𝑥⊤𝐴𝑦
for some SPD matrix 𝐴. A coarse graining is a linear map

𝑅 : 𝑉 → 𝑉 ′,
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where 𝑉 ′ is a lower dimensional real vector space. We say that 𝑅 is Fisher compatible
if its rows are orthonormal with respect to ⟨·, ·⟩𝐴, in the sense that

𝑅𝐴−1𝑅⊤ = 𝐴′−1

for some SPD matrix 𝐴′ on 𝑉 ′. Equivalently, 𝑅 is a partial isometry from (𝑉, ⟨·, ·⟩𝐴)
onto (𝑉 ′, ⟨·, ·⟩𝐴′). In particular, the adjoint 𝑅† with respect to the Fisher metrics is an
isometric embedding of 𝑉 ′ into 𝑉 .

Given a UIH generator 𝐾 = 𝐺 + 𝐽 on 𝑉 , with symmetric part 𝐺 and skew part 𝐽, we
define the raw coarse grained generator on 𝑉 ′ by

𝐾̃ ′ = 𝑅𝐾𝑅†.

The symmetric and skew parts of 𝐾̃ ′ with respect to the metric 𝐴′ are

𝐺̃′ = 𝑅𝐺𝑅†, 𝐽′ = 𝑅𝐽𝑅†,

so 𝐾̃ ′ = 𝐺̃′ + 𝐽′ is again a UIH generator on 𝑉 ′. The Fisher gap of 𝐺̃′ on the mean
zero subspace of 𝑉 ′ is in general different from that of 𝐺.

To enforce a common time unit we define the coarse grained Fisher gap

𝜆̃′𝐹 = min𝜎(−𝐺̃′ |𝑉 ′0 ),

where 𝑉 ′0 is the mean zero subspace in 𝑉 ′, and take the entropy clock renormalised
generator

𝐾 ′ =
𝜆𝐹

𝜆̃′
𝐹

𝐾̃ ′.

By construction the symmetric part 𝐺′ = (𝜆𝐹/𝜆̃′𝐹)𝐺̃′ has the same Fisher gap 𝜆𝐹 as
the original generator. The full renormalisation map is thus

R(𝐾) = 𝐾 ′ = 𝜆𝐹

𝜆̃′
𝐹

𝑅𝐾𝑅†.

It depends on the choice of coarse graining 𝑅 and on the initial Fisher gap 𝜆𝐹 , but not
on any arbitrary microscopic timescale.

We refer to maps of this form as Fisher compatible RG transformations. They preserve
the UIH structure and normalise the entropy clock at each step.

5.2 Exact slow blocks and invariant indices

In general R(𝐾) will mix slow and fast degrees of freedom. However there is a simple
case in which it reduces to an exact projection onto a slow block and preserves the
hypocoercive index.

Suppose that on the mean zero subspace 𝑉0 the generator 𝐾 = 𝐺 + 𝐽 respects a
decomposition

𝑉0 = 𝑉slow ⊕ 𝑉fast
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such that both 𝐺 and 𝐽 are block diagonal with respect to this splitting,

𝐺 =

(
𝐺slow 0

0 𝐺fast

)
, 𝐽 =

(
𝐽slow 0

0 𝐽fast

)
.

Assume that −𝐺slow > 0, −𝐺fast > 0 and that the Fisher gap of the full system is
realised on the slow block,

𝜆𝐹 = min𝜎(−𝐺slow) < min𝜎(−𝐺fast).

Let 𝑅 be the orthogonal projection in the Fisher metric from 𝑉0 onto 𝑉slow, viewed
as a map 𝑅 : 𝑉0 → 𝑉slow. This is Fisher compatible, and its adjoint 𝑅† is simply the
inclusion 𝑉slow ↩→ 𝑉0. The raw coarse grained generator is then

𝐾̃ ′ = 𝑅𝐾𝑅† = 𝐾slow = 𝐺slow + 𝐽slow.

Its Fisher gap is 𝜆̃′
𝐹
= 𝜆𝐹 , so the entropy clock rescaling factor is unity and

𝐾 ′ = 𝐾̃ ′ = 𝐾slow.

In other words, the Fisher compatible RG transformation projects exactly onto the
slow block and leaves its generator unchanged.

The hypocoercive rate of the full generator is

𝜆hyp = min
(
𝜆hyp(𝐾slow), 𝜆hyp(𝐾fast)

)
.

Under the assumption that the slow block controls the late time dynamics one has
𝜆hyp = 𝜆hyp(𝐾slow), and the index of the full system reduces to that of the slow block,

𝑟 =
𝜆hyp

𝜆𝐹
=
𝜆hyp(𝐾slow)

𝜆𝐹
.

Since R(𝐾) restricts to 𝐾slow on this block, the index is preserved by the RG transfor-
mation:

𝑟 ′ = 𝑟.

This exact block decomposition is a model for hydrodynamic situations in which slow
conserved currents decouple from fast modes at long times. In practice the splitting is
only approximate, but the example shows how an ideal Fisher compatible RG map can
preserve the slow hypocoercive index.

5.3 Coarse graining on the two field ring

On the two field ring the Fisher inner product is a graph Dirichlet form, and a natural
coarse graining halves the number of sites by block averaging adjacent cells. In real
space this is implemented by a linear map 𝑅block : 𝑉 → 𝑉 ′ that replaces each pair of
neighbouring sites by their mean and rescales by a factor 1/

√
2 so that its rows are

orthonormal with respect to ⟨·, ·⟩𝐹 . The adjoint 𝑅†block embeds coarse fields back into
the fine lattice as piecewise constant configurations.
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Starting from the generator 𝐾 on a ring of length 𝑁0, one can iterate the Fisher
compatible RG map

𝐾 (ℓ+1) = Rblock(𝐾 (ℓ ) )
for ℓ = 0, 1, . . ., with 𝐾 (0) = 𝐾, halving the number of sites at each step. At every
stage the entropy clock rescaling keeps the Fisher gap fixed, while the hypocoercive
rate and index of the slowest mode can be tracked.

The script 02_rg_rho_u_ring_block_vs_random.py implements this procedure
numerically. For a representative choice of parameters with 𝐷𝜌 ≠ 𝐷𝑢 and 𝑐 > 0, the
initial index is 𝑟 ≈ 3/2, as given by the analytic formula 𝑟 (2)★ . Under the block RG one
observes that:

(i) The Fisher gap 𝜆𝐹 stays fixed by construction.

(ii) The hypocoercive rate 𝜆hyp remains equal to its initial value within numerical
tolerance as long as the ring is sufficiently large for hydrodynamic modes to be well
resolved.

(iii) The index 𝑟 = 𝜆hyp/𝜆𝐹 remains close to its initial value across multiple RG steps,
with small deviations attributable to finite size effects and non normal corrections at
high wavenumber.

In contrast, if one replaces the block averaging coarse graining by a deliberately
bad projection with random orthonormal rows (still in the Fisher metric) that does
not respect locality or conservation laws, the behaviour changes qualitatively. The
corresponding script constructs such random maps 𝑅rand and applies Rrand iteratively.
One then finds that:

(i) The Fisher gap is still reset by the entropy clock, but the structure of the symmetric
part becomes increasingly scrambled.

(ii) The hypocoercive rate fluctuates significantly and does not settle to a stable value.

(iii) The index 𝑟 drifts away from its initial value and exhibits large sample to sample
variance.

These experiments underscore two points. First, the hydrodynamic ring has a well
defined slow hypocoercive index 𝑟 (2)★ that is preserved by coarse grainings which
respect locality and the Fisher metric. Second, coarse grainings that ignore the metric
and conserved quantities do not reveal such a universality class. The UIH structure
therefore singles out a natural family of RG maps whose fixed points are characterised
by Fisher symplectic invariants.

6 Nonlinear two field ring and the entropy clock

The analysis so far has been purely linear. We now promote the two field ring to a
weakly nonlinear system and show that the entropy clock index extracted from the
linearised generator continues to control the decay of small perturbations in a Fisher
norm.
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6.1 Weakly nonlinear hydrodynamic toy

We consider the nonlinear system

𝜕𝑡 𝜌𝑖 = 𝐷𝜌 (𝐿𝜌)𝑖 − 𝑐(𝐷𝑢)𝑖 − 𝛼 𝐷 (𝜌𝑢)𝑖 ,
𝜕𝑡𝑢𝑖 = 𝐷𝑢 (𝐿𝑢)𝑖 + 𝑐(𝐷𝜌)𝑖 − 𝛽 𝐷 (𝑢2/2)𝑖 ,

on the same periodic ring, with small nonlinear coefficients 𝛼, 𝛽. The advective
terms are written in conservative form so that total density and total velocity are still
conserved: ∑︁

𝑖

𝜕𝑡 𝜌𝑖 = 0,
∑︁
𝑖

𝜕𝑡𝑢𝑖 = 0.

The homogeneous state (𝜌𝑖 , 𝑢𝑖) = (𝜌0, 0) is an equilibrium of (6.1) to (6.1).

Writing 𝜌𝑖 = 𝜌0 + 𝛿𝜌𝑖 and 𝑢𝑖 = 𝛿𝑢𝑖 , and expanding the nonlinear terms, one finds

𝐷 (𝜌𝑢)𝑖 = 𝐷
(
(𝜌0 + 𝛿𝜌𝑖)𝛿𝑢𝑖

)
= 𝜌0𝐷 (𝛿𝑢)𝑖 + 𝐷 (𝛿𝜌 𝛿𝑢)𝑖 ,

and similarly for 𝐷 (𝑢2/2). By an appropriate choice of 𝛼 one may absorb the linear
term 𝜌0𝐷 (𝛿𝑢)𝑖 into the reversible coupling 𝑐 or remove it entirely; in any case the
genuinely nonlinear contributions are quadratic in the deviations 𝛿𝜌 and 𝛿𝑢. The
linearisation of (6.1) to (6.1) around (𝜌0, 0) therefore coincides with the linear ring
system (3.1) to (3.1), with the same generator 𝐾 = 𝐺 + 𝐽.
On the mean zero subspace the linearised symmetric part −𝐺 is positive definite in
the Fisher metric, with gap 𝜆𝐹 . The full linearised generator 𝐾 has hypocoercive rate
𝜆hyp and index 𝑟 (2)★ as before. The nonlinear terms can be written as a quadratic map
𝑁 (𝑥) on the deviation vector 𝑥 = (𝛿𝜌, 𝛿𝑢),

¤𝑥 = 𝐾𝑥 + 𝑁 (𝑥).

6.2 Semilinear stability of the entropy clock

Standard semilinear theory for parabolic type equations implies that under mild
regularity conditions the quadratic nonlinearity 𝑁 does not alter the leading decay
exponent for small perturbations. In the finite dimensional setting at hand, one can
argue as follows.

On the mean zero subspace the linear operator 𝐾 generates a strongly continuous
semigroup e𝑡𝐾 with exponential decay

∥e𝑡𝐾 ∥𝐹 ≤ 𝐶0e−𝜆hyp𝑡

for some 𝐶0, where ∥ · ∥𝐹 is the operator norm induced by the Fisher inner product.
The quadratic nonlinearity satisfies

∥𝑁 (𝑥)∥𝐹 ≤ 𝐶1∥𝑥∥2𝐹
for some constant 𝐶1 and all 𝑥 in a small ball around zero. The evolution equation can
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be written in mild form as

𝑥(𝑡) = e𝑡𝐾𝑥(0) +
∫ 𝑡

0
e(𝑡−𝑠)𝐾𝑁 (𝑥(𝑠)) d𝑠.

For sufficiently small initial data ∥𝑥(0)∥𝐹 ≤ 𝜀 with 𝜀 chosen so that 𝐶0𝐶1𝜀 < 𝜆hyp, a
Grönwall type estimate shows that 𝑥(𝑡) exists globally and satisfies

∥𝑥(𝑡)∥𝐹 ≤ 𝐶e−𝜆hyp𝑡

for some constant 𝐶 depending on 𝜀. More refined results show that 𝜆hyp is the
asymptotic decay rate for generic initial conditions in this regime: nonlinearities
may modify transients and amplitudes but leave the leading exponential exponent
unchanged.

In terms of the entropy clock 𝜏 = 𝜆𝐹 𝑡, the Fisher norm of small perturbations decays
as

∥𝑥(𝜏)∥𝐹 ∼ e−𝑟
(2)
★ 𝜏

for large 𝜏, with 𝑟 (2)★ given by (3.2) for the slowest hydrodynamic mode. The slow
modulated mode behaves as an eigenmode of the linearised 𝐾 even in the presence of
weak nonlinear advection.

6.3 Numerical verification on the ring

The script 03_rg_rho_u_ring_nonlinear_decay.py implements the nonlinear
system (6.1) to (6.1) on a ring of moderate size and tests these predictions. The
procedure is:

(i) Construct the linear generator 𝐾 = 𝐺 + 𝐽 and compute 𝜆𝐹 , 𝜆hyp and the theoretical
index 𝑟 (2)★ .

(ii) Find the slowest hypocoercive eigenmode 𝑣slow of 𝐾 on the mean zero subspace.

(iii) Initialise a small perturbation 𝑥(0) = 𝜀𝑣slow with 𝜀 sufficiently small, and integrate
the full nonlinear dynamics (6.1) to (6.1) with an explicit Runge-Kutta method up to a
final time 𝑇final.

(iv) At each time step compute the Fisher norm ∥𝑥(𝑡)∥𝐹 and perform a linear fit of
log ∥𝑥(𝑡)∥𝐹 versus 𝑡 over an intermediate window 𝑡 ∈ [0.2𝑇final, 0.8𝑇final] to extract an
empirical decay rate 𝜆fit.

For representative choices of parameters and small nonlinear couplings 𝛼, 𝛽, one
finds 𝜆fit/𝜆hyp ≈ 1 within numerical uncertainty, typically at the 10−3 level. Varying
the amplitude 𝜀 and the nonlinear coefficients shows a clear regime in which the
fitted exponent is insensitive to the strength of the nonlinearity and matches the linear
hypocoercive rate.

These experiments confirm that the entropy clock index computed from the linearised
UIH generator correctly captures the late time decay of small perturbations in the
nonlinear two field ring. The invariant 𝑟 (2)★ therefore has genuine dynamical significance
beyond the linear regime.
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7 GKLS examples and quantum universality

We now illustrate the same UIH renormalisation ideas in a microscopic open quantum
system. We first treat an explicit qubit GKLS model whose Bloch generator realises
a two dimensional 𝐾 = 𝐺 + 𝐽 block with 𝑟★ = 3/2. We then sketch a multi charge
qutrit model where the Fisher metric becomes the full Bogoliubov-Kubo-Mori (BKM)
geometry.

7.1 Qubit GKLS hypocoercivity in the Bloch picture

Consider a single qubit with density matrix 𝜌 and Pauli matrices 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 . We define
a GKLS generator with Hamiltonian and jump operators

𝐻 =
Ω

2
𝜎𝑧 , 𝐿𝑥 =

√
𝛾𝑥 𝜎𝑥 , 𝐿𝑦 =

√
𝛾𝑦 𝜎𝑦 ,

where Ω > 0 and 𝛾𝑥 , 𝛾𝑦 > 0. The master equation is

𝜕𝑡 𝜌 = L(𝜌) = −i[𝐻, 𝜌] +
∑︁

𝛼∈{𝑥,𝑦}

(
𝐿𝛼𝜌𝐿

†
𝛼 −

1
2
{𝐿†𝛼𝐿𝛼, 𝜌}

)
.

It is convenient to work in the Bloch representation

𝜌 =
1
2
(
I + 𝑟𝑥𝜎𝑥 + 𝑟𝑦𝜎𝑦 + 𝑟𝑧𝜎𝑧

)
,

with Bloch vector 𝑟 = (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧)⊤ ∈ R3. The GKLS generator induces a linear ODE

𝜕𝑡𝑟 = 𝑀𝑟 + 𝑏,

where 𝑀 is a real 3 × 3 matrix and 𝑏 ∈ R3 accounts for shifts in the fixed point. For
the present choice of 𝐻, 𝐿𝑥 and 𝐿𝑦 the stationary state is the maximally mixed state
𝜌★ = I/2, so 𝑏 = 0 and the origin 𝑟 = 0 is an equilibrium.

The matrix 𝑀 is given by

𝑀𝑖𝑘 =
1
2

Tr
(
𝜎𝑖 L(𝜎𝑘)

)
, 𝑖, 𝑘 ∈ {𝑥, 𝑦, 𝑧}.

A straightforward calculation shows that

𝑀 =
©­«
−𝛾𝑥 − 𝛾𝑦 −Ω 0

Ω −𝛾𝑥 − 𝛾𝑦 0
0 0 −2(𝛾𝑥 + 𝛾𝑦)

ª®¬ .
The 𝑧 component decouples and simply relaxes with rate 2(𝛾𝑥 + 𝛾𝑦). The interesting
dynamics takes place in the 𝑥-𝑦 plane. Restricting to the 2 × 2 block on (𝑟𝑥 , 𝑟𝑦) we
obtain

𝐾𝑥𝑦 =

(
−𝛾𝑥 − 𝛾𝑦 −Ω

Ω −𝛾𝑥 − 𝛾𝑦

)
.
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Decomposing into symmetric and skew parts in the Euclidean metric,

𝐺𝑥𝑦 =

(
−𝛾𝑥 − 𝛾𝑦 0

0 −𝛾𝑥 − 𝛾𝑦

)
, 𝐽𝑥𝑦 =

(
0 −Ω
Ω 0

)
,

we see that the Fisher metric on the 𝑥-𝑦 sector is proportional to the identity and that
the symmetric part is a scalar multiple of the identity. In this basis the Fisher operator
is 𝐴𝑥𝑦 = −𝐺𝑥𝑦 = (𝛾𝑥 + 𝛾𝑦)𝐼2 with gap 𝜆 (𝑥𝑦)

𝐹
= 𝛾𝑥 + 𝛾𝑦 .

The eigenvalues of 𝐾𝑥𝑦 are

𝜆± = −(𝛾𝑥 + 𝛾𝑦) ± iΩ,

so the hypocoercive rate on this block is

𝜆
(𝑥𝑦)
hyp = 𝛾𝑥 + 𝛾𝑦 .

Thus the block index is

𝑟𝑥𝑦 =
𝜆
(𝑥𝑦)
hyp

𝜆
(𝑥𝑦)
𝐹

= 1.

In this isotropic form the reversible sector does not accelerate decay relative to the
Fisher gap.

To realise a nontrivial hypocoercive index we anisotropically rescale the metric on
the 𝑥-𝑦 plane while keeping the generator 𝐾𝑥𝑦 fixed. Physically this corresponds to
measuring distances in Bloch space with a Fisher metric induced by a nontrivial steady
state or by different weights on the 𝑥 and 𝑦 components. Concretely, let

𝐴𝑥𝑦 =

(
𝑑𝑥 0
0 𝑑𝑦

)
, 0 < 𝑑𝑥 ≤ 𝑑𝑦 ,

and consider the generator 𝐾𝑥𝑦 as above, now viewed in the Fisher inner product
defined by 𝐴𝑥𝑦 . The symmetric part with respect to this metric is

𝐺𝑥𝑦 = −𝐴𝑥𝑦 =
(
−𝑑𝑥 0

0 −𝑑𝑦

)
,

and the skew part remains 𝐽𝑥𝑦 . The Fisher gap is 𝜆 (𝑥𝑦)
𝐹

= 𝑑𝑥 , while the hypocoercive
rate is the same as before, 𝜆 (𝑥𝑦)hyp = (𝑑𝑥 + 𝑑𝑦)/2, giving

𝑟𝑥𝑦 =
𝑑𝑥 + 𝑑𝑦

2𝑑𝑥
=

1
2

(
1 +

𝑑𝑦

𝑑𝑥

)
.

This is exactly the two field invariant 𝑟 (2)★ of (3.2), with 𝐷𝜌 = 𝑑𝑥 and 𝐷𝑢 = 𝑑𝑦 .

The script 04_rg_qubit_gkls_hypocoercivity.py implements this construction,
computing the Bloch generator 𝑀, extracting 𝐾𝑥𝑦 , and interpreting it as a UIH
generator in an anisotropic Fisher metric on the 𝑥-𝑦 plane. It then verifies numerically
that the decay of the Bloch vector in this metric is governed by 𝜆 (𝑥𝑦)hyp , and that the
ratio to the Fisher gap matches the predicted 𝑟𝑥𝑦 . With a choice such as 𝑑𝑦 = 2𝑑𝑥 one

21



obtains 𝑟𝑥𝑦 = 3/2, placing this simple qubit GKLS model in the same universality
class as the two field hydrodynamic ring.

7.2 Multi charge qutrit and BKM metric

To exhibit the genuinely quantum information geometry behind the UIH picture it is
useful to consider a system with multiple conserved charges and a nontrivial stationary
state. A minimal example is a three level system with commuting observables
𝐻,𝑄1, 𝑄2 diagonal in the computational basis and a generalised Gibbs state

𝜌★ ∝ exp(−𝛽𝐻 − 𝜇1𝑄1 − 𝜇2𝑄2).

A GKLS generator can be constructed with Hamiltonian part −i[𝐻, ·] and jump
operators 𝐿𝑖← 𝑗 =

√︁
Γ𝑖← 𝑗 |𝑖⟩⟨ 𝑗 | for all ordered pairs 𝑖 ≠ 𝑗 , with rates chosen to satisfy

detailed balance with respect to 𝜌★. The resulting Liouvillian L has 𝜌★ as a stationary
state.

At 𝜌★ the natural quantum Fisher metric on the space of Hermitian perturbations is
the BKM inner product

𝑔BKM(𝐴, 𝐵) =
∫ 1

0
Tr
(
𝜌𝑠★𝐴𝜌

1−𝑠
★ 𝐵

)
d𝑠 =

∑︁
𝑖, 𝑗

𝑐BKM(𝑝𝑖 , 𝑝 𝑗) 𝐴̃𝑖 𝑗 𝐵̃ 𝑗𝑖 ,

where 𝑝𝑖 are the eigenvalues of 𝜌★, 𝐴̃ and 𝐵̃ are the matrices of 𝐴 and 𝐵 in the
eigenbasis of 𝜌★ and

𝑐BKM(𝑥, 𝑦) =
log 𝑥 − log 𝑦

𝑥 − 𝑦
is the standard BKM coefficient.

Restricting 𝑔BKM to the subspace spanned by the centred charges 𝐻𝑐, 𝑄1𝑐, 𝑄2𝑐 yields
a 3 × 3 SPD matrix 𝐴slow that coincides with the classical Fisher information matrix
on the parameters (𝛽, 𝜇1, 𝜇2). The GKLS generator induces a linear flow on the
space of expectation values of these charges, whose tangent generator can be written
as 𝐾slow = 𝐺slow + 𝐽slow in the BKM metric. The symmetric part 𝐺slow encodes
irreversible relaxation of charge fluctuations, while the skew part 𝐽slow captures
reversible mixing among them.

The script 06_rg_multicharge_gkls_bkm_metric.py constructs this qutrit exam-
ple explicitly, assembling the Liouvillian as a 9×9 superoperator, computing the BKM
inner product, and extracting the Gram matrix on the centred charges. It confirms that
the resulting Fisher metric is exactly the BKM geometry and that the density sector
of the GKLS dynamics on these slow observables is a UIH generator of the form
𝐾slow = 𝐺slow + 𝐽slow.

Projecting further onto suitable slow combinations of the charges one recovers small
dimensional blocks with Fisher operator 𝐴 = −𝐺slow and skew part 𝐽slow, to which the
symplectic invariant 𝑟★(𝐴, 𝐽slow) applies. This provides a direct quantum realisation
of the Fisher symplectic hypocoercive universality classes.
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8 Random metriplectic ensembles

The explicit models above show how the Fisher symplectic invariant 𝑟★(𝐴, 𝐽) appears in
hydrodynamic limits and in small GKLS blocks. To assess how typical these structures
are, it is natural to study random ensembles of finite dimensional metriplectic pairs
(𝐺, 𝐽) with a fixed Fisher operator 𝐴 = −𝐺 and a random skew part 𝐽. The script
05_rg_random_GJ_hypocoercivity_scan.py performs this task.

8.1 Ensemble definition

Fix a dimension 𝑑 ≥ 2 and a target condition number 𝜅max ≥ 1. We construct a random
symmetric positive definite Fisher operator 𝐴 as follows. First draw an orthogonal
matrix 𝑄 from the Haar measure on O(𝑑). Then draw diagonal entries {𝑎𝑖}𝑑𝑖=1 for a
positive diagonal matrix Λ by sampling log 𝑎𝑖 uniformly in [log 1, log 𝜅max]. Rescale
so that min𝑖 𝑎𝑖 = 1. Finally set

𝐴 = 𝑄Λ𝑄⊤.

The eigenvalues of 𝐴 then lie in [1, 𝜅max], with condition number 𝜅(𝐴) ≤ 𝜅max.

Given 𝐴, we define the symmetric part of the generator as

𝐺 = −𝐴.

To construct a random skew part 𝐽 we draw a real matrix 𝑅 whose entries are
independent standard normal variables and antisymmetrise,

𝐽 =
1
2
(𝑅 − 𝑅⊤).

Optionally one may rescale 𝐽 by a factor 𝐽scale to control the strength of the reversible
sector relative to the dissipative one, but the basic inequalities we are interested in are
insensitive to this choice in the regime 𝐽scale ∼ 1.

The full generator is then
𝐾 = 𝐺 + 𝐽 = −𝐴 + 𝐽.

By construction 𝐺 is self adjoint and negative definite in the Fisher metric defined by
𝐴, and 𝐽 is skew. The Fisher gap is

𝜆𝐹 = min𝜎(𝐴) = 1,

and the condition number is 𝜅(𝐴) = max𝜎(𝐴). The hypocoercive rate 𝜆hyp is
computed as the smallest positive value of −Re𝜆 among the eigenvalues of 𝐾. The
hypocoercive index is then

𝑟 =
𝜆hyp

𝜆𝐹
= 𝜆hyp.

Each draw of (𝐴, 𝐽) yields a single value of 𝑟 and a value of 𝜅(𝐴).

23



8.2 Numerical inequalities and typical behaviour

For each pair (𝑑, 𝜅max) the script generates a large number of independent samples,
computes 𝜆hyp, 𝜅(𝐴) and 𝑟, and stores them in an npz file. The main quantities of
interest are:

• the fraction of samples violating the inequalities 𝑟 ≥ 1 or 𝑟 ≤ 𝜅(𝐴);
• the empirical distribution of 𝑟 for fixed 𝜅(𝐴) and 𝑑;
• the dependence of the typical value of 𝑟 on 𝑑 and 𝜅max.

Across ensembles with dimensions 𝑑 between two and eight and condition numbers
up to 𝜅max ≈ 103, large scans show no violations of the bounds

1 ≤ 𝑟 ≤ 𝜅(𝐴).

This is consistent with the geometric picture of Section 4: the invariant 𝑟★(𝐴, 𝐽) on
a slow block is a planewise average of eigenvalues of 𝐴, hence must lie between the
smallest and largest eigenvalues.

Moreover, for moderate condition numbers the distribution of 𝑟 is sharply peaked
near 1. If 𝜅(𝐴) is of order unity, most symplectic planes 𝐸 𝑗 intersect the coldest
eigendirections of 𝐴 in a fairly isotropic fashion, and the average 𝑑 𝑗 is close to 𝑑1.
Only when 𝜅(𝐴) is large and the eigenvalues of 𝐴 are very anisotropic do values of 𝑟
substantially greater than one appear, and even then most samples satisfy 𝑟 ≪ 𝜅(𝐴).
From the UIH perspective this suggests that pure Fisher behaviour with 𝑟 ≈ 1 is
structurally stable and generic for random metriplectic pairs, while large hypocoercive
speedups require specific alignments between the Fisher eigenstructure and the
symplectic planes of 𝐽. The explicit two field and GKLS examples constructed
earlier are therefore not extreme outliers, but representative of a controlled way to
realise intermediate values of 𝑟★ through anisotropic diffusion coefficients and simple
reversible couplings.

9 Discussion and outlook

The main message of this paper is that once an information metric and an entropy clock
are fixed, hypocoercive renormalisation acquires a simple geometric structure. The
UIH framework singles out a universal form for generators, 𝐾 = 𝐺 + 𝐽, in which the
symmetric part is a Fisher gradient flow and the skew part is a reversible circulation.
On mean zero subspaces the Fisher gap 𝜆𝐹 defines a canonical timescale and the
hypocoercive rate 𝜆hyp measures how much faster the full dynamics relaxes in the
entropy geometry.

A single dimensionless number,

𝑟 =
𝜆hyp

𝜆𝐹
,

then compares the true irreversible rate to the bare diffusion scale. In simple
hydrodynamic settings with two coupled fields this index is explicitly computable and
independent of wavenumber, giving a first hint of universality. The Fisher symplectic
analysis shows that in general slow blocks decompose into two dimensional planes
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on which the reversible sector acts as a rotation, and that the relevant invariant is the
minimal average diffusion on such a plane. The bounds

1 ≤ 𝑟★(𝐷, 𝐽0) ≤ 𝜅(𝐷)

follow directly from this geometric picture.

Once this structure is in place, a natural class of renormalisation maps emerges.
Fisher compatible coarse grainings act as partial isometries in the information metric,
and entropy clock rescaling keeps the Fisher gap fixed at each step. On ideal slow
blocks this reduces to an exact spectral projection that leaves the hypocoercive index
unchanged. In translation invariant hydrodynamics it approximates a projection onto
small wavenumbers, preserving the infrared invariant 𝑟★(𝐷, 𝐽0). Coarse grainings
that ignore the Fisher metric or locality, by contrast, do not respect this structure and
generically destroy any simple notion of universality.

The nonlinear two field ring confirms that the index derived from the linearised
generator remains dynamically meaningful beyond the linear regime: in the entropy
clock, small perturbations around the homogeneous state decay at the predicted rate,
with nonlinear advection modifying the shape of the transient but not the leading
exponent. The explicit qubit GKLS model shows that the same universality class can
be realised in a microscopic quantum system, while the qutrit multi charge example
anchors the Fisher operator 𝐴 in the standard BKM geometry of quantum information
theory. The random ensemble scans demonstrate that the inequalities 1 ≤ 𝑟 ≤ 𝜅(𝐴)
are not curiosities of special models but generic features of metriplectic pairs, and that
values 𝑟 ≈ 1 are typical when the Fisher metric is not highly anisotropic.

Placed alongside our previous work, these results suggest the following picture. The
reversible part of UIH shows that a Fisher metric and a canonical Poisson structure
single out Schrödinger dynamics as the unique reversible hydrodynamics. The entropy
geometry and gravity work shows that the same metric data organise irreversible
gradient flows and scalar Fisher gravity, with cost-entropy inequalities and curvature
coercivity. The irreversible density paper identifies a common Fisher-Dirichlet
operator underlying Markov, Fokker-Planck and GKLS density sectors and proves a
finite dimensional hypocoercivity theorem for generators 𝐾 = 𝐺 + 𝐽.
The present paper adds renormalisation to this structure. It shows that when one coarse
grains in a Fisher compatible way and measures time in the entropy clock, irreversible
flows fall into simple universality classes labelled by Fisher symplectic invariants 𝑟★.
One current blocks always flow to the pure Fisher class 𝑟★ = 1, while multi current
blocks flow to fixed points determined by the geometry of 𝐽 in the Fisher metric. The
simplest nontrivial class, with 𝑟★ = 3/2, already appears in the two field ring and in a
single qubit GKLS model.

There are several directions for future work.

First, on the classical side, it would be natural to extend the renormalisation analysis to
more realistic hydrodynamic systems, such as coupled density and momentum fields
in higher dimensions, and to explore whether Fisher compatible RG maps can be
formulated for lattice discretisations of Navier-Stokes type equations. The role of non
normal effects and the approach of 𝑟 (𝑘) to 𝑟★ at small but finite wavenumber deserve
a more systematic study.

Second, on the quantum side, one can consider spatially extended GKLS chains with
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local couplings and investigate whether Fisher compatible coarse grainings on the
lattice of sites lead to RG flows of the kind described here, possibly in combination
with Kähler-type RG flows on the state space as in the reversible UIH work. The
interaction between block spin style coarse graining and information geometric flows
could provide a bridge between UIH and more traditional real space RG methods in
condensed matter.

Third, on the gravitational side, the scalar Fisher gravity sector already identified in
the entropy geometry paper suggests that Fisher metrics on density fields can source
effective gravitational potentials. It is natural to ask whether the hypocoercive indices
𝑟★ and entropy clocks introduced here have analogues in the dynamics of such Fisher
halos, for example as renormalised relaxation rates or effective temperatures in coarse
grained gravitational systems.

Finally, from a more abstract standpoint, the Fisher symplectic invariant 𝑟★ may have
implications for the design and analysis of numerical schemes and model reductions
in open quantum and stochastic systems. Knowing that a reduced model preserves the
correct entropy clock and hypocoercive index could serve as a practical criterion for
evaluating the quality of coarse grained descriptions.

The code archive in Appendix 10 provides a compact, reproducible set of numerical
experiments that support the claims made here. Together with the other components
of the UIH programme, it invites a view of irreversible dynamics in which information
geometry, reversible circulation and renormalisation are facets of a single operator
framework.

9.1 Finite dimensional entropic RG testbed

To complement the continuum constructions in this paper, Appendix 11 develops a
finite dimensional Fisher manifold model of entropic RG and tests the UIH picture
numerically. There we fix a Fisher operator 𝐴, construct random UIH generators
𝐾 = 𝐺 + 𝐽 with prescribed Fisher spectra, and implement the Fisher compatible
RG map that projects onto slow Fisher eigenspaces. Three numerical scans show
that non UIH perturbations contract in Frobenius norm under this RG, and that the
hypocoercive index 𝑟 = 𝜆hyp/𝜆𝐹 behaves as an RG C function for the composite UV
to IR flow, with 𝑟 driven to the pure Fisher value 𝑟 = 1 in the single current class. This
finite dimensional testbed provides a simple, reproducible proxy for the blockwise RG
flow of Markov, Fokker–Planck and GKLS generators studied in the main text, and
supports the interpretation of UIH as an entropic RG attractor class.

10 Code archive

The numerical renormalisation experiments in the main text are supported by a small
Python suite. This appendix summarises their roles and input-output structure.

Available via github: https://github.com/feuras/uih_grav/

and

Zenodo: https://zenodo.org/records/17701239 - DOI: 10.5281/zenodo.17701238
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01_rg_rho_u_ring_linear_modes.py Linear two-field ring dispersion and
hypocoercivity index. The script constructs the discrete Laplacian 𝐿 and central
derivative 𝐷 on a periodic ring of 𝑁 sites for a coupled density-velocity system
(𝜌, 𝑢) with diffusivities 𝐷𝜌, 𝐷𝑢 > 0 and reversible coupling 𝑐 > 0. In Fourier
space each wavenumber 𝑘 yields a 2 × 2 block 𝐾𝑘 = 𝐺𝑘 + 𝐽𝑘 , from which the
script computes the Fisher gap 𝜆𝐹 (𝑘) from the symmetric part −𝐺𝑘 , the hypoco-
ercive rate 𝜆hyp(𝑘) from the spectrum of 𝐾𝑘 , and the entropy-clock index 𝑟 (𝑘) =
𝜆hyp(𝑘)/𝜆𝐹 (𝑘). The output 01_rg_rho_u_ring_linear_modes_output.npz
contains the mode labels, 𝜆𝐹 (𝑘), 𝜆hyp(𝑘) and 𝑟 (𝑘) together with the theoretical
prediction 𝑟★(𝑘 → 0) = (𝐷𝜌 + 𝐷𝑢)/(2 min(𝐷𝜌, 𝐷𝑢)). Its role is to give a clean,
exactly solvable benchmark of the two-field universality class and to calibrate the
theoretical entropy-clock index against explicit spectra.

02_rg_rho_u_ring_block_vs_random.py Good versus bad coarse-graining on
the linear ring. Starting from the same linear (𝜌, 𝑢) generator on a ring of length 𝑁0,
this script compares a UIH-compatible block RG with a deliberately “bad” random
decimation. At each RG step it halves the number of sites, constructs the coarse-
grained generator 𝐾 ′ = 𝐺′ + 𝐽′ by either block-averaging (good RG) or random
projection (bad RG), and rescales time so that the Fisher gap of the good scheme re-
mains fixed. For both flows it tracks the Fisher gap𝜆𝐹 , the hypocoercive rate𝜆hyp and
the index 𝑟. The output 02_rg_rho_u_ring_block_vs_random_output.npz
records the sequence of lattice sizes, gaps and indices. Numerically one finds that
good RG preserves 𝜆𝐹 and the target index 𝑟 ≈ 3/2 across scales, whereas bad RG
drives 𝜆hyp and 𝑟 away from their microscopic values. This provides a minimal
demonstration that UIH-style coarse-graining singles out a stable entropy-clock
universality class.

03_rg_rho_u_ring_nonlinear_decay.py Nonlinear two-field ring and slow-
mode entropy clock. This flagship script promotes the linear (𝜌, 𝑢) ring to a
weakly nonlinear PDE system

𝜕𝑡 𝜌 = 𝐷𝜌𝐿𝜌 − 𝑐𝐷𝑢 − 𝛼𝐷 (𝜌𝑢), 𝜕𝑡𝑢 = 𝐷𝑢𝐿𝑢 − 𝑐𝐷𝜌 − 𝛽𝐷 (𝑢2/2),

on a periodic lattice, with small nonlinear couplings 𝛼, 𝛽. It first builds the
linear generator 𝐾 = 𝐺 + 𝐽, computes 𝜆𝐹 , 𝜆hyp and the theoretical index 𝑟★ =

(𝐷𝜌 + 𝐷𝑢)/(2 min(𝐷𝜌, 𝐷𝑢)), and extracts the slow hypocoercive eigenmode 𝑣slow
of 𝐾 . The initial condition is chosen as a tiny perturbation along 𝑣slow around the
homogeneous state (𝜌, 𝑢) = (𝜌0, 0). The script then integrates the full nonlinear
dynamics with an explicit RK4 scheme up to time 𝑇final, sampling a Fisher-type
norm

∥𝑥∥2𝐹 = 𝐷𝜌 𝛿𝜌
⊤(−𝐿) 𝛿𝜌 + 𝐷𝑢 𝛿𝑢⊤(−𝐿) 𝛿𝑢,

with mean-subtracted fields 𝛿𝜌, 𝛿𝑢. A log-linear fit of log ∥𝑥(𝑡)∥𝐹 over the
window [0.2𝑇final, 0.8𝑇final] yields an empirical decay rate 𝜆fit. The output
03_rg_rho_u_ring_nonlinear_decay_output.npz stores parameters, time
series, 𝜆𝐹 , 𝜆hyp, the theoretical index 𝑟★ and 𝜆fit. For the default near-linear regime
one finds 𝜆fit/𝜆hyp ≈ 1 at the 10−3 level, showing that the linear entropy-clock rate
survives weak nonlinear advection when initialised in the slow hypocoercive mode.

04_rg_qubit_gkls_hypocoercivity.py Qubit GKLS hypocoercivity in the
Bloch picture. This script builds an explicit single-qubit GKLS generator with
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Hamiltonian and noise

𝐻 =
Ω

2
𝜎𝑧 , 𝐿𝑥 =

√
𝛾𝑥 𝜎𝑥 , 𝐿𝑦 =

√
𝛾𝑦 𝜎𝑦 .

It constructs the Bloch generator 𝑀 via 𝑀𝑖𝑘 = 1
2 Tr(𝜎𝑖 L(𝜎𝑘)) for 𝑖, 𝑘 ∈ {𝑥, 𝑦, 𝑧},

extracts the 2 × 2 𝑥-𝑦 block 𝐾𝑥𝑦 , and decomposes 𝐾𝑥𝑦 = 𝐺𝑥𝑦 + 𝐽𝑥𝑦 into sym-
metric and skew parts. From 𝐺𝑥𝑦 it computes the Fisher gap 𝜆𝐹 as the smallest
eigenvalue of −𝐺𝑥𝑦; from the spectrum of 𝐾𝑥𝑦 it extracts the slow eigenvalue
𝜆slow and defines 𝜆hyp = −Re𝜆slow. The script then identifies the diagonal
entries of −𝐺𝑥𝑦 as effective diffusivities 𝐷𝑥 , 𝐷𝑦 , forms the theoretical index
𝑟★ = (𝐷𝑥 + 𝐷𝑦)/(2 min(𝐷𝑥 , 𝐷𝑦)), and compares it to 𝑟 = 𝜆hyp/𝜆𝐹 . Finally, it
integrates the Bloch dynamics in the 𝑥-𝑦 plane from an initial condition aligned
with the slow eigenvector, tracks ∥𝑟𝑥𝑦 (𝑡)∥, and fits a decay rate 𝜆fit. The out-
put 04_rg_qubit_gkls_hypocoercivity_output.npz contains 𝑀 , 𝐾𝑥𝑦 ,𝐺𝑥𝑦 ,
𝐽𝑥𝑦 , the spectral data and the time series. For the default parameters one finds
𝑟 = 𝑟★ = 3/2 exactly and 𝜆fit/𝜆hyp ≈ 0.999, placing this microscopic open quantum
system cleanly in the same universality class as the two-field ring.

05_rg_random_GJ_hypocoercivity_scan.py Random finite-dimensional 𝐾 =

𝐺+𝐽 universality scan. This script samples an ensemble of real 𝑑×𝑑 generators𝐾 =

𝐺+𝐽 with: (i) a symmetric negative definite part𝐺 constructed by drawing a random
orthogonal matrix 𝑄 and a diagonal spectrum {𝑑𝑖} for −𝐺 = 𝑄 diag(𝑑𝑖)𝑄⊤, with
𝑑𝑖 log-uniform in [1, 𝜅max] and rescaled so min 𝑑𝑖 = 1; and (ii) a skew part 𝐽 drawn
as a Gaussian random matrix antisymmetrised and scaled by a factor 𝐽scale. For each
sample the script computes the Fisher gap 𝜆𝐹 and condition number 𝜅 = 𝜆max/𝜆𝐹 of
−𝐺, the hypocoercive rate 𝜆hyp from the spectrum of 𝐾 , and the index 𝑟 = 𝜆hyp/𝜆𝐹 .
The output 05_rg_random_GJ_hypocoercivity_scan_output.npz stores 𝜆𝐹 ,
𝜆max, 𝜅, 𝜆hyp and 𝑟 across the ensemble, together with simple counts of samples
violating the inequalities 𝑟 ≥ 1 or 𝑟 ≤ 𝜅. Large runs (e.g. 𝑑 = 6, 2.5× 105 samples)
show numerically that 1 ≤ 𝑟 ≪ 𝜅 is a robust feature of generic metriplectic pairs,
not an artefact of special low-dimensional models.

06_rg_multicharge_gkls_bkm_metric.py Multi-charge qutrit GKLS with ex-
plicit BKM metric. This script constructs a three-level system with commuting
“charges” 𝐻,𝑄1, 𝑄2 diagonal in the computational basis, and a generalised Gibbs
state 𝜌★ ∝ exp(−𝛽𝐻 − 𝜇1𝑄1 − 𝜇2𝑄2). It then builds a GKLS generator with
Hamiltonian part −𝑖[𝐻, ·] and jump operators 𝐿𝑖← 𝑗 =

√︁
Γ𝑖← 𝑗 |𝑖⟩⟨ 𝑗 | for all ordered

pairs 𝑖 ≠ 𝑗 , with rates Γ𝑖← 𝑗 chosen to satisfy detailed balance with respect to
𝜌★. The resulting Liouvillian 𝐿 is assembled as a 9 × 9 superoperator, and the
script verifies stationarity by computing ∥𝐿 (𝜌★)∥𝐹 . It then implements the full
Bogoliubov-Kubo-Mori inner product at 𝜌★,

𝑔BKM(𝐴, 𝐵) =
∑︁
𝑖, 𝑗

𝑐BKM(𝑝𝑖 , 𝑝 𝑗) 𝐴̃𝑖 𝑗 𝐵̃ 𝑗𝑖 , 𝑐BKM(𝑥, 𝑦) =
log 𝑥 − log 𝑦

𝑥 − 𝑦 ,

for centred Hermitian directions 𝐴, 𝐵, where 𝑝𝑖 are the eigenvalues of 𝜌★ and 𝐴̃
is 𝐴 in the eigenbasis of 𝜌★. The script computes the BKM Gram matrix on the
centred charges (𝐻𝑐, 𝑄1𝑐, 𝑄2𝑐), compares it to the classical covariance matrix on
the diagonal distributions (the Fisher matrix in parameter space), and extends the
Gram matrix to a small Hermitian basis including off-diagonal operators 𝑋01, 𝑌01.
The output 06_rg_multicharge_gkls_bkm_metric_output.npz contains 𝜌★,
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the superoperator, and the BKM matrices. This provides a compact, fully explicit
example of a multi-charge GKLS model with a genuine quantum BKM metric,
making the link between the UIH 𝐺-sector and the standard Kubo-Mori geometry
concrete.

07_uih_rg_rIndex_pilot_scan.py Pilot finite-dimensional UIH hypocoercive
index scan. This script implements a first “toy” entropic RG on UIH generators
𝐾 = 𝐺 + 𝐽 to test the behaviour of the index 𝑟 = 𝜆hyp/𝜆𝐹 under Fisher-compatible
coarse graining. A Fisher operator 𝐴 = −𝐺 is sampled in dimension 𝑑0 by drawing
a random orthogonal matrix 𝑄 and log-uniform eigenvalues {𝜆𝑖} ∈ [1, 𝜅max],
rescaled so that min𝜆𝑖 = 1. A random antisymmetric 𝐽 is drawn from a Gaussian
matrix antisymmetrised and scaled by a factor j_scale, and the UIH generator is
set to 𝐾 = 𝐺 + 𝐽. The script then defines an “entropic RG” step by diagonalising
𝐴, projecting onto the slowest eigenvectors via a matrix 𝑃, and forming the coarse-
grained triple 𝐴′ = 𝑃⊤𝐴𝑃, 𝐺′ = 𝑃⊤𝐺𝑃, 𝐽′ = 𝑃⊤𝐽𝑃. For each sampled K, it
performs a short RG ladder (e.g. 12 → 8 → 4), computes the Fisher gap 𝜆𝐹 ,
the hypocoercive rate 𝜆hyp, and the index 𝑟 at each scale, and prints summary
statistics (min, max, mean) and monotonicity counts 𝑟𝑘+1 > 𝑟𝑘 , 𝑟𝑘+1 < 𝑟𝑘 across
the ensemble. This provides a first numerical confirmation that in a generic UIH
ensemble 𝑟 tends to decrease under Fisher-compatible coarse graining and is driven
towards the pure Fisher value 𝑟 = 1.

08_uih_rIndex_multiscale_Cfunction_scan.py.py Multiscale UIH RG C-
function scan for the hypocoercive index. This script extends the pilot scan to
a large-scale, multi-level entropic RG flow, treating 𝑟 = 𝜆hyp/𝜆𝐹 as a candidate
RG C-function. As in the previous script, a random Fisher operator 𝐴 = −𝐺
with log-uniform spectrum in [1, 𝜅max] and a random antisymmetric 𝐽 (scaled by
j_scale) define a UIH generator 𝐾 = 𝐺 + 𝐽 in dimension 𝑑0. The script then
applies a Fisher-compatible RG ladder through a long dimension chain, for example

32→ 28→ 24→ 22→ 20→ 18→ 16→ 14→ 12→ 10→ 8→ 6→ 4→ 2→ 1,

at each step diagonalising 𝐴, projecting onto the slowest eigenmodes and propagating
𝐺 and 𝐽 accordingly. For each sample and each RG level it computes 𝜆𝐹 , 𝜆hyp and
𝑟 , and aggregates over a large ensemble (e.g. 105 samples) using a multiprocessing
pool (up to 22 workers). The output consists of printed statistics for 𝑟 at each scale
(min, max, mean), stepwise monotonicity counts 𝑟𝑘+1 ≷ 𝑟𝑘 , UV–IR comparisons
𝑟IR ≷ 𝑟0, and a correlation coefficient corr(𝑟0, 𝑟IR − 𝑟0). Large runs show that
while 𝑟 can fluctuate at individual steps, the full UV→IR flow strictly drives every
sample to 𝑟IR = 1, with corr(𝑟0, 𝑟IR − 𝑟0) ≈ −1, providing strong evidence that 𝑟
behaves as a genuine RG C-function on the UIH manifold under entropic RG.

09_uih_tg_attractor_error_contraction_scan.py.py UIH-attractor error
contraction scan under Fisher RG. This script tests the “UIH as RG attractor”
picture by explicitly adding a non-UIH perturbation and tracking how it contracts
under entropic RG. For each trial it samples a UIH pair (𝐴, 𝐺, 𝐽) in dimension 𝑑0
as before, constructs the base generator 𝐾 = 𝐺 + 𝐽, and then draws a full Gaussian
matrix 𝑋 which is rescaled to define an “error” 𝐸0 with ∥𝐸0∥𝐹 = e_scale ∥𝐾 ∥𝐹
(typically e_scale = 0.5). The perturbed generator is 𝐿0 = 𝐾 + 𝐸0. The script
then applies the same Fisher-compatible RG ladder to (𝐴, 𝐺, 𝐽, 𝐸), projecting
all four objects via 𝑃⊤(·)𝑃 at each step. It computes two diagnostics at every
RG level: the absolute error contraction ∥𝐸𝑘 ∥𝐹/∥𝐸0∥𝐹 , and the relative error
∥𝐸𝑘 ∥𝐹/∥𝐾𝑘 ∥𝐹 compared to the UIH part. Over a large ensemble (e.g. 105 samples,
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22 workers) it prints summary statistics (min, max, mean) for both quantities at
each dimension and monotonicity counts for ∥𝐸𝑘 ∥𝐹/∥𝐸0∥𝐹 across RG steps. The
results show strict stepwise contraction of the absolute error norm (no samples with
∥𝐸𝑘+1∥𝐹 > ∥𝐸𝑘 ∥𝐹) and an overall decay of ∥𝐸𝑘 ∥𝐹 proportional to dim𝑘/dim0,
together with bounded relative error that typically peaks at intermediate scales
and shrinks again in the deep IR. This provides direct numerical evidence that
Fisher-compatible RG is a contraction onto the UIH manifold, making the “UIH as
entropic RG attractor” statement precise in finite dimension.

11 Finite dimensional entropic RG and UIH attractors

This appendix records a finite dimensional model of the entropic renormalisation
group (RG) used in the main text, together with three numerical scans that support the
claim that Universal Information Hydrodynamics (UIH) is an RG attractor class. The
aim is to make precise, in the simplest setting, the following two statements.

1. For a fixed Fisher metric and entropy, entropic RG contracts any thermodynamically
sane generator onto the UIH manifold of generators of the form 𝐾 = 𝐺 + 𝐽, with 𝐺
the Fisher gradient operator and 𝐽 metric skew.

2. Within that manifold, the hypocoercive index 𝑟 = 𝜆hyp/𝜆𝐹 behaves as an RG
monotone for the composite UV to IR flow, and in the single current class flows to
the pure Fisher value 𝑟 = 1.

The model and the simulations described here are implemented
in the code archive scripts 07_uih_rg_rIndex_pilot_scan.py,
08_uih_rIndex_multiscale_Cfunction_scan.py.py and09_uih_tg_attractor_error_contraction_scan.py.py.

11.1 Finite dimensional Fisher manifold and UIH generators

Fix a real vector space 𝑉 � R𝑛 equipped with a Fisher inner product

⟨𝑥, 𝑦⟩𝑀 = 𝑥⊤𝑀𝑦, 𝑀 positive definite.

For any linear operator 𝐿 : 𝑉 → 𝑉 define its metric adjoint

𝐿♯ := 𝑀−1𝐿⊤𝑀,

and its symmetric and antisymmetric parts

𝑆𝐿 := 1
2 (𝐿 + 𝐿

♯), 𝐴𝐿 := 1
2 (𝐿 − 𝐿

♯).

In the main text the Fisher gradient sector is encoded by a symmetric generator 𝐺
whose Dirichlet form reproduces the Fisher quadratic form for the entropy and free
energy. In the finite dimensional model we write

𝐴 := −𝐺,
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and choose an 𝑀 orthonormal basis that diagonalises 𝐴,

𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 , 0 < 𝜆1 ≤ · · · ≤ 𝜆𝑛,

so that 𝑀 = 𝐼 and 𝐴 = diag(𝜆1, . . . , 𝜆𝑛) in this basis.

A finite dimensional UIH generator is then taken to be

𝐾 = 𝐺 + 𝐽, 𝐺 = −𝐴 = 𝐺⊤, 𝐽 = −𝐽⊤,

exactly as in the 𝐾 paper, where 𝐺 encodes the Fisher gradient flow and 𝐽 encodes
metric compatible circulation.

The Fisher gap is
𝜆𝐹 (𝐾) := 𝜆1,

the smallest eigenvalue of 𝐴 on the mean zero subspace. The hypocoercive decay rate
of 𝐾 is defined as

𝜆hyp(𝐾) := min
{
−Re(𝜇) : 𝜇 eigenvalue of 𝐾, Re(𝜇) < 0

}
,

and the hypocoercive index is

𝑟 (𝐾) :=
𝜆hyp(𝐾)
𝜆𝐹 (𝐾)

.

In the random ensemble used in the scans, 𝐴 is constructed as

𝐴 = 𝑄 diag(𝜆1, . . . , 𝜆𝑛)𝑄⊤,

with 𝑄 Haar distributed and the 𝜆𝑖 drawn log uniformly in [1, 𝜅max] then rescaled so
that 𝜆1 = 1. The antisymmetric part 𝐽 is drawn as

𝑋 ∼ N(0, 1)𝑛×𝑛, 𝐽 = 𝛼𝐽 (𝑋 − 𝑋⊤),

with a fixed scale 𝛼𝐽 = j_scale. This is the finite dimensional avatar of a generic
metriplectic UIH generator with a given Fisher sector and a thermally sane skew part.

11.2 Entropic RG as Fisher compatible projection

The entropic RG map used in the numerical experiments is defined purely in terms of
the Fisher operator 𝐴. For a given target slow dimension 𝑘 < 𝑛 one first diagonalises
𝐴,

𝐴 = 𝑉 diag(𝜆1, . . . , 𝜆𝑛)𝑉⊤, 𝑉 ∈ O(𝑛),
then selects the eigenvectors corresponding to the 𝑘 smallest eigenvalues. Writing 𝑃
for the 𝑛 × 𝑘 matrix whose columns are those eigenvectors, the Fisher compatible RG
step is

𝐴′ = 𝑃⊤𝐴𝑃, 𝐺′ = 𝑃⊤𝐺𝑃, 𝐽′ = 𝑃⊤𝐽𝑃, 𝐾 ′ = 𝐺′ + 𝐽′.
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By construction 𝐴′ is the Fisher operator on the coarse grained slow space and
𝐺′ = −𝐴′. The skew part 𝐽′ remains antisymmetric with respect to the induced metric.
Thus if 𝐾 is UIH then 𝐾 ′ is again UIH on the slow block.

A multi step RG ladder is defined by a decreasing sequence of dimensions

𝑛0 > 𝑛1 > · · · > 𝑛𝐿 ,

with 𝑛0 the UV dimension and 𝑛𝐿 the IR target. Starting from an initial UIH generator
𝐾0 with Fisher operator 𝐴0, one constructs 𝐾1 on dimension 𝑛1 by projecting with the
slow eigenspace of 𝐴0 as above, then repeats the process at each scale, diagonalising
the current Fisher operator 𝐴𝑘 and projecting to dimension 𝑛𝑘+1. The scans in this
appendix use ladders of the form

12→ 8→ 4,

for the pilot test, and

32→ 28→ 24→ 22→ 20→ 18→ 16→ 14→ 12→ 10→ 8→ 6→ 4→ 2→ 1,

for the multiscale runs.

In the full continuous RG story one also rescales time at each step so that the Fisher gap
is kept fixed along the flow. Since this multiplies 𝜆𝐹 and 𝜆hyp by the same factor, the
index 𝑟 is invariant under such rescalings and they are omitted in the finite dimensional
scans.

11.3 Analytic baseline: contraction towards the UIH manifold

Although the numerical scans involve random ensembles, the basic contraction
mechanism of entropic RG can be seen directly at the level of linear algebra.

LetMUIH denote the set of UIH generators with a fixed Fisher operator 𝐴 and metric
skew condition. Any generator 𝐿 acting on 𝑉 can be decomposed as

𝐿 = 𝐾 + 𝐸, 𝐾 ∈ MUIH,

where 𝐸 measures the non UIH part of 𝐿. In practice one can take 𝐾 to be the unique
generator with symmetric part 𝑆𝐾 = −𝐴 and antisymmetric part 𝐴𝐾 = 𝐴𝐿 equal to
the metric skew part of 𝐿. The distance to the UIH manifold is then measured in
Frobenius norm,

𝑑 (𝐿,MUIH) := inf
𝐾∈MUIH

∥𝐿 − 𝐾 ∥𝐹 , ∥𝑋 ∥2𝐹 = Tr(𝑋⊤𝑋).

Given an RG projector 𝑃 built from the slow eigenvectors of 𝐴 as above, the coarse
grained generator is

𝐿′ = 𝑃⊤𝐿𝑃 = 𝑃⊤𝐾𝑃 + 𝑃⊤𝐸𝑃.
The first term is again UIH on the slow space, with Fisher operator 𝐴′ = 𝑃⊤𝐴𝑃. The
projected error is

𝐸 ′ = 𝑃⊤𝐸𝑃.
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Frobenius norm is non increasing under such orthogonal compression. In particular,
since 𝑃 has orthonormal columns and ∥𝑃∥op = 1, one has

∥𝐸 ′∥𝐹 = ∥𝑃⊤𝐸𝑃∥𝐹 ≤ ∥𝐸 ∥𝐹 ,

with equality only if the range and co-range of 𝐸 are contained in the slow subspace
selected by 𝑃. For a random full matrix 𝐸 that event has measure zero. Thus, for
generic error,

∥𝐸 ′∥𝐹 < ∥𝐸 ∥𝐹 , 𝑑 (𝐿′,M′UIH) ≤ ∥𝐸
′∥𝐹 < ∥𝐸 ∥𝐹 ≈ 𝑑 (𝐿,MUIH).

Iterating along a multi step RG ladder produces a strict contraction towards the UIH
manifold in Frobenius metric.

The finite dimensional scans summarised below confirm this contraction numerically
in a large ensemble and quantify it very precisely.

11.4 Analytic baseline: 𝑟 ≥ 1 for UIH generators

For the hypocoercive index the key analytic observation in finite dimension is that any
UIH generator satisfies a lower bound 𝑟 ≥ 1.

Work in the basis in which 𝐴 is diagonal,

𝐴 = diag(𝜆1, . . . , 𝜆𝑛), 0 < 𝜆1 ≤ · · · ≤ 𝜆𝑛.

By an orthogonal change of basis one can bring 𝐽 into block diagonal form as a direct
sum of real symplectic 2 × 2 blocks and possibly one dimensional zeros. On a two
dimensional plane spanned by eigenvectors with eigenvalues 𝜆𝑖 , 𝜆 𝑗 , the restriction of
𝐾 = −𝐴 + 𝐽 can be written as

𝐾𝑖 𝑗 =

(
−𝜆𝑖 𝜔

−𝜔 −𝜆 𝑗

)
for some real 𝜔. The eigenvalues of this block are

𝜇± = −1
2 (𝜆𝑖 + 𝜆 𝑗) ±

1
2

√︃
(𝜆𝑖 − 𝜆 𝑗)2 − 4𝜔2.

If the discriminant is negative these form a complex conjugate pair. If it is non negative
they are real. In either case the real parts of both eigenvalues are

Re(𝜇±) = −1
2 (𝜆𝑖 + 𝜆 𝑗).

On a one dimensional block with no skew part one simply has eigenvalue −𝜆𝑖 .
The hypocoercive decay rate is the smallest positive decay rate that appears among all
blocks,

𝜆hyp(𝐾) = min{𝜆𝑖 , (𝜆𝑖 + 𝜆 𝑗)/2}.
Since every 𝜆𝑖 ≥ 𝜆1 and every arithmetic mean (𝜆𝑖 +𝜆 𝑗)/2 is also at least 𝜆1, it follows
that

𝜆hyp(𝐾) ≥ 𝜆1 = 𝜆𝐹 (𝐾), 𝑟 (𝐾) ≥ 1.
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Equality holds if and only if there is no plane or line in which the decay rate falls
strictly below 𝜆1. This happens in the trivial case 𝐽 = 0, and can also occur for certain
degenerate choices of 𝐴 and 𝐽 where the skew part only mixes isotropic blocks with
equal Fisher eigenvalues.

This lower bound on 𝑟 is the finite dimensional analogue of the hypocoercivity results
in the main text: the J sector can at best accelerate relaxation relative to pure Fisher,
never slow it below the Fisher gap.

11.5 Pilot scan: 𝑟 under a short RG ladder

The pilot script 07_uih_rg_rIndex_pilot_scan.py implements a first test of the
behaviour of 𝑟 under Fisher compatible RG on a modest dimensional ensemble.

For each trial, the script:

1. Samples 𝐴 and 𝐽 as described above, with dimension 𝑑0 = 12, log uniform spectrum
for 𝐴 in [1, 𝜅max] and random antisymmetric 𝐽 scaled by j_scale.

2. Forms 𝐺 = −𝐴 and 𝐾 = 𝐺 + 𝐽, then computes 𝜆𝐹 , 𝜆hyp and 𝑟 = 𝜆hyp/𝜆𝐹 .
3. Applies an RG step to dimension 𝑑1 = 8 by diagonalising 𝐴 and projecting onto the

eight slowest eigenvectors, propagating 𝐺 and 𝐽 accordingly. The new generator
𝐾1 and its index 𝑟1 are computed.

4. Applies a second RG step to dimension 𝑑2 = 4 and computes 𝑟2.

Over a sizeable ensemble of random UIH generators the script collects basic statistics
for (𝑟0, 𝑟1, 𝑟2), including minima, maxima, means and counts of samples with
𝑟𝑘+1 > 𝑟𝑘 or 𝑟𝑘+1 < 𝑟𝑘 .

The outcome is that while a non zero fraction of individual ladders exhibit small
upward fluctuations in 𝑟 at a single step, the typical behaviour is a reduction of 𝑟 as
one projects to slower Fisher blocks, and the range of possible values shrinks. This
suggested that the hypocoercive index behaves like an RG monotone in expectation,
and motivated the larger multiscale scan.

11.6 Multiscale scan: 𝑟 as an RG C function

The script 08_uih_rIndex_multiscale_Cfunction_scan.py.py extends the pi-
lot experiment to a long RG ladder and a much larger ensemble, in order to test whether
𝑟 behaves as an RG C function in the sense of the full UV to IR flow.

The set up is as follows.

• Dimension ladder

𝑛0 = 32 → 28 → 24 → 22 → 20 → 18 → 16 → 14 → 12 → 10 → 𝑒𝑡𝑐.
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• Random UIH ensemble: for each sample, draw 𝐴 and 𝐽 in dimension 32 with
log uniform eigenvalues for 𝐴 in [1, 𝜅max], rescaled so 𝜆1 = 1, and random
antisymmetric 𝐽 scaled by a fixed j_scale. Construct 𝐺 = −𝐴 and 𝐾0 = 𝐺 + 𝐽.

• Entropic RG: apply Fisher compatible RG as described above to flow from dimension
32 down to dimension 1, tracking the Fisher operator and the UIH generator at each
step.

• Hypocoercive index: at each RG level 𝑘 compute 𝜆𝐹 (𝐾𝑘), 𝜆hyp(𝐾𝑘) and 𝑟𝑘 =

𝜆hyp(𝐾𝑘)/𝜆𝐹 (𝐾𝑘).
The script uses a multiprocessing pool (up to 22 workers) to perform 𝑁 independent
RG trajectories, typically 𝑁 = 105, and records:

• For each level 𝑘 , the minimum, maximum and mean of 𝑟𝑘 across the ensemble.
• For each step 𝑘 → 𝑘 + 1, counts of samples with 𝑟𝑘+1 > 𝑟𝑘 , 𝑟𝑘+1 < 𝑟𝑘 and
𝑟𝑘+1 = 𝑟𝑘 .

• For the full UV to IR flow 0→ 𝐿, counts of samples with 𝑟𝐿 > 𝑟0 versus 𝑟𝐿 < 𝑟0.
• The empirical correlation corr(𝑟0, 𝑟𝐿 − 𝑟0).

In a representative run with 105 samples the following qualitative behaviour is observed.

1. The mean of 𝑟𝑘 decreases smoothly along the ladder, from values of order two
at dimension thirty two down to values very close to one at dimension two and
exactly one at dimension one. The distribution narrows as one descends, with the
minimum approaching one from above and the maximum shrinking.

2. At each individual step a minority of trajectories exhibit a small increase in 𝑟
between 𝑘 and 𝑘 + 1, with the fraction of such events typically between ten and
twenty per cent and decreasing towards the IR. The majority exhibit a decrease.

3. For the full UV to IR flow, every single sample satisfies 𝑟𝐿 < 𝑟0 when the IR
dimension is one. The empirical correlation corr(𝑟0, 𝑟𝐿 − 𝑟0) is numerically equal
to −1 within floating point precision.

The apparent strict monotonicity of 𝑟 along the full ladder and the perfect linear
anticorrelation between 𝑟0 and 𝑟𝐿 − 𝑟0 have a simple analytic explanation. For the
particular ladder used here, the final space has dimension one. The Fisher operator
at the IR point is 𝜆1, the smallest eigenvalue of the UV 𝐴, and antisymmetry forces
𝐽𝐿 = 0. The IR generator is therefore the pure Fisher generator

𝐾𝐿 = −𝜆1, 𝜆𝐹 (𝐾𝐿) = 𝜆hyp(𝐾𝐿) = 𝜆1, 𝑟𝐿 = 1

for every sample. Combining this with the analytic bound 𝑟0 ≥ 1 for UIH generators
yields

𝑟𝐿 = 1 ≤ 𝑟0

with equality only if the UV generator was already on the pure Fisher face in an
appropriate sense. The empirical result that 𝑟𝐿 < 𝑟0 for all samples in the random
ensemble reflects the fact that the initial draw of 𝐽 almost never lands on the degenerate
pure Fisher manifold.

Thus, for this finite dimensional model and this RG ladder, the hypocoercive index
𝑟 is a genuine C function for the composite UV to IR flow: it never increases and
generically decreases, with a unique IR fixed value 𝑟 = 1. The fact that 𝑟 can fluctuate
at intermediate steps but is strictly monotone for the full projection is quite typical of
approximate RG monotones in statistical mechanics.
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11.7 Non UIH perturbations and contraction onto the UIH manifold

The script 09_uih_tg_attractor_error_contraction_scan.py.py tests the
contraction of non UIH perturbations under entropic RG, making the statement “UIH
is an RG attractor” more quantitative.

For each trial, the script performs the following steps.

1. Sample a finite dimensional UIH generator 𝐾0 = 𝐺0 + 𝐽0 as before in dimension
𝑛0 = 32, with Fisher operator 𝐴0, Fisher gap 𝜆𝐹 (𝐾0) and index 𝑟0.

2. Draw a full Gaussian matrix 𝑋 and rescale it to define an “error” matrix 𝐸0 with
prescribed size relative to 𝐾0, for example

∥𝐸0∥𝐹 = 𝑒scale ∥𝐾0∥𝐹 , 𝑒scale = 0.5.

3. Define the perturbed generator 𝐿0 = 𝐾0 + 𝐸0. Decompose 𝐿0 as “UIH part plus
error” via this construction.

4. Apply the same entropic RG ladder to the quadruple (𝐴, 𝐺, 𝐽, 𝐸), projecting

𝐴𝑘+1 = 𝑃⊤𝑘 𝐴𝑘𝑃𝑘 , 𝐺𝑘+1 = 𝑃⊤𝑘𝐺𝑘𝑃𝑘 , 𝐽𝑘+1 = 𝑃⊤𝑘 𝐽𝑘𝑃𝑘 , 𝐸𝑘+1 = 𝑃⊤𝑘 𝐸𝑘𝑃𝑘

at each step, where 𝑃𝑘 projects onto the slow Fisher eigenspace of 𝐴𝑘 , and
𝐾𝑘 = 𝐺𝑘 + 𝐽𝑘 .

5. At each RG level 𝑘 compute two diagnostics:

𝑒abs
𝑘 :=

∥𝐸𝑘 ∥𝐹
∥𝐸0∥𝐹

, 𝑒rel
𝑘 :=

∥𝐸𝑘 ∥𝐹
∥𝐾𝑘 ∥𝐹

.

Over an ensemble of 𝑁 samples (again typically 105, parallelised over 22 workers) the
script records for each level the minimum, maximum and mean of both 𝑒abs

𝑘
and 𝑒rel

𝑘
,

as well as monotonicity counts for 𝑒abs
𝑘

between successive RG steps.

The results are very simple.

Absolute contraction. For the absolute error norm ∥𝐸𝑘 ∥𝐹/∥𝐸0∥𝐹 one finds that:

• At the UV level 𝑘 = 0, ∥𝐸0∥𝐹/∥𝐸0∥𝐹 = 1 by construction.
• At each subsequent RG step, every single sample satisfies

∥𝐸𝑘+1∥𝐹 < ∥𝐸𝑘 ∥𝐹 ,

so that the monotonicity counts show zero “up” events and one hundred per cent
“down” events across the ensemble.

• The mean value of ∥𝐸𝑘 ∥𝐹/∥𝐸0∥𝐹 follows the very simple law

E
[
∥𝐸𝑘 ∥𝐹/∥𝐸0∥𝐹

]
≈ 𝑛𝑘
𝑛0
,

where 𝑛𝑘 is the dimension at level 𝑘 and 𝑛0 = 32 is the UV dimension. For example
the mean error norm is close to 0.5 at dimension sixteen and close to 0.125 at
dimension four.
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This behaviour is precisely what one would expect for a random full matrix under
orthogonal projection. If 𝐸 has i.i.d. entries of variance 𝜎2, then 𝐸 ′ = 𝑃⊤𝐸𝑃 has
expected Frobenius norm squared

E∥𝐸 ′∥2𝐹 =
𝑛2
𝑘

𝑛2
0
E∥𝐸 ∥2𝐹 ,

so that the expected norm scales by a factor 𝑛𝑘/𝑛0. The numerical scan confirms that
this basic linear algebra mechanism is exactly what the entropic RG implements on
the non UIH error.

Relative error. For the relative size ∥𝐸𝑘 ∥𝐹/∥𝐾𝑘 ∥𝐹 the behaviour is more structured.
The mean starts at ∥𝐸0∥𝐹/∥𝐾0∥𝐹 = 0.5 by construction, then rises to values of order
one at intermediate scales and eventually falls again in the deep IR. In a typical
run the mean relative error grows to around unity at dimensions of order ten, peaks
modestly above one at intermediate scales, and then drops back towards order one as
the dimension approaches one.

This is consistent with the picture that the UIH part 𝐾𝑘 is better aligned with the slow
Fisher eigenspaces than a random error, so the RG projection preserves more of 𝐾𝑘
than of 𝐸𝑘 . At the same time the UIH part itself becomes effectively lower dimensional
as one approaches the slowest Fisher modes, so a residual error of fixed absolute size
can temporarily be comparable to or larger than ∥𝐾𝑘 ∥𝐹 at intermediate scales before
both decay absolutely in the deep IR.

It is important to note that in this script the UIH decomposition is not re fitted at each
RG step. One propagates 𝐾𝑘 and 𝐸𝑘 separately by projection, rather than recomputing
the best UIH approximation to 𝐿𝑘 = 𝐾𝑘 + 𝐸𝑘 at each scale. In other words, ∥𝐸𝑘 ∥𝐹 is
an upper bound on the true distance from 𝐿𝑘 to the UIH manifold at that scale. If one
re fitted the symmetric part to the Fisher operator and absorbed skew error into the
antisymmetric sector at each step, the actual distance toMUIH would decrease even
faster.

11.8 Summary and relation to the main RG construction

The finite dimensional model in this appendix provides a clean local picture of the
entropic RG and UIH attractor story developed in the main text.

• On a Fisher manifold with fixed Fisher operator 𝐴, the space of thermodynamically
sane generators decomposes as an invariant UIH manifoldMUIH plus error direc-
tions that violate Fisher compatibility or metric skew structure. The entropic RG
map that projects onto slow Fisher modes acts as a strict contraction on those error
directions and therefore attracts generic generators intoMUIH.

• Within MUIH, the hypocoercive index 𝑟 = 𝜆hyp/𝜆𝐹 satisfies 𝑟 ≥ 1 and, for the
composite UV to IR flow considered here, is strictly decreasing along the RG
trajectory, with a unique IR fixed point 𝑟 = 1 in the single current class. The
numerical scans show that in a large random ensemble every sample flows to this
pure Fisher value under Fisher compatible RG, and that the net change 𝑟IR − 𝑟0 is
linearly anticorrelated with the UV value 𝑟0.
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Together, these results support the interpretation of UIH as an entropic RG attractor
class. In the continuum setting of Markov chains, Fokker–Planck operators and GKLS
dynamics treated in the main body of the RG paper, the same algebraic structure
appears blockwise on each slow sector. The finite dimensional analysis here can be
read as the model computation on each such block: non UIH corrections are RG
irrelevant in the Fisher compatible sense, and the remaining degrees of freedom are
exhausted by a small number of UIH invariants. In particular, in the single current
case the only dynamical scalar that survives in the IR is the scale free index 𝑟, which
flows to one, while the Fisher gap 𝜆𝐹 sets the timescale and the scalar Fisher curvature
sector K𝐹 encodes the geometry.

The three scripts:

07_uih_rg_rIndex_pilot_scan.py
08_uih_rIndex_multiscale_Cfunction_scan.py.py
09_uih_tg_attractor_error_contraction_scan.py.py

provide compact, reproducible demonstrations of these claims in the simplest possible
finite dimensional setting.
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