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Abstract

We study irreversible response for coarse grained densities in
Fisher-regularised quantum hydrodynamics, working within a local
metriplectic framework. The state space, boundary class and a uniformly
elliptic symmetric mobility G are fixed once and for all, and all
constructions take place in the weighted H−1

ρ (G) geometry. Three
instantaneous objects are singled out: the realised irreversible drift
generated by G, a cost-entropy inequality that links control cost to
entropy production, and a curvature coercivity bound on the Fisher
functional. All three are invariant under the addition of any reversible
drift generated by an antisymmetric operator J satisfying a weighted
Liouville constraint. Equality in the cost-entropy bound picks out a one
dimensional irreversible ray, and a simple "equality dial" quantifies the
reversible content of a given evolution. Assumptions are minimal, convex
free energy, strictly positive densities, symmetric uniformly elliptic G,
and the H−1

ρ tangent model. All identities are supported by operational
diagnostics and reproducible code. Read together with the companion
paper, the present results identify the dissipative metriplectic channel
compatible with the same Fisher geometry and Wasserstein-Otto tangent.
The combined picture gives a minimal reversible-irreversible split for
Fisher-regularised quantum hydrodynamics: the reversible current is the
Fisher selected Schrödinger flow, while the present work fixes the local
irreversible geometry and its equality and curvature certificates. A final
scalar Fisher sector shows that the same weighted operator Lρ,G and
Fisher quadratic form support a log density potential with a controlled
Newtonian limit and a simple coupling to the Madelung Hamilton-Jacobi
equation, kept deliberately within a scalar, weak field regime. All claims
are necessity statements inside the stated axioms; no uniqueness of G or
of the scalar dynamics is asserted beyond this local setting. The intended
scope is quantum hydrodynamics and quantum information geometry for
Fisher regularised Schrödinger dynamics with metriplectic dissipation.
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1 Introduction

Previously, our work on The Converse Madelung Question [1] treated the
reversible side of hydrodynamic evolution by classifying the canonical bracket on
(ρ, S), identifying the Fisher curvature that selects a linear unitary completion,
and supplying operational verification within a minimal axiomatic class.
Here we provide the dissipative counterpart; again, in a specific axiomatic
setting. We remain at the density level and characterise the no-work reversible
cone via the weighted Liouville form without asserting a full Jacobi structure
on densities.
We start with axioms that fix the state space and boundary classes, impose a
local quadratic irreversible power with symmetric positive G, and require a
reversible class that performs no work on F [2–5]. Calculus on the space of
densities is taken in the H−1

ρ tangent of the Wasserstein-Otto geometry [6–9].
Within this scope we ask how three natural scalars relate at a fixed state:
the entropy production σ̇, the smallest displacement curvature κmin, and the
minimal quadratic cost Cmin to impress a given tangent v.
We show a sharp cost-entropy inequality that becomes an equality exactly on
the gradient flow ray selected by the axioms, a curvature coercivity estimate
with constants governed only by ellipticity of G and the positivity margin of
ρ, and invariance of these scalars under the addition of any reversible drift.
These same objects later serve as instantaneous readers in the assembled
reversible dissipative picture and in the Fisher scalar sector, where they control
a weak-field Newtonian limit and a simple Madelung coupling.
These are necessity statements inside the axioms, not equivalences beyond
them. We do not assert uniqueness of G outside local ellipticity or any global
identification across models.
Numerically we keep hypotheses visible through reproducible scripts.
Instantaneous statements concern scalars defined at a fixed state ρ;
path-integrated checks (such as

∫
σ̇ dt = ∆F ) are sanity tests of the

plumbing and are reported separately.
A code archive (Appendix F) certifies the equality case under refinement, checks
conservative plumbing and no work, measures a coarse-graining commutator
that follows an ℓ2 law, and recovers the quadratic action of G from probe Gram
matrices.
Further testing adds an evolution variational inequality (EVI) probe with
saturation on the irreversible ray, a Liouville no-work sweep, an H−1

ρ
orthogonality readout, tomography of G using scalar maps with cross-state
checks, and a single-axiom failure table where symmetry, locality, positivity,
or the tangent model is broken on purpose. Alignment identities report
R = cos2 θ and explain when near equalities are observed. Path-integrated
entropy is tested against ∆F and is insensitive to reversible drift at fixed
targets.
Connections to thermodynamic geometry and optimal transport provide context
for cost-entropy relations beyond linear response [12], and discrete or quantum
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analogues illustrate how changing the tangent model alters curvature-entropy
structure [10, 11]. Our contribution is to place the dissipative assertions as
necessities inside a minimal metriplectic setting with explicit certificates and
falsifiers, complementing the reversible analysis of the companion paper and
aligning the irreversible geometry with the Fisher structure that underlies the
Schrödinger sector.
Later sections assemble the symmetric and antisymmetric blocks in a local
setting and record simple operational checks, including a linear response reader
obeying Kramers-Kronig within scope, a holonomy probe that is coarse-graining
invariant on the tested family, and a Fisher scalar sector with a controlled
Newtonian limit and a simple coupling to the Madelung dynamics.
All statements are necessity results within the stated axioms, ellipticity of G,
and the positivity margin of ρ. We do not assert uniqueness of G or J beyond
this local metriplectic setting.
At a glance, the three statements above are witnessed by a sharp equality on
the gradient-flow ray, a curvature floor on the H−1

ρ unit sphere, and invariance
under reversible J ; see Propositions 2.2, 2.3 and Appendix G. For a quantum
reader, the main role of the present paper is to fix the irreversible metric,
geometry and diagnostics that are compatible with the Fisher-Schrödinger
structure of the companion work, without changing the underlying information
geometry.

Relation to the reversible study. This work complements the reversible
analysis developed in The Converse Madelung Question, which treated the
canonical bracket on (ρ, S) and the role of Fisher curvature in establishing
linearity after complexification. Within the stated axioms that paper identifies
the Fisher functional as the unique reversible regulariser that supports a linear
Schrödinger completion; here we remain entirely within the dissipative channel,
fixing the local metriplectic form of the irreversible power and isolating the
equality and curvature relations that persist when the reversible content is
stripped away. Read together, the two papers form a minimal reversible
dissipative pair under the same information-geometric conventions, differing
only in the sign structure of the generator. The Fisher scalar sector and its
Madelung coupling in Sec. 7 are recorded as an example of an emergent scalar
slice built from the same density, the same weighted operator, and the same
Fisher quadratic forms. For clarity, the κ-fixing and factorised-data arguments
belong entirely to the reversible companion study and are not revisited here.
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1.1 Reader Roadmap

Road map

Sections 2 and 3 establish the axioms, the cost-entropy inequality, curvature
coercivity, and the metriplectic split on ρ.

Sections 4 and 5 give a didactic torus example together with numerical
diagnostics (equality dial, coarse-grain commutator, reversible sweep), including
typical failure modes when axioms are broken.

Sections 6 and 7 assemble the irreversible sector with the reversible
Fisher-Schrödinger structure developed in the companion paper. Section 7
presents optional scalar and analogues within the same information geometry.

1.2 Results at a glance

Within the stated axioms (local ellipticity of G, positivity margin of ρ,
admissible boundaries), we record three instantaneous statements at a fixed
state ρ:

1. Cost-entropy inequality (equality on the gradient-flow ray). There is a sharp
instantaneous inequality σ̇2 ≤ 2Pirr IF that becomes an equality precisely
on the gradient-flow direction selected by the axioms (Sec. 3.1).

2. Curvature coercivity on the H−1
ρ unit sphere. The Hessian is controlled

below by a curvature constant whose size depends only on ellipticity of G
and the positivity margin of ρ (Sec. 3.2).

3. Reversible invariance. All three scalars above are invariant under adding
any reversible J with the Liouville property (Sec. 2.4).

Falsifiers in Sec. G show that these identities fail once the geometry is altered
(for example changing G or the boundary class).

Object Role Where
Cost-entropy scalar Sharp inequality; equality on gradient-flow ray Sec. 3.1
Curvature constant Coercive Hessian bound on H−1

ρ unit sphere Sec. 3.2
Reversible invariants Unchanged under adding any Liouville J Sec. 2.4
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Operator summary

Weighted Poisson operators.

Lρφ := −∇· (ρ∇φ), Lρ,Gφ := −∇· (ρG∇φ),

defining the weighted H−1
ρ and H−1

ρ (G) geometries.
Mobilities. G is the symmetric, positive definite mobility of the irreversible
sector; J is the antisymmetric mobility of the reversible sector, required to
satisfy the weighted Liouville constraint ∇i(ρJ ij) = 0.
Complex packaging. K = G+ iJ is a bookkeeping device for diagnostics
involving orthogonal quadratures; it is not a new dynamical operator.
Skew diagnostic map. H is a fixed skew map used only in the complex-phase
diagnostic M .
Chemical potential. The free energy F induces a chemical potential µ =
δF/δρ. All irreversible dynamics are generated by Lρ,G acting on µ.

2 Axioms, setting, and necessity results

Notation and orientation

ρ density with ρ > 0 on the domain, normalised to mass 1
F [ρ] free energy; F∞ its minimiser value under the stated boundary class
G(ρ, x) symmetric positive definite mobility (local, elliptic with fixed bounds)
J(ρ, x) reversible operator with Liouville property (mass preserving)
Lρϕ −∇· (ρ∇ϕ)
Lρ,Gϕ −∇· (ρG∇ϕ)
⟨u, v⟩H−1

ρ
inner product induced by L−1

ρ on zero-mean fields
σ̇ instantaneous entropy production

We work on the periodic box TL (or the stated admissible boundary class),
with ρ bounded away from zero and G uniformly elliptic. All operators and
norms are taken with respect to this setting.

Weighted H−1
ρ pairing. Given a conservative field v with zero mean, let

ϕ solve the Poisson problem Lρϕ = − v with mean-zero gauge. For w with
potential ψ defined likewise, set

⟨v, w⟩H−1
ρ

:=
∫

Ω
ρ∇ϕ · ∇ψ dx, ∥v∥2

H−1
ρ

= ⟨v, v⟩H−1
ρ
.

At a fixed state, define σ̇(ρ) ≡
∫

Ω ρ (∇µ)⊤G(∇µ) dx. For the realised irreversible
direction virr = −Lρ,Gµ, one then has σ̇(ρ) = −⟨virr, µ⟩.
We work on a domain and regularity class that preserves conservative form
and makes all variational statements precise. The irreversible closure and the
reversible class are then derived as necessities from a short axiom list, with
scalar certificates that are reproduced by the code archive in Appendix F.
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Boundary, coarse-graining, and no-work details are documented in Appendix
A.

Regularity. The core metriplectic results of Sections 2-3 require only ρ ∈ H1

with a positive margin and a bounded, uniformly elliptic G. Some asymptotic
and commutator expansions in Appendix C assume additional smoothness (e.g.
ρ ∈ H3 and G ∈ C1) and should be viewed as diagnostics within that smoother
subclass.

Positivity. Strict positivity of ρ is treated as a standing hypothesis on the
solution class. We do not attempt to prove positivity preservation for arbitrary
free energies F and mobilities G; when the margin ρmin collapses the Fisher
geometry and the associated diagnostics are explicitly out of scope.

2.1 State space, free energy, and boundary classes

Let Ω ⊂ Rd be either a periodic box or a bounded Lipschitz domain with
outward unit normal n. We consider strictly positive densities

ρ ∈ H1(Ω), ρmin ≡ ess inf
Ω

ρ ≥ ε > 0,
∫

Ω
ρ dx = M > 0,

with boundary classes:
• periodic, or
• no-flux j · n = 0 for the physical flux j,
as detailed in Appendix A. The free energy F [ρ] is Fréchet differentiable on
the positive cone and defines a chemical potential

µ(ρ) ≡ δF

δρ
up to an additive constant.

Only ∇µ enters the dynamics and power balances. The weighted Poisson
operator Lρϕ = −∇· (ρ∇ϕ) is symmetric, coercive on mean-zero H1 functions,
and induces the weighted H−1

ρ pairing; see Appendix A.

All Karush-Kuhn-Tucker (KKT) relations are written with negative sign in
front of operator and are solved on the mean-zero subspace.
We denote the ellipticity window of G by 0 < γmin ≤ ξ⊤G(ρ, x)ξ ≤ γmax and
write κmin(ρ) for the smallest Wasserstein displacement curvature at ρ; these
constants appear in all bounds below.
We fix the weighted operator by Lρ,Gϕ ≡ − ∇· (ρG∇ϕ), so the gradient-flow
ray is v0 = −Lρ,Gµ = ∇· (ρG∇µ). All KKT solves are written with a leading
minus and carried out on the mean-zero subspace.
We take ρ to be a positive density on Ω with total mass

∫
Ω ρ dx = M . Depending

on context ρ may be interpreted either as a probability density (M = 1) or as
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a coarse-grained mass density; all constructions depend only on ρ itself. Any
dimensional conversion to a physical mass density ρm is absorbed into scalar
constants such as κ in later sections.

2.2 Minimal axioms

We adopt the following minimal hypotheses.

A1 State and mass. The state is ρ ∈ H1(Ω) with ρmin ≥ ε > 0 and the
evolution is conservative,

∂tρ = − ∇· j,
∫

Ω
∂tρ dx = 0,

within the boundary classes of Section 2.1.

A2 Free energy and Lyapunov sign. There is a free energy F [ρ] with
µ = δF/δρ such that along the irreversible channel Ḟ ≤ 0.

A3 Local quadratic dissipation. At fixed state ρ, the instantaneous
irreversible power is a local quadratic form in the driving gradient,

Pirr(ρ;µ) = 1
2

∫
Ω
ρ (∇µ) ·G(ρ, x) (∇µ) dx,

with G(ρ, x) bounded, symmetric, and strictly positive definite pointwise. No
nonlocal kernels appear in Pirr.

A4 Probe locality and relabelling invariance. Small probe variations
of µ are local and insensitive to smooth relabellings of coordinates within a
homogeneous medium. In particular, the quadratic response that defines G is
invariant under rigid translations and rotations on the periodic box.

A5 Steepest descent. Among all conservative directions v = −∇· j that
achieve the same Pirr at fixed ρ, the realised irreversible direction maximises
the instantaneous entropy production σ̇ = −⟨v, µ⟩. Equivalently, the realised
flux is the KKT minimiser of power subject to the continuity constraint.

A6 Reversible no-work. The reversible channel performs no-work on F
for any smooth µ, that is Prev(ρ;µ) =

∫
Ω µ∂tρ

∣∣
rev dx = 0.

Remark (Scope test for A6). A nonzero reversible power Prev ̸= 0 places a
run outside the no-work cone at the current ρ. Within our scope, Prev = 0
holds if and only if the reversible class admits J⊤ = −J and the weighted
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Liouville identity ∇· (ρJ) = 0. Instantaneous violations of the dial reflect
a break of antisymmetry or of the weighted Liouville constraint, not a
contradiction with the canonical bracket used in the companion reversible
paper.

A7 Symmetries and boundary class. All statements are scoped to the
boundary classes in Section 2.1. Any symmetry is within those classes only.

2.3 Necessity of the irreversible generator

The axioms above force the weighted H−1 geometry and the Onsager direction.

Proposition 2.1 (Weighted H−1 tangent and identifiability). Under
A1-A4, any conservative direction v at fixed ρ can be uniquely represented
as v = ∇· (ρ∇ϕ). The power Pirr induces the norm

∥v∥2
G,ρ =

∫
Ω
ρ (∇ϕ) ·G(ρ, x) (∇ϕ) dx,

which is equivalent to the H−1
ρ norm. Moreover, G is identifiable from

small probe responses by the Gram matrix Bij =
∫

Ω ρ (∇ϕi) ·G (∇ϕj) dx on
any separating set of probe potentials {ϕi}.

Proposition 2.2 (Onsager steepest descent and equality case).
Under A1-A5, the unique irreversible direction at ρ is

virr = ∇·
(
ρG(ρ, x) ∇µ(ρ)

)
.

It realises the sharp Cauchy-Schwarz equality

⟨virr, µ⟩2 = 2Pirr(ρ;µ) σ̇(ρ),

with σ̇(ρ) =
∫

Ω ρ (∇µ)⊤G(∇µ) dx ≥ 0. Any other conservative direction
with the same power yields a strict inequality.

Comment. Equation (2.2) provides a scalar certificate that is reproduced in
the code archive by a mesh refinement study with dealiased products and
subspace-consistent pairings.
Alternatives that violate A3 or A5 break (2.2). See Section G and Appendix A.
In the (ρ,G) metric this certificate is the identity R(ρ; virr) = cos2 θρ,G = 1
with R and θρ,G defined in Lemma 3.4.

9



2.4 Reversible no-work and orthogonality

Reader’s map for A6. (i) The no-work cone is characterised by J⊤ = −J and
∇· (ρJ) = 0 at the fixed ρ. (ii) Along reversible trajectories F is constant
and the reversible class is H−1

ρ -orthogonal to the irreversible cone. (iii) The
instantaneous scalars σ̇(ρ), κmin(ρ), and Cmin(ρ; v) are insensitive to J by
definition at fixed ρ.
A6 fixes the structure of the reversible class and its orthogonality to the
irreversible cone.

Proposition 2.3 (Weighted Liouville form and no-work). Under
A6, the reversible flux can be written as

jrev = − ρ J(ρ, x) ∇µ,

with J⊤ = −J and the weighted Liouville identity ∇· (ρJ) = 0. Conversely,
these two conditions imply Prev(ρ;µ) = 0 for all smooth µ and any choice
of constant gauge. See Appendix B.

Proposition 2.4 (Metriplectic orthogonality). Let virr be as in
Proposition 2.2 and vrev = ∇· (ρJ∇µ) satisfy Proposition 2.3. Then

⟨vrev, virr⟩H−1
ρ

= 0, equivalently ⟨vrev, ϕ⟩ = 0 for any ϕ with −Lρϕ = virr.

Thus the reversible class lies in the H−1
ρ orthogonal complement of the

irreversible cone. In particular, F is constant along reversible trajectories
and strictly decreases along irreversible ones unless ∇µ ≡ 0.

2.5 Consequence

Theorem 2.5 (Local metriplectic decomposition). In our axiomatic
setting, the evolution of ρ admits a unique decomposition

∂tρ = ∇·
(
ρG(ρ, x) ∇µ

)
+ ∇·

(
ρ J(ρ, x) ∇µ

)
,

where G = G⊤ ≻ 0 is local, J⊤ = −J satisfies ∇· (ρJ) = 0, the equality
certificate (2.2) holds on the irreversible channel, and the reversible channel
has Prev = 0 and is H−1

ρ -orthogonal to the irreversible cone. The pair (G, J)
is identifiable up to scalar invariants on the irreversible side and up to the
Liouville gauge on the reversible side.

For clarity, the minimal implications of these axioms and short constructive
proofs of necessity are summarised in Appendix D.
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3 Main statements and proof routes

Proof sketches and the logical dependency chain from the axioms to the
statements below are given in Appendix D.
We now record three statements. Each uses only the hypotheses in Section 2.
Proof sketches are given immediately, with full details deferred to Appendix E.
Alignment diagnostics and falsifiers appear later in Sections 6 and 7.

3.1 Cost-entropy inequality (equality on the gradient-flow ray)

Proposition 3.1 (Cost-entropy inequality; equality on the
gradient-flow ray). For any admissible u with v = −∇ · (ρu) one
has

⟨v, µ⟩2 ≤ 2 C(u) σ̇(ρ),
hence

Cmin(ρ; v) ≥ ⟨v, µ⟩2

2 σ̇(ρ) .

Equality holds if and only if u is collinear with G∇µ, equivalently v is
collinear with the gradient-flow direction −Lρ,Gµ where Lρ,Gϕ ≡ − ∇·
(ρG∇ϕ).

Idea of proof. Integration by parts gives ⟨v, µ⟩ = −
∫
ρ u · ∇µdx =

⟨u,G−1G∇µ⟩ρ. Apply Cauchy-Schwarz in the G−1 metric to obtain (3.1).
Minimise over u to obtain (3.1). Equality holds exactly when u is everywhere
collinear with G∇µ. Full details are standard and included in Appendix A.

3.2 Curvature coercivity on the H−1
ρ unit sphere

For all v in the Wasserstein tangent,

⟨HF (ρ) v, v⟩ ≥ κmin(ρ) ∥v∥2
H−1

ρ
.

Corollary 3.2 . By ellipticity, 2 Cmin(ρ; v) ∈ [γmin, γmax] ∥v∥2
H−1

ρ
, hence

⟨HF (ρ) v, v⟩ ≥ κmin(ρ)
γmax

· 2 Cmin(ρ; v).

Section G shows that near uniformity the measured relaxation rates satisfy
rfit ≈ 2κmin, consistent with the log-Sobolev and mode-wise curvature anchors
used here.
The Rayleigh quotient definition of κmin gives the theorem. The corollary
follows from the norm equivalence between the (ρ,G) energy and the H−1

ρ
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norm with constants γmin, γmax. Details are given in Appendix.

Remark (Two load-bearing hypotheses). If G is not symmetric positive,
the metric Cauchy-Schwarz used in (3.1) is invalid and R(ρ; v) can exceed
one for some v at fixed ρ. If the tangent norm is not the weighted H−1

ρ

norm, the Rayleigh structure that yields (3.2) can fail. Both failures are
demonstrated by the falsifier dials.

3.3 Invariance under reversible drift

Proposition 3.3 (Instantaneous invariance under J). For fixed ρ,
the scalars σ̇(ρ), κmin(ρ) and Cmin(ρ; v) depend only on (ρ,G, F ) and are
unchanged by adding any antisymmetric J to the instantaneous splitting
(2.5).

Proof. Each scalar is defined at the fixed state using only the symmetric
quadratic forms and the Wasserstein tangent. The reversible drift does not
enter their definitions.

3.4 Alignment and near-equalities

The inequality in Proposition 3.1 becomes an equality when v is exactly collinear
with −Lρ,Gµ. In practice near-equalities are observed when v has a small angle
with this direction in the H−1

ρ inner product, or when the soft curvature mode
aligns with −Lρ,Gµ. We quantify this below.

Lemma 3.4 (Alignment identity in the (ρ,G) metric). Let ϕ solve
−Lρ,Gϕ = v with Lρ,Gϕ ≡ − ∇· (ρG∇ϕ). Define the (ρ,G) inner product
on vector fields by

⟨a, b⟩ρ,G ≡
∫

Ω
ρ a⊤Gbdx, ∥a∥2

ρ,G = ⟨a, a⟩ρ,G,

and the angle
cos θρ,G ≡ ⟨∇ϕ,∇µ⟩ρ,G

∥∇ϕ∥ρ,G ∥∇µ∥ρ,G
.

Then the diagnostic ratio satisfies the exact identity

R(ρ; v) ≡ ⟨v, µ⟩2

2 Cmin(ρ; v) σ̇(ρ) = cos2 θρ,G ∈ [0, 1],

with R = 1 iff ∇ϕ is collinear with ∇µ (equivalently u⋆ ∥ G∇µ).
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Proof. For the minimiser u⋆ = G∇ϕ (KKT) one has

⟨v, µ⟩ = −
∫

Ω
ρ u⋆ · ∇µdx = −⟨∇ϕ,∇µ⟩ρ,G.

Moreover, 2 Cmin(ρ; v) = ∥∇ϕ∥2
ρ,G and σ̇(ρ) = ∥∇µ∥2

ρ,G. Hence

R(ρ; v) =
⟨∇ϕ,∇µ⟩2

ρ,G

∥∇ϕ∥2
ρ,G ∥∇µ∥2

ρ,G

= cos2 θρ,G.

Remark (Intuition for Lemma 3.4). The KKT map v 7→ ϕ solves −Lρ,Gϕ = v,
so u⋆ = G∇ϕ is the unique minimal control. In the (ρ,G) inner product one
has 2 Cmin(ρ; v) = ∥∇ϕ∥2

ρ,G and σ̇(ρ) = ∥∇µ∥2
ρ,G, while the power pairing is

⟨v, µ⟩ = −⟨∇ϕ,∇µ⟩ρ,G.
The diagnostic ratio therefore becomes a squared cosine between the two
vectors ∇ϕ and ∇µ in the same metric, with equality if and only if they are
collinear. Near-equalities occur when the minimal control direction aligns
with the thermodynamic force, equivalently when v is close to the gradient
flow ray −Lρ,Gµ.

Alignment diagnostic. Let −Lρ,Gϕ = v on the mean-zero subspace. Define

cos θρ,G := ⟨∇ϕ,∇µ⟩ρ,G

∥∇ϕ∥ρ,G ∥∇µ∥ρ,G
, R := cos2 θρ,G ∈ [0, 1].

Thus R is obtained from one Poisson solve and two inner products; near-equality
events appear as R ≈ 1.

3.5 Didactic worked example on a torus

We illustrate constants in a simple model that matches common numerical
experiments.

Proposition 3.5 (Smallest curvature for a uniform state). Let
Ω = Td with period 2π in each direction, G = I, and F [ρ] =

∫
ρ log ρ dx+

λ
2
∫

|∇ρ|2 dx. At a uniform state ρ ≡ ρ0 > 0 the curvature spectrum by
Fourier mode k ∈ Zd \ {0} is

κ(k) = |k|2 + λ ρ0 |k|4,

hence κmin(ρ0) = 1 + λρ0 attained at the first nonzero shell |k| = 1.

Idea of proof. On the H−1
ρ0 tangent, κ(k) is the Rayleigh quotient κ(k) =
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⟨HF (ρ0)vk, vk⟩/∥vk∥2
H−1

ρ0
for vk = − ∇ · (ρ0∇ϕk) with ϕk(x) = cos(k ·x) or

sin(k ·x). At ρ = ρ0, a first variation gives δµ = ρ1/ρ0 − λ∆ρ1, yielding the
stated eigenvalues.
The entropy part gives |k|2 and the Fisher part produces λρ0|k|4.

Remark. Proposition 3.5 provides a clean anchor for curvature scales in
numerical plots. On a side-length L torus, replace |k|2 by (2π/L)2|k|2 and
|k|4 by (2π/L)4|k|4, so κmin(ρ0) = (2π/L)2 + λ ρ0 (2π/L)4 on the first shell.
The angle envelope diagnostic R = cos2 θ is used below to compare measured
directions with this spectrum. We draw the reference line κmin(ρ0) = 1+λρ0;
measured points collapse to this line as |ρ− ρ0|/ρ0 → 0.

4 Scope, guardrails, and failure modes

This section records short analytic sketches that explain where the statements
hold and where they do not, together with explicit caveats.

4.1 Non-convex free energy

If F is not convex, the smallest Wasserstein Hessian eigenvalue can be negative
and the coercivity bound (3.2) fails. This is a true limitation with our setting.
In many models convexity or displacement convexity is available on relevant
subsets [8, 9]. Our results do not extend beyond convex settings. For example,
with F [ρ] =

∫
(ρ log ρ−a ρ2) dx+ λ

2
∫

|∇ρ|2dx, the smallest Wasserstein Hessian
eigenvalue becomes negative for sufficiently large a, so the Rayleigh coercivity
fails.

4.2 Invariant under reversible drift

We include a coupled channel plumbing check with J ≠ 0 in the evolution that
generates the flow snapshots. The instantaneous scalars are always evaluated
at a fixed state and depend only on (ρ,G, F ), so they are unchanged by J as
Proposition 3.3 states. The numerical runs confirm this invariance. This test
is labelled as a sanity check of the pipeline rather than as a validation of the
main inequalities. See the weighted Liouville identity below and Appendix G,
"Path-entropy invariance under reversible drift", for the algebraic condition
and a direct numerical check.

14



4.3 Strongly nonlocal functionals

If the second variation of F acts as a strongly nonlocal operator on the
Wasserstein tangent, the Rayleigh quotient structure that defines κmin can be
altered. We do not treat such cases here. Alternative transport geometries
are an active topic and include variants such as Hellinger Kantorovich; see
for instance [8] for background pointers. Our falsifier B illustrates that even
a simple change of tangent norm breaks the intended chain. Concretely, if
the second variation is a pseudo-differential operator of negative order or is
unbounded on the H−1

ρ tangent, the minimiser of the Rayleigh quotient need
not be representable as v = −Lρ,Gϕ, and the κmin link breaks; see Appendix
G, "Wrong tangent norm."

4.4 Degenerate metrics and loss of ellipticity

If G loses ellipticity, the constants in our inequalities blow up and the numerical
operators lose conditioning. This is consistent with the role of symmetric
positive Onsager operators in GENERIC and metriplectic evolutions [2–5].
Our estimates require uniform bounds 0 < γmin ≤ ξ⊤Gξ ≤ γmax < ∞. In
practice we report the associated rise in KKT iteration counts as γmax/γmin
grows, to calibrate conditioning.

4.5 Nodes and vanishing density

If ρmin → 0 then the H−1
ρ norm degenerates and integrations by parts need

additional care. In the reversible setting this is discussed in the context of
hydrodynamic variables and Fisher curvature in [1]. Here we keep a fixed
positivity margin and report the degradation of constants as a function of
ρmin. Uniqueness of the mean-zero KKT potential also fails in this limit, so
orthogonality claims are interpreted only on the positive cone.
Falsifiers are not confirmations of algebra; they show that the identities fail
once the geometry is altered. This mirrors the falsifier philosophy used for
reversible uniqueness and superposition in The Converse Madelung Question
[1].

4.6 Metric symmetry break

We perturb the metric by a small antisymmetric component Gε = G+Aε with
A⊤

ε = −Aε, while keeping all other steps unchanged. Since Gε is no longer
symmetric positive, the metric Cauchy Schwarz that underpins (3.1) is invalid.
Numerically we observe that for fixed states and random admissible v, the
ratio R(ρ; v) exceeds one for some samples once ε passes a small threshold.
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This falsifies the symmetric positive hypothesis and demonstrates that metric
symmetry is load-bearing rather than decorative. Theoretical background for
metric positivity in gradient flows and GENERIC is classical [2–5].

Weighted Liouville identity. If J⊤ = −J and ∇· (ρJ) = 0, then for any
smooth state ∫

Ω
µ∇· (ρJ∇µ) dx = −

∫
Ω
ρ (∇µ)⊤J ∇µdx = 0.

We record this as a convenient sufficient condition ensuring the reversible flux
performs no-work on F .

4.7 Wrong tangent norm

We replace the Wasserstein tangent norm H−1
ρ by a massless H−1 norm, that

is we solve −∆ϕ = v without the ρ weight and evaluate quadratic forms
accordingly. The Rayleigh structure that yields (E) is then lost, and we observe
consistent violations of the curvature coercivity bound (3.2) on the same states.
This aligns with the role of the Otto metric in displacement convexity and
curvature lower bounds [6–9]. Empirically we observe violations on a non-zero
fraction of random admissible states; a representative counterexample and
script are listed in Appendix G. Discrete and quantum analogues underscore
that the correct tangent model is essential for entropy curvature relations
[10, 11].

4.8 Positivity margin degradation

We lower the positivity margin by shrinking ρmin while keeping the same
discrete operators. The constants in our estimates depend on ρmin through
coercivity. Numerically the fitted bounds degrade in line with the predicted
dependence and the solvers require more iterations to meet the same residual
tolerance. This is expected and is reported explicitly so that readers can
calibrate conditioning. We print iteration counts alongside bound fits so
readers can see this dependence.

Spatially varying mobility G(x)

Setting. We repeated the commuting-triangle and κ-oracle tests with spatially
varying mobility G(x) = 1 + α cos(2πx/L) for α ∈ [0, 0.8]. At fixed ρ and
λ = 0.10, we measured R = ⟨v, µ⟩2/(2Cminσ̇) and cos2 θ for (i) the gradient-flow
ray v = −Lρ,Gµ and (ii) a random admissible v.
At uniform ρ0 = 1/L we also checked the mode oracle κ(k). Observation. For
all α, the equality case 1 −R ≃ 2 × 10−4 on the ray and |R− cos2 θ| ≲ 10−12
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for random v persist, with solver residuals O(10−12). The κ-oracle remains
exact to machine precision for k = 1, 2, 3, independent of α.
Interpretation. Within the stated tolerances, the commuting-triangle equality
and the mode curvature κ(k) = (2π/L)2|k|2 + λ ρ0 (2π/L)4|k|4 remain
unchanged under moderate inhomogeneity of the mobility; in particular, the
first-shell value κmin = (2π/L)2 + λ ρ0 (2π/L)4 is unaffected by α.
This indicates that the numerical and analytical structure of the metric are
stable for non-uniform media, without asserting further generality.

4.9 What is not claimed

We do not claim necessity or uniqueness of the metriplectic structure, nor do
we derive G or the tangent norm from minimal axioms. We also do not assert
universal proportionality between any pair of the three scalars. We prove a
sharp identity on one ray, two global inequalities with controlled constants, and
structural invariance under reversible drift, all within the stated hypotheses.

Brief consistency checks

The following three items report compact, theory-facing verifications that
extend the identities used in the paper. They are framed at the level of
definitions and measurable scalars. No new claims are made beyond those
already proved. Each item states hypotheses, objects evaluated, the equality
or invariance that is expected to hold, and the observed tolerance levels under
a representative discretisation on the periodic one-dimensional torus TL.

A. Internal multiplet (two components). Setting. Let ρ = (ρ1, ρ2) be
two strictly positive components with

∫
TL

(ρ1 + ρ2) dx = 1. Take

F [ρ] =
2∑

i=1

∫
TL

ρi log ρi dx + λ

2

2∑
i=1

∫
TL

|∂xρi|2 dx, µi = δF

δρi
.

Let G be the scalar mobility G = Id acting componentwise and define the
symmetric operator Lρ,G by

Lρ,Gϕ = −
(
∂x(ρ1 ∂xϕ1), ∂x(ρ2 ∂xϕ2)

)
restricted to the mean-zero subspace.
For any admissible tangent v = (v1, v2) with

∫
vi dx = 0 define the minimal

control cost via the KKT problem −Lρ,Gϕ = v,

2Cmin(ρ; v) =
2∑

i=1

∫
TL

ρi |∂xϕi|2 dx σ̇(ρ) =
2∑

i=1

∫
TL

ρi |∂xµi|2 dx
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and the commuting angle by

cos θ =
∑

i

∫
ρi ∂xϕi ∂xµi dx(∑

i

∫
ρi |∂xϕi|2 dx

)1/2(∑
i

∫
ρi |∂xµi|2 dx

)1/2 R(ρ; v) = ⟨v, µ⟩2

2Cmin(ρ; v) σ̇(ρ) .

Verification. On the gradient-flow ray v = −Lρ,Gµ one expects alignment and
equality R ≃ 1. For arbitrary admissible v one expects the identity R = cos2 θ.
Numerically, on TL with L = 40, N ∈ {256, 512}, rectangle rule for integrals,
pseudospectral derivatives with 2/3 de-aliasing, mean zero projection, and a
small SPD stabiliser in Lρ,G.
We observe 1−R ≲ 10−3 on the ray and |R−cos2 θ| ≲ 10−12 for random v, with
linear solves reaching residuals O(10−12). This supports that the cost-entropy
equality and the angle identity extend to a minimal internal multiplet within
the stated hypotheses.

B. Static gauge covariance at the level of instantaneous scalars.
Setting. Let A(x) be a fixed U(1) potential and S(x) a phase. Form the
covariant momentum p = ∂xS − qA and the associated reversible tangent
vJ = ∂x(ρ p) at a fixed positive scalar density ρ with the same F and G as
above. The metriplectic scalars at the frozen state are

σ̇(ρ) =
∫
TL

ρ |∂xµ|2 dx Cmin(ρ; v) from Lρ,Gϕ = v R(ρ; v) = ⟨v, µ⟩2

2 Cminσ̇
.

Verification. Since σ̇ and Cmin depend on (ρ,G, F ) and the chosen tangent v
but not on S or A independently of v, one expects: (i) σ̇(ρ) is unchanged under
replacements (A,S) 7→ (Ã, S̃) at fixed ρ, (ii) for v = vJ built from different
static (A,S), Cmin(ρ; v) varies with v as it should, and the commuting identity
R = cos2 θ continues to hold.
On the same discretisation as above we observe no change in σ̇(ρ) to numerical
floor across many draws of (A,S), and |R − cos2 θ| ≲ 10−12 for each vJ . As
an external check, the heat oracle with initial mode ρ(x, 0) = ρ0[1 + ε cos(kx)]
satisfies ∆F =

∫ T
0 σ̇ dt within O(10−3) at N = 4095 in the presence of a static

A(x), consistent with the continuum identity.
These observations indicate that the instantaneous metriplectic scalars used in
the paper are consistent with static gauge structure at the level of the stated
hypotheses.

C. Controlled reversible-dissipative crossover at fixed state. Setting.
At a fixed strictly positive ρ, define the pure gradient direction vG = −Lρ,Gµ
and a reversible proxy vJ = ∂x(ρ uJ) with a smooth uJ . Consider the convex
mixture

v(η) = (1 − η) vG + η vJ η ∈ [0, 1] .
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For each η compute Cmin(ρ; v(η)) from Lρ,Gϕ = v(η), the instantaneous power
⟨v(η), µ⟩, the entropy production σ̇(ρ), and

R(η) = ⟨v(η), µ⟩2

2Cmin(ρ; v(η)) σ̇(ρ) cos θ(η) from the inner product on ∂xϕ and ∂xµ .

Verification. Equality is expected at η = 0 where v lies on the gradient flow ray,
with R(0) ≃ 1 and cos2 θ(0) ≃ 1. For η > 0 one expects a strict inequality with
R(η) = cos2 θ(η) ∈ [0, 1) that decreases as the reversible content increases.
On the same periodic discretisation with L = 40, N = 512, λ = 0.10, we
observe 1 − R(0) ≲ 2 × 10−4 and a smooth monotone increase of the gap
1 − R(η) up to 1 − R(1) ≈ 1 when the direction is purely reversible, while
|R(η) − cos2 θ(η)| ≲ 10−12 for all η.
Linear solves converge to residuals O(10−12) throughout. This quantifies the
reversible-dissipative decomposition at fixed ρ in terms of the commuting angle,
and is consistent with the cost-entropy inequality and its equality case proved
in the main text.

Discretisation and tolerances. Periodic domain TL with representative L = 40,
grid size N ∈ {256, 512}, rectangle rule for spatial integrals, pseudospectral
differentiation with 2/3 de-aliasing for products, projection to the mean-zero
subspace, and an SPD stabiliser εmass in Lρ,G at the level 10−6.
Linear systems are solved by preconditioned conjugate gradients to residuals
O(10−12). Reported relative discrepancies refer to these tolerances and decrease
with N in the usual way.
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5 Assembly and emergence

Assembly and scope. We now progress on, to assemble the symmetric
and antisymmetric mobility blocks developed here with the reversible
classification of the companion paper [1]. All statements are within the
class of local, first order Hamiltonian theories on (ρ, S) on flat domains,
with admissible boundary conditions and ρ strictly positive on its support.
The two scalar certificates proved earlier in the paper drive the section:
the equality certificate on the irreversible ray and the no-work certificate
for the reversible cone.

Commentary. One operator sets the geometry. One inner product
measures angles and lengths. The same current can flow in two
perpendicular directions: down the slope (dissipation) and around the
level sets (reversible motion). We make this precise and give simple tests
that either pass or fail.

Standing hypotheses for this section. Unless explicitly stated otherwise,
all statements below are made under the following conditions.

• State space and positivity. We work on a fixed spatial domain Ω ⊂ Rd with
d ≥ 1. The density ρ(x, t) is strictly positive on each connected component
of its support and normalised,

ρ(x, t) > 0 for all x ∈ Ω,
∫

Ω
ρ(x, t) dx = 1.

This positivity and normalisation are exactly the hypotheses used in the
functional setting of Appendix A: they guarantee that the weighted Poisson
operator Lρ,Gϕ := −∇· (ρG∇ϕ) is symmetric and coercive on the mean zero
subspace, so that the KKT problem Lρ,Gϕ = v has a unique solution ϕ for
each mean zero tangent v in H−1

ρ (Ω).
• Irreversible metric and pairings. The mobilityG(x) is a symmetric, uniformly

elliptic and bounded matrix field,

G(x) = G(x)⊤, γmin |ξ|2 ≤ ξ⊤G(x) ξ ≤ γmax |ξ|2 for all ξ ∈ Rd, x ∈ Ω,

for some fixed 0 < γmin ≤ γmax < ∞. All scalar products on gradients use
the weighted pairing

⟨a, b⟩ρ,G :=
∫

Ω
ρ(x)G(x) a(x)·b(x) dx,

initially defined on H1(Ω) and then extended by density to the mean zero
subspace used in the KKT solve. This is the metric singled out earlier by the
cost entropy inequality and its equality cases: under these hypotheses the
irreversible drift is exactly the Wasserstein gradient flow virr = ∇· (ρG∇µ)
for µ = δF/δρ.

• Reversible channel and weighted Liouville condition. The reversible structure
is specified by an antisymmetric matrix field J(x) = −J(x)⊤ which satisfies
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the weighted Liouville identity

∇i
(
ρ(x) J ij(x)

)
= 0

in the sense of distributions, that is, each column of the tensor field ρJ is
divergence free with respect to Lebesgue measure. As shown in Lemma B.1,
this condition is equivalent to the statement that the reversible power
vanishes identically: for every sufficiently smooth test potential µ one has

Prev(ρ;µ) :=
〈
vrev, µ

〉
H−1

ρ
= 0,

so that the reversible component generated by J preserves the free energy
F [ρ] and does no work in the H−1

ρ geometry.
• Boundary classes. The spatial domain is either periodic, or a bounded

Lipschitz domain with boundary conditions chosen from the admissible
classes described in Appendix A. Concretely, we impose either periodic
boundaries, or no flux conditions for the irreversible and reversible fluxes,

ρG∇µ · n = 0, ρJ∇µ · n = 0 on ∂Ω,

or, in the assembled (ρ, S) picture, constant S on ∂Ω. These are exactly
the boundary classes for which integration by parts produces no boundary
contributions, so that the global mass balance and the no work identities
used in the metriplectic decomposition are valid without additional boundary
terms.

Commentary. Think of G as a local conductance and J as a local
rotator. The first moves you downhill. The second swirls you around
without changing height. We keep the rules simple and local so every
identity is checkable.

5.1 Geometry, operators, and the two certificates

5.1.1 Operators and geometry

Let F [ρ] be a free energy with chemical potential µ = δF/δρ. The weighted
Poisson operator, its KKT potential, and the two canonical velocity components
are

Lρ,Gϕ := − ∇ ·
(
ρG∇ϕ

)
, −Lρ,Gϕ = v,

vG := ∇ ·
(
ρG∇µ

)
, vJ := ∇ ·

(
ρ J ∇µ

)
.

It is convenient to package the symmetric and antisymmetric parts in

K := G+ i J, v = ∇ ·
(
ρK ∇µ

)
.

This notation is a mnemonic only, we do not assume any G-compatibility
of J unless stated. All scalar identities below are proved in the real ⟨·, ·⟩ρ,G

geometry together with the no-work property for J . See Appendix F for the
KKT characterisation of Cmin and the mean-zero gauge conventions.
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KKT solves, slice pulls, coarse graining and falsifier variants are provided in
the code archive in Appendix F.

Commentary. There is one current v. Writing v with G gives the
downhill part. Writing the same v with J gives the sideways part.
Putting them into K is just a tidy way to look at both at once.

5.1.2 Scalar certificates: equality on the irreversible ray, and no-work
for the reversible cone

Define the KKT potential ϕ by −Lρ,Gϕ = v. Define the control and production
functionals

2Cmin :=
∫
ρG∇ϕ·∇ϕdx, σ̇ :=

∫
ρG∇µ·∇µdx.

Equality dial (irreversible certificate). For any admissible v,

⟨v, µ⟩2 ≤ 2Cmin σ̇, R := ⟨v, µ⟩2

2Cminσ̇
= cos2θρ,G ∈ [0, 1].

In our sign convention vG = −Lρ,Gµ, hence −Lρ,Gϕ = vG gives ϕ = µ and
saturates R = 1.
Here θρ,G is the angle between ∇ϕ and ∇µ in the ⟨·, ·⟩ρ,G metric. The proof
is Cauchy-Schwarz in the weighted H−1

ρ (G) geometry together with the KKT
characterisation of Cmin.
Equality dial and controlled rotations are exercised in Appendix F.

No-work and H−1
ρ orthogonality (reversible certificate). If J = −J⊤

and ∇i(ρJ ij) = 0 then

⟨vJ , µ⟩ =
∫
µ∇ · (ρJ∇µ) dx = 0,

and, writing vG = ∇· (ρG∇µ) and vJ = ∇· (ρJ∇µ), the H−1
ρ (G) inner product

of the canonical pair vanishes:

⟨vG, vJ⟩H−1
ρ (G) = 0,

since the KKT potential for vG is ϕ = µ. See Appendix B for the algebraic
proof of the no-work identity and the H−1

ρ (G) orthogonality.

Equation (5.1.2) follows by one integration by parts under the weighted Liouville
identity: the boundary term vanishes, antisymmetry kills the quadratic term,
and the mixed derivatives cancel.
No-work checks, anomaly detection and repair shown in Appendix F.
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Commentary. Two numbers tell the whole story on a slice. The first
number R is how aligned you are with the downhill slope. It reaches 1
exactly when you go straight down. The second says the sideways part
does no-work at all. Together they pin down the split without ambiguity.

5.1.3 How to read the dials

Given a state ρ and a velocity v:

1. Solve Lρ,Gϕ = v on the mean-zero subspace to obtain the KKT slope.
2. Compute R from (5.1.2). Values near 1 indicate motion along the dissipative

axis, values near 0 indicate motion orthogonal to it.
3. Check the reversible certificate by measuring ⟨vJ , µ⟩ and the orthogonality.

Violations are linear in the size of ∇ · (ρJ) or in a mismatch of geometry.

These diagnostics are invariant under smooth relabellings when the operator
and pairings are pulled with full Jacobian weights, and they are stable under
grid refinement.

Commentary. Compute the slope that best explains v, measure its
angle to the free energy slope, and check that the swirl does no-work.
If any rule is broken, the numbers drop in a way that tells you exactly
which rule failed.

The full dial pipeline, including KKT solve, R and M reporting along v(η), is
packaged with slice pulls in Appendix F.

5.2 Complex pairing, modulus, and rotation

5.2.1 Complex pairing on a slice and the guarded modulus

We introduce a complex reader that measures one and the same current in two
quadratures. On a fixed state ρ define〈

∇ϕ,∇ψ
〉
C :=

∫
ρG∇ϕ · ∇ψ dx + i

∫
ρ∇ϕ · H[∇ψ] dx,

where H is a fixed linear, skew operator defined on the same discrete subspace
and grid as the KKT solve, as used in our diagnostics (a diagnostic reader for
the complex pairing; it need not coincide with the system’s intrinsic reversible
operator J satisfying the weighted Liouville identity).
The real part is the ⟨·, ·⟩ρ,G pairing that drives the equality certificate. The
imaginary part captures a transverse quadrature measured with a fixed skew
reader.
Define the complex modulus and the equality dial

M :=
∣∣⟨∇ϕ,∇µ⟩C

∣∣2
2Cmin σ̇

, R :=
(
ℜ⟨∇ϕ,∇µ⟩C

)2
2Cmin σ̇

= cos2 θρ,G.
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Always
0 ≤ R ≤ M.

If the imaginary quadrature is the metric Hodge rotation on the two-plane
spanned by {∇ϕ,∇µ}, then M ≤ 1 and equality holds. In our experiments the
fixed proxy H saturates to numerical floor on the irreversible ray and remains
within estimator tolerance along the controlled rotations described below.
The complex pairing and the associated moduli R and M are diagnostic
constructs on the tangent space. They quantify alignment within the
metriplectic split and are not introduced as physical observables.

Commentary. The complex pairing is a meter. Its real needle reads
the downhill share. Its imaginary needle reads the sideways share. The
total should not exceed one, and in our calibrated cases it sits right at
one within numerical tolerance.

The complex pairing reader is evaluated and operationalised; see Appendix F.

5.2.2 Optional compatible two-plane quadrature

For readers who prefer an exact modulus, one may define a local two-plane
complex structure Jµ at the given state by

⟨∇µ,∇µ⟩ρ,G = 1, ⟨∇µ, Jµ∇µ⟩ρ,G = 0, ⟨Jµ∇µ, Jµ∇µ⟩ρ,G = 1,

and extend Jµ by rotation on the plane span{∇µ,∇ϕ}, arbitrarily on its
orthogonal complement. Using the induced imaginary part

ℑ⟨∇ϕ,∇ψ⟩C :=
∫
ρG∇ϕ · Jµ∇ψ dx

yields the exact identity∣∣⟨∇ϕ,∇µ⟩C
∣∣2 = 2Cmin σ̇, that is M ≡ 1,

by construction. We do not require this construction for any theorem in the
paper; it serves to clarify when the modulus is pinned to one.

Commentary. If you choose the sideways direction to be exactly a
right angle to the downhill direction, then the two needles add up to a
perfect circle. That pins the total to one by definition.

5.2.3 Measurement protocol for M and R

Given a state ρ and a velocity v:

1. Solve Lρ,Gϕ = v on the mean-zero subspace to obtain the KKT slope.
2. Evaluate 2Cmin and σ̇ in the ρG pairing on the same discrete subspace as

the KKT solve.
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3. Compute ⟨∇ϕ,∇µ⟩C with the fixed proxy H on the same grid and subspace.
Report R and M jointly.

4. For diffeomorphic pulls use full Jacobian weights in both the operator
and the pairings. Report solver tolerances with grid refinement so that R
approaches one on vG and M remains at one within estimator floor.

Commentary. Same grid, same space, same weights. Solve once,
measure twice. The two numbers tell you what part is downhill and
what part is sideways.

Same-grid evaluations of 2Cmin, σ̇ and ⟨∇ϕ,∇µ⟩C implemented in Appendix
F.

5.2.4 Rotation along the η path

Consider the controlled path v(η) = (1 − η) vG + η vJ with η ∈ [0, 1]. Along
this path we observe that M remains at one within estimator floor while

R
(
v(η)

)
= cos2 θρ,G

(
η
)

decreases monotonically from 1 to near 0 as reversible content increases. This
confirms that, within the compatible two-plane geometry, the complex norm is
conserved while its real share rotates into the imaginary quadrature. The path
is a rotation of one current, not a splice of two models. We report the deviation
δM :=

∣∣M − 1
∣∣ along v(η) and its grid-refinement slope in Appendix F.

Commentary. Turn the knob and the needle swings from downhill to
sideways, but the total length stays the same. That is a clean rotation,
not a switch of machines.

Controlled path v(η) with joint reporting of M and R shown in Appendix F.

5.3 Relativistic assembly and slice covariance

We now show that the spatial metriplectic structure admits a natural covariant
packaging on a fixed background spacetime, and that the instantaneous
certificates are invariant under smooth relabellings of space. Throughout
this subsection the background Lorentzian metric is purely kinematic; all
dynamical structure still lives in ρ, G, J and the free energy F .
The Lorentzian formulation later is purely kinematic: the background metric g is
fixed, and no relativistic dynamics are claimed beyond the tensor transformation
rules used.

5.3.1 Complex four-current and conservation

Let (M, g) be a fixed time oriented globally hyperbolic spacetime with
Levi-Civita connection ∇ and background volume form dVg. We treat ρ as a
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strictly positive scalar density with respect to dVg so that ρ dVg is the physical
mass measure, with ∫

Σt

ρ dΣt = 1

for each Cauchy slice Σt. Indices are raised and lowered with gµν .
We take Gµν and Jµν to be smooth tensor fields with the following properties.

• Gµν = Gνµ is symmetric, uniformly bounded, and positive on spatial
directions: for every future pointing unit normal nµ to each Σt, one has
Gµνnν = 0 and there exist constants 0 < γmin ≤ γmax < ∞ such that

γmin hij ξ
iξj ≤ Gij ξiξj ≤ γmax hij ξ

iξj

for all spatial covectors ξ, where hij is the induced Riemannian metric on
Σt.

• Jµν = −Jνµ is antisymmetric and purely spatial in the same sense, with
the weighted Liouville condition

∇µ
(
ρ Jµν) = 0

interpreted in the distributional sense. Equivalently, each column of the
tensor density ρJµν is divergence free with respect to the Lebesgue measure
induced by g.

Given a smooth chemical potential µ : M → R we define the complex
four-current

jµ := − ρKµν ∇νµ, Kµν := Gµν + i Jµν .

We write
ℜjµ = − ρGµν∇νµ, ℑjµ = − ρ Jµν∇νµ.

Lemma 5.1 (Conservation of the reversible four-current). Under
the hypotheses above, for every smooth µ one has

∇µ
(
ℑjµ) = 0.

Proof. Compute

∇µ
(
ℑjµ) = ∇µ

(
ρ Jµν ∇νµ

)
=
(
∇µ(ρJµν)

)
∇νµ+ ρ Jµν ∇µ∇νµ.

The first term vanishes by the weighted Liouville identity (5.3.1). Since ∇
is torsion free the Hessian ∇µ∇νµ is symmetric under exchange of µ and ν,
whereas Jµν is antisymmetric, so

Jµν ∇µ∇νµ = −Jνµ ∇µ∇νµ = −Jµν ∇µ∇νµ

and hence Jµν ∇µ∇νµ = 0. The second term therefore vanishes and the result
follows.

The real part encodes the dissipative divergence. In general ∇µ(ℜjµ) does not
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vanish. On each time slice Σt with unit normal nµ we decompose ℜjµ into
normal and tangential parts

ℜjµ =
(
j⊥)nµ + jµ

∥ , nµj
µ
∥ = 0,

and define the spatial irreversible flux by vi := ji
∥ in adapted coordinates. A

short calculation using the Gauss formula and the fact that Gµν is purely
spatial shows that the spatial divergence of ℜjµ on Σt is exactly the weighted
divergence generated by the operator

Lρ,Gϕ = − ∇i
(
ρGij ∇jϕ

)
studied in Sections 5.1.1 and 5.2.1. In particular, writing µt = δF/δρ on each
slice, the metriplectic irreversible evolution

∂tρ = ∇i
(
ρGij ∇jµt

)
= −Lρ,Gµt

can be rewritten as the local conservation law

∂tρ+ ∇i
(
ℜji) = 0, ℜji = − ρGij ∇jµt,

for the real part of the four-current (5.3.1), , while the reversible part is encoded
in the conserved imaginary current of Lemma 5.1.
Finally, the complex pairing used for the equality certificates can be lifted to
spacetime by

⟨∇ϕ,∇µ⟩ρ,K :=
∫

Σt

ρKij ∇iϕ∇jµdΣt,

which reduces on each slice to the spatial complex pairing already used in the
definition of the equality dial R and the modulus M. The same operator Lρ,G

and the same pairing therefore arise as spatial sections of a single complex
four-current jµ.

Commentary. In spacetime language there is one complex current.
Its real part gives the downhill irreversible flux and enters the continuity
equation, while its imaginary part is a conserved sideways current fixed
by the weighted Liouville condition. Taking a time slice recovers exactly
the spatial operators and pairings already used for the equality and
no-work certificates.

5.3.2 Slice covariance under smooth relabellings

We now formalise the statement that the instantaneous certificates depend
only on the geometry induced by (ρ,G, J) and not on a particular coordinate
chart on a spatial slice.
Let Σ be a fixed time slice with local coordinates x, and let y = y(x) be a
smooth diffeomorphism of Σ with Jacobian matrix Dy(x) and determinant
Jacy(x) := detDy(x). We define the pushed fields on the y chart by the
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standard tensorial rules

ρ′(y) := ρ(x)
Jacy(x) , G′ij(y) := ∂yi

∂xk

∂yj

∂xℓ
Gkℓ(x), J ′ij(y) := ∂yi

∂xk

∂yj

∂xℓ
Jkℓ(x),

with the scalar potential µ pulled by composition, µ′(y) := µ(x). The spatial
volume form transforms as dx = Jac−1

y (x) dy, so that ρ dx = ρ′ dy.

Proposition 5.2 (Slice covariance of the certificates). Under the
change of variables (5.3.2) the spatial operator Lρ,G, the real pairing ⟨·, ·⟩ρ,G,
and the complex pairing ⟨·, ·⟩ρ,K are invariant in the following sense.
(a) For every mean-zero test function ϕ one has

Lρ,Gϕ(x) = Lρ′,G′ϕ′(y)
∣∣
y=y(x), ϕ′(y) := ϕ(x).

(b) For every pair of gradients ∇ϕ, ∇µ on Σ one has∫
Σ
ρG∇ϕ · ∇µdx =

∫
Σ
ρ′G′ ∇yϕ

′ · ∇yµ
′ dy,

and similarly for the complex pairing with K = G+ iJ .
Consequently the equality dial R and the modulus M, which are constructed
from these pairings and from the KKT potentials associated with Lρ,G, are
invariant under smooth relabellings of the spatial slice.

Proof. The transformation rules (5.3.2) are exactly those of a scalar density ρ
and rank two contravariant tensors Gij , J ij . A direct change of variables gives∫

Σ
ρGij ∇iϕ∇jµdx =

∫
Σ
ρ′(y)G′ij(y) ∇yiϕ

′(y) ∇yjµ
′(y) dy,

since the Jacobian factors from dx and from ρ′ and G′ cancel exactly. The
same holds for the complex pairing with K.
For the operator, recall that Lρ,Gϕ = −∇i(ρGij∇jϕ) is defined as the
divergence of the flux density ρG∇ϕ. Because both ρ and G transform as
above, and because the covariant divergence of a vector density is intrinsic,
one finds Lρ,Gϕ = (Lρ′,G′ϕ′) ◦ y. The construction of the KKT potential for
a given tangent v only uses Lρ,G and the pairing ⟨·, ·⟩ρ,G on the mean-zero
subspace, so the potential and all quadratic forms built from it are invariant
under the relabelling. The equality dial R and the modulus M are ratios of
such quadratic forms and are therefore invariant.

Practical note. In all reported numerical tests we discretise both the original
and the relabelled slice on the same uniform grid, perform the KKT solve
and all real and complex pairings on the corresponding mean-zero subspace
with respect to the pushed measure ρ′ dy, and apply identical finite difference
stencils and spectral de-aliasing. Under these conditions the equality dial R
and the modulus M agree between the two charts to numerical floor, in line
with Proposition 5.2.
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Commentary. You can smoothly relabel space, push forward ρ, G,
J and the potentials with the correct Jacobian weights, and recompute
everything. The operator Lρ,G, the complex current jµ and the
instantaneous dials R and M do not care about the chosen coordinates,
only about the underlying geometry encoded by (ρ,G, J).

5.4 Linear response and loop phase

5.4.1 Linear response, causality, and Kramers-Kronig

Linear response is computed from the resolvent of the linearised generator on
a fixed Fourier mode k. The resolvent is taken on the H−1

ρ (G) tangent with
energy pairing ⟨·, ·⟩ρ,G. For a harmonic probe at frequency ω,(

iωI − Lk

)
δ̂ρ = B̂ µ̂, χ(ω, k) := ⟨∇ϕ,∇µ⟩C,

where −Lρ,Gϕ = δv is the KKT solve for the induced velocity δv and the
complex pairing uses the same discretisation and weights as in Section B.

Causality and analyticity guard. Assume the resolvent exists and the
response is causal and stable so that χ(ω, k) is analytic in the upper half-plane
{ℑω > 0}. Then the Kramers-Kronig relations link the two quadratures in
frequency:

ℜχ(ω, k) = 1
π

p.v.
∫ ∞

−∞

ℑχ(ω′, k)
ω′ − ω

dω′, ℑχ(ω, k) = − 1
π

p.v.
∫ ∞

−∞

ℜχ(ω′, k)
ω′ − ω

dω′.

Operationally, a single scale factor κH is applied once per grid to account for
the discrete estimator used in H.

Measurement protocol. Fix k, choose a grid of frequencies {ωj}. For each
ωj solve one KKT system to obtain ϕ, then evaluate χ(ωj , k) = ⟨∇ϕ,∇µ⟩C
on the same subspace and report ℜχ,ℑχ. Compare ℑχ against the Hilbert
transform of ℜχ with a single calibration factor.

Commentary. Shake the system at a chosen pitch and watch two
needles: in-phase and out-of-phase. If the response is causal, the two
are tied together by a standard integral link. We compute both with the
same ruler so they can be trusted.

Frequency sweeps, resolvent solves and KK comparison in Appendix F.

5.4.2 Geometric phase on slow parameter loops

Let λ = (λ1, λ2) denote two slow external controls, for example background
amplitude and reversible phase. Along a quasi-static loop λ(s), s ∈ [0, 1], define

29



the loop phase of the reader by

Φ[λ] := unwrap arg
(

⟨∇ϕ(λ),∇µ(λ)⟩C
)
.

Empirically, Φ accumulates a small but nonzero total that flips sign under loop
reversal and scales with enclosed area for small loops. The phase is invariant
under µ 7→ µ+ const and shifts by a boundary term under µ 7→ µ+ ∂sΛ(λ).

Operational recipe. Trace a small rectangle in (λ1, λ2)-space, sample the
complex pairing at the four corners and along the edges, unwrap the phase,
and compare the total for opposite orientations.

Commentary. Change two knobs in a loop. When you come back, a
tiny extra angle remains. Reverse the loop and the sign flips. This is
the simplest fingerprint of underlying curvature.

Loop phase and winding measurements assessed in Appendix F.

5.5 Holonomy, coarse graining, and path cost

We now assemble three simple diagnostics that use the complex reader beyond
a single slice: holonomy on a two parameter control family, its behaviour under
coarse graining, and the path cost associated with the metric generated by
Lρ,G. All three are implemented with the same KKT machinery and pairings
as in the previous subsections.

5.5.1 Holonomy of the complex reader on a control rectangle

Let λ1 = a be the amplitude of a background density modulation and λ2 = θ a
mixing angle in a two plane spanned by irreversible and reversible velocities. On
each point λ = (a, θ) we fix a smooth state ρλ and compute the corresponding
chemical potential µλ, induced current vλ and KKT slope ϕλ as before. The
complex reader

Z(λ) :=
〈
∇ϕλ,∇µλ

〉
C

is then evaluated on a uniform grid in (a, θ).
On this grid we define a discrete Berry curvature by summing phase increments
of Z around each elementary plaquette,

Fmn := ∆ argZmn

with the usual branch choice for the complex logarithm, and a Chern number
estimator

C := 1
2π
∑
m,n

Fmn.

In the smooth test family used here the reader is nonzero on the entire control
rectangle and |Z| remains bounded away from zero. Numerically we observe
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a smooth curvature map with total flux consistent with zero and a rounded
Chern index

C ≈ 0,
together with small KKT residuals and exact weighted Liouville diagnostics.
In other words, the assembled metriplectic structure lives in a topologically
trivial sector for these controls.
Holonomy maps, curvature plots and Chern estimates are reported in
17_holonomy_curvature_map.py.

Commentary. We treat amplitude and mixing angle as slow knobs,
read the complex pairing on a grid, and look at the phase around
each little square. In the family studied here the phase is smooth, the
total curvature cancels, and the Chern count comes out as zero within
numerical floor.

5.5.2 Coarse graining invariance of phase and curvature

To test robustness under coarse graining we construct a Gaussian smoothed
density ρ(ℓ) and corresponding irreversible velocity at a fixed coarse graining
length ℓ, using the same background modulation and reversible two plane. On
the same control grid we recompute the reader

Z(ℓ)(λ) :=
〈
∇ϕ(ℓ)

λ ,∇µ(ℓ)
λ

〉
C

with the KKT solve and pairings carried out on the coarse state.
We compare fine and coarse results by the phase difference ∆ argZ and the
modulus ratio |Z(ℓ)|/|Z| over the grid, together with the Berry curvature and
Chern estimates for both. In the regime tested here we find:

• The phase difference is small, with root mean square at the level of 10−4

radians.
• The Chern estimates for fine and coarse grids agree to numerical floor and

remain at C ≈ 0.
• The modulus ratio |Z(ℓ)|/|Z| is close to a constant over control space,

reflecting a nearly uniform rescaling of the reader by coarse graining.

This supports a simple picture: in the class studied here, coarse graining
modifies the overall strength of the complex reader while leaving its phase and
associated holonomy invariant within numerical tolerance. The topological
content, here trivial, behaves as an effective renormalisation group invariant.
Fine and coarse comparisons and curvature differences are implemented in
19_holonomy_coarsegrain_invariance.py.

Commentary. We blur the state and recompute everything. The
overall size of the complex reading changes by a nearly constant factor,
but the phase picture and the total curvature stay the same. The large
scale geometry is therefore insensitive to this level of smoothing.
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5.5.3 Synthetic monopole testbench

To check that the holonomy machinery is sensitive to genuine defects and not
only to smooth trivial configurations, we couple it to a synthetic complex field
on a control space that is independent of the metriplectic dynamics. On a
rectangular grid (λ1, λ2) ∈ R2 we prescribe

Zsyn(λ1, λ2) := exp
(
i arg(λ1 + iλ2)

)
e−α(λ2

1+λ2
2), α > 0,

which has a simple phase vortex at the origin and no singularities away from
zero.
Applying exactly the same plaquette based curvature estimator and loop
winding measurements as above, we recover

∑
F ≈ 2π, C ≈ 1,

for the total curvature, and loop windings n ≈ 1 for loops encircling the origin
and n ≈ 0 for loops that do not. This provides an explicit calibration of the
discrete Berry curvature and Chern estimators and a basic check that the
code path used on the metriplectic reader responds correctly when a single
controlled defect is present.
The synthetic testbench is provided in 22_holonomy_synthetic_monopole.py.

Commentary. We feed the same machinery a toy field with a known
phase vortex. The curvature sum comes out as one quantum, and loops
around the origin pick up one turn while distant loops do not. This
reassures us that the trivial Chern result in the metriplectic test family
is a property of that family, not a blind spot of the tool.

5.5.4 Path cost and entropy change

Finally we connect the equality dial and complex reader back to the metric
induced by Lρ,G. For a time dependent protocol ρt with induced instantaneous
velocity vt we define the instantaneous cost in the weighted H−1

ρ (G) geometry
by

C(t) := 1
2

∫
ρtG∇ϕt · ∇ϕt dx, −Lρt,Gϕt = vt,

and from this the path action and path length

A[ρ·] :=
∫ T

0
C(t) dt, L[ρ·] :=

∫ T

0

√
C(t) dt.

We compare two simple protocols that interpolate between the same initial
and final amplitudes astart and aend over the same time T : a linear schedule
and a gently wiggled schedule which adds an oscillatory component. In both
cases the Shannon entropy change ∆S is the same within numerical tolerance,
but the metric quantities differ by order one factors. In the representative runs
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reported here
Awiggle
Alinear

≈ 4, Lwiggle
Llinear

≈ 1.7,

with KKT residuals at solver tolerance.
This confirms that the H−1

ρ (G) metric induced by Lρ,G defines a genuine path
dependent cost that is not determined by the entropy change alone. The
present paper does not attempt a full optimality or speed limit theory, but
these simple protocols already show that within the same closure the geometry
picks out preferred paths at fixed endpoints and time. In this sense C(t) and
the induced action A[ρ·] play the role of a thermodynamic length functional
in the H−1

ρ (G) geometry, in parallel with the control space metrics studied
in [29–31].
Protocol generation, cost evaluation and entropy tracking are implemented in
20_protocol_cost_vs_entropy.py.

Commentary. We move between the same start and end states, in
the same time in two different ways. The entropy drop is the same, but
the metric cost is not. Straight paths are cheaper than wiggled ones in
the geometry fixed earlier, which is exactly what a meaningful distance
measure should report.

5.6 Minimal slice projections

5.6.1 Electrodynamic-like projection on a slice (Analogy)

In two dimensions write J ij(x) = c(x) ϵij and define uJ := J∇µ = cR90◦∇µ,
jJ := ρuJ , E := −∇µ, and B := c ρ. The continuity equation ∂tρ+∇·(ρuJ) = 0
gives

∂tB + ∇ ·
(
B uJ

)
= ρ ∂tc + ρ uJ · ∇c,

which vanishes only when c is constant in space and time. The Faraday-style
expression − ∇ ·

(
R90◦(BE)

)
is an analogy that relates structures on a slice

and is not asserted as an exact identity here.

Weighted Liouville and constant matrices. A spatially constant matrix
J0 satisfies ∇i(ρJ ij

0 ) = 0 only when ρ is constant. For variable ρ, a sufficient
Liouville-compatible choice is J(x) = c ρ(x)−1ϵ with constant c, for which
∇i
(
ρJ ij

)
= ∇i(c ϵij) = 0.

Anomaly falsifier. If the weighted Liouville law is violated, ∇i(ρJ ij) =
sj ̸= 0, the no-work identity acquires a source term

σ̇anom =
∫
sj ∂jµdx,
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which is detected as a linear rise in the reversible power. Restoring ∇· (ρJ) = 0
cancels the anomaly.
Slice projection, reversible power readouts and Maxwell-style checks in
Appendix F.

Scope of the analogy. This projection is a bookkeeping device on a slice.
It does not assert propagating density waves in the reversible sector within
the present closure. Wave-like behaviour requires extra structure beyond the
scalar density channel.

Commentary. On a flat sheet, E points downhill, B stores how strong
the swirl is, and the identity above looks like Faraday’s law with clear
source terms when you change the swirl strength. If you break the swirl
rule, the no-work meter lights up.

Anomaly injection and compensator construction implemented in Appendix F.

5.6.2 Optical-metric projection (Analogy)

Identify Lρ,G with the Laplace-Beltrami operator for the optical metric gij ∝
(ρG)−1. Two limits are useful.

Irreversible WKB optics. In the short-scale irreversible regime, packet
centres follow geodesics of g and focus where G increases. Quasistatic problems
reduce to the Poisson-type law

∇ · (ρG∇µ) = σ,

with σ an imposed source.

Reversible rays belong to the companion paper. Hamiltonian ray
dynamics for reversible packets and their phase transport are part of the linear
Schrödinger sector in the companion paper. We keep the reversible slice here
as incompressible transport without new ray claims.

Lensing analogy. Spatial gradients of ρG bend irreversible rays with
deflection angles consistent with optical lensing under the correspondence
n2 ∼1 + 2Φ/c2 and n = (ρG)−1/2. This is an analogy, not an extra claim about
the base dynamics.

Commentary. Treat (ρG)−1 as an index of refraction. Higher index
bends paths more. That gives a clean picture for the downhill flow and
a simple Poisson law for slow problems, while reversible ray stories live
next door in the companion paper.

Optical metric Poisson problems and lensing-style deflection in Appendix F.
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5.7 Covariant invariants, anomaly inflow, and quantised holonomy

5.7.1 Covariant form of the instantaneous invariants

Let (M, gµν) be a fixed background spacetime and let Σ be a spacelike
hypersurface with unit normal nµ and induced volume element dΣ. For tangent
vectors on Σ choose a unit vector tµ orthogonal to nµ in the measurement
direction. We package the slice pairing used for R and M into the covariant
form

⟨∇ϕ,∇µ⟩(Σ)
C =

∫
Σ
ρ
(
nµG

µν∇νϕnλ∇λµ+ i nµJ
µν∇νϕ tλ∇λµ

)
dΣ.

Its real part is the dissipative quadratic form that appears in the equality
certificate on the slice, while the imaginary part probes a transverse reversible
quadrature in the tµ direction.
Under the weighted Liouville condition

∇µ(ρJµν) = 0,

the reversible contribution defines a conserved current, in the sense that
changing the slice Σ by equal-time re-slicing or mild boosts that preserve the
measurement weights leaves the imaginary part of the pairing unchanged. In
particular, when the same (ρ,G, J) data are pulled to a new slice with the usual
tensor rules, the dial R and the modulus M constructed from ⟨∇ϕ,∇µ⟩(Σ)

C
agree between slices up to solver tolerance in the configurations we test.
Operationally, we implement these transformations by pulling (ρ,G, J) and the
scalar potentials to boosted or tilted slices, recomputing the KKT potential
on the corresponding mean-zero subspace, and re-evaluating the pairings with
the pushed measure. Within numerical floor the reported values of R and M
remain unchanged, in line with the covariant picture developed earlier for the
complex four-current.
Equal-time re-slicing and boost covariance checks are documented in Appendix
F, see in particular 12_covariance_boost.py.

Commentary. We can tilt the cutting plane in spacetime, push forward
the data with the correct tensor rules, and recompute the meters. The
two numbers stay put within numerical floor as long as the weighted
swirl rule holds, which is exactly what one expects from a conserved
current measured in a fixed geometry.

5.7.2 Anomaly inflow and cancellation

When the weighted Liouville law is violated,

∇i(ρJ ij) = sj ̸= 0,
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the reversible no-work identity acquires a source

σ̇anom =
∫
sj ∂jµdx.

This term is interpreted as an inflow from an auxiliary boundary current. If
there exists J ′ij = −J ′ji such that

∇i
(
ρ(J ij + J ′ij)

)
= 0,

then the anomaly cancels and the no-work certificate is restored. This provides
an explicit repair mechanism and a practical diagnostic for violation.

Commentary. If the swirl rule is broken, power leaks in. Add a
compensating swirl so the weighted rule holds again and the leak stops.

5.7.3 Holonomy, winding, and where quantisation appears

Let Γ ⊂ R2 be a loop in a two parameter control space, for example amplitude
and reversible mixing angle, and consider the complex reader

Z(λ) =
〈
∇ϕλ,∇µλ

〉
C

evaluated along λ ∈ Γ. The loop phase is defined by the unwrapped argument

Φ[Γ] := unwrap argZ(λ),

and the associated winding number

n[Γ] = 1
2π

∮
Γ
d argZ(λ)

is integer valued whenever Z is smooth and nonzero on Γ and has only isolated
zeros in the enclosed region.
In the smooth metriplectic test family studied here the reader remains
nonvanishing on the control rectangles we consider, the Berry curvature
integrates to zero, and discrete Chern estimates give C ≈ 0. Loops placed
inside this region therefore have zero winding. This is consistent with the
absence of defects in the chosen control class rather than a limitation of the
holonomy construction.
To see quantised holonomy explicitly with the same code path, we couple the
plaquette and loop machinery to a synthetic complex field on control space
with a single phase vortex. In that setting the total curvature sum yields C ≈ 1
and loops that encircle the vortex have n ≈ 1, while far loops have n ≈ 0.
This serves as a calibrated example of quantised holonomy within the present
framework.
Control space curvature maps, coarse graining stability, loop phases and the
synthetic monopole testbench are documented in 17_holonomy_curvature_map.py,
19_holonomy_coarsegrain_invariance.py and 22_holonomy_synthetic_monopole.py
in Appendix F.
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Commentary. In the metriplectic test family we actually use, the
complex reading stays smooth and never vanishes on the control
rectangles, so the net winding comes out as zero. The same machinery
sees a single quantum of curvature and unit winding as soon as we feed
it a simple vortex. Quantisation shows up when defects are present, and
the trivial case stays trivial.

5.8 Sectoriality and ultraviolet control

Linearising the dissipative generator about a smooth background with ρ > 0
and uniformly elliptic G gives a sectorial operator with real part bounded
above by a negative quadratic symbol. In Fourier variables,

ℜω(k) = −D2 |k|2 − D4 |k|4 + O(|k|6),

with D2 > 0 determined by the local coefficients and boundary class. The
reversible part is skew with respect to the energy pairing and does not change
the spectral abscissa. Consequently the resolvent admits sectorial bounds and
energy decays monotonically.
Composite quadratic observables built from the susceptibility χ(k) decay at
least as |k|−2 in the ultraviolet under the same hypotheses. See Appendix H
for Fourier-mode oracles and decay fits that illustrate these bounds.

Commentary. High frequencies are tamed by diffusion. The swirl
does not undo that because it is a perfect sideways motion. The standard
energy norms stay finite without any ad hoc fixes.

Scripts: For spectral fits and sectorial resolvent bounds and UV decay tests for
composite observables see Appendix F.

5.9 The emergent picture

One operator and one pairing fix the local geometry. Within that geometry
a single current is decomposed into two quadratures that are both directly
measurable. The dissipative sector carries an equality certificate that saturates
on the irreversible ray and a curvature coercivity bound on the H−1

ρ (G) unit
sphere. The reversible sector carries a no-work certificate and an orthogonality
statement in the same metric, encoded by antisymmetry and the weighted
Liouville identity. The complex reader ties the two into a single dial and a
guarded modulus on a compatible two-plane, without introducing any new
dynamical degrees of freedom.
The relativistic packaging is a kinematic lift of these slice statements: the same
operator Lρ,G and the same pairings appear as spatial sections of a complex
four-current whose imaginary part is conserved under the weighted Liouville
rule. Holonomy, loop phase and slice covariance all reduce to re-evaluating
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the same dials after pushing (ρ,G, J) to a new slice with the correct tensor
weights.
The role of the code archive is to certify this picture in a way that is accessible to
dynamics and quant-ph audiences. Each diagnostic is designed as a small, local
falsifier: equality on the irreversible ray, no-work in the reversible cone, slice
and boost covariance, coarse-graining commutators, holonomy and sectoriality.
When an axiom is relaxed the corresponding meter moves in a controlled way;
when all axioms hold the meters lock in and stay locked under refinement.

Commentary. At the end the picture is simple: one geometry, one
current, two clean readings. The same metres are used everywhere,
and the failure modes are mapped. This is the level at which
the reversible-dissipative split becomes directly testable rather than
schematic.

5.9.1 Validations

1. Equality dial. On v = vG the dial R saturates to one under grid refinement
and tighter solver tolerances. See 03_entropy_phase_eta.py in the code
archive in Appendix F.

2. Conserved modulus. With the fixed proxy H, the modulus M remains
pinned at one within estimator floor along the controlled rotation v(η),
with R decreasing monotonically. Compatible two-plane construction gives
M ≡ 1 by definition. See 03_entropy_phase_eta.py.

3. Kramers-Kronig response. Under the analyticity guard the measured
ℑχ(ω, k) matches the discrete Hilbert transform of ℜχ(ω, k) up to a single
calibration constant for the estimator. See 02_kk_resolvent.py.

4. Slice covariance. Under smooth relabellings with full Jacobian weights in
both operator and pairings, R and M are invariant to numerical floor on
matched subspaces. See 04_diffeo_slice.py.

5. Boost and equal-time re-slicing. Equal-time re-slicing and boost
covariance preserve R and M within solver tolerance when weights and
subspaces are matched. See 12_covariance_boost.py.

6. Coarse graining. Gaussian coarse-graining commutator defect scales as ℓ2
across a decade in ℓ with smooth filters. See 05_coarsegrain_commutator.py.

7. Sectoriality. The dissipative spectrum fits ℜω(k) ≈ −D2|k|2 − D4|k|4
with D2 > 0 over admissible backgrounds. See 08_sectoriality_scan.py.

8. Ultraviolet decay. Composite observables built from χ(k) obey at least
|k|−2 decay in the ultraviolet and require no external renormalisation within
the stated class. See 16_uv_sectoriality.py.

9. Loop phase and winding. Slow parameter loops exhibit a geometric
phase that flips sign under loop reversal and scales with enclosed area for
small loops. Winding number is integer stable away from branch points.
See 07_holonomy_loop.py and 14_holonomy_quantisation.py.

10. Slice projections. Electrodynamic and optical-metric projections
reproduce the advertised readouts on slices with the stated caveats. See
09_em_slice_2d.py, 11_maxwell_slice.py, 10_optical_metric_poisson.py,
15_optical_gravity_lensing.py.
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5.9.2 Falsifiers

1. Pulling G outside divergence. Replacing −∇ · (ρG∇·) by −ρ∇ · (G∇·)
collapses R. The gap 1−R grows with mobility contrast and grid refinement.
See 06_structure_falsifier.py.

2. Wrong tangent metric. Using a pairing not induced by ρG lowers both
R and M in proportion to the mismatch, even when the operator is correct.
See 06_structure_falsifier.py.

3. Nonsmooth filters. Box filters break the ℓ2 commutator law and introduce
spurious plateaus in the dial. See 05_coarsegrain_commutator.py.

4. Liouville violation. If ∇ · (ρJ) ̸= 0 then the reversible no-work identity
fails with a linear anomaly σ̇anom. See 09_em_slice_2d.py.

5. Anomaly inflow and repair. Introducing a compensator J ′ that restores
∇ ·

(
ρ(J + J ′)

)
= 0 cancels the anomaly and restores the certificate. See

13_anomaly_inflow.py.
6. Incompatible quadrature. A fixed imaginary reader not compatible with

the local two-plane structure lowers M away from one even along v(η). See
03_entropy_phase_eta.py.

Commentary. The checks are minimal, targeted and diagnostic.
When a rule is broken the meters move in a predictable way. When all
rules hold the meters lock in.

5.10 Limits and frontier map

Ellipticity and positivity. All identities are proved under ρ > 0 and
uniformly elliptic G. As either condition weakens, conditioning degrades
and numerical fronts appear. Trends in R and M remain monotone up to
the breakdown threshold. See 08_sectoriality_scan.py for spectral early
warning and 16_uv_sectoriality.py for UV behaviour.

Metric fidelity. The H−1
ρ (G) geometry is essential. Mismatched metrics

decouple information distance from free energy curvature and break the equality
dial in controlled ways. See 06_structure_falsifier.py.

Boundary classes. The stated boundary classes remove boundary terms.
Other classes may require correctors and are out of scope here. Slice projections
document boundary effects explicitly. See 11_maxwell_slice.py.

Commentary. The rules live inside a safe box. Near the edges the
numbers get noisy first, then fail. We map where that happens and how
it shows up in the meters.
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5.11 Minimal reproducibility kit

Domain and discretisation. Periodic domain, Fourier de-aliasing at the two
thirds rule, mean-zero KKT solve, pairings on the same discrete subspace, and
full Jacobian weights for diffeomorphic pulls. See 03_entropy_phase_eta.py
and 04_diffeo_slice.py.

Solver tolerances. Report linear solver residuals and grid refinement. In
our runs R on vG pins to one within 10−6 to 10−8 and M remains at one
within estimator floor along v(η). All numbers are reported with identical
stencils and weights.

Response and phase tools. Resolvent based χ(ω, k) with one KKT solve
per frequency and KK comparison with a single calibration factor for the
discrete Hilbert transform. Loop phase reads the unwrapped argument of
⟨∇ϕ,∇µ⟩C and its sign flip under loop reversal. See 02_kk_resolvent.py and
07_holonomy_loop.py.
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6 Fisher scalar sector, illustration and interpretation

Having assembled the symmetric and antisymmetric mobility blocks in 5 into a
single dial-and-modulus picture over the (ρ, S) hydrodynamics, we now record
a scalar sector built from the same density, the same weighted operator Lρ,G

and the same Fisher quadratic forms.
The aim of this section is modest: to show that, once the local Fisher geometry
on coarse-grained densities is fixed by the metriplectic axioms, one can write
down an internally consistent scalar channel whose static, weak-field limit
reproduces the Newtonian Poisson law, and whose dynamics can be coupled
back to the Madelung sector through an effective potential. No new operators
are introduced beyond Lρ,G, and we stay within a scalar, weak-field, effective
description rather than attempting a full tensor theory of gravity.
For clarity, the scalar Fisher sector developed here is an effective, weak-field
analogue of Newtonian gravity within the fixed Fisher geometry on densities
only. We make no grand assertions.
All scalar-sector identities and examples reported here are reproduced and
tested in the accompanying script see:
Appendix F, script 25_fisher_scalar_gravity_checks.py.

6.1 Static Fisher equation on densities

We work with the scalar case G = I on a spatial slice Ω ⊂ R3 equipped with
a strictly positive coarse-grained density ρ and a matter density ρm. The
weighted Poisson operator of Section 6.1.1 becomes

Lρφ := −∇ · (ρ∇φ).

We postulate that the log density

ϕ := log ρ

ρ0
,

acts as a scalar potential sourced by the matter density via

Lρϕ = κ ρm, κ > 0,

with ρ0 a reference density and κ a coupling constant. We fix throughout this
section a uniform reference density ρ0 > 0; all weak-field scalar expansions
below are taken about this constant background.
A short identity reduces (6.1) to an ordinary Poisson equation for ρ.

Lemma 6.1 (Density form of the Fisher equation). For ϕ defined
by (6.1) one has

∇ · (ρ∇ϕ) = ∆ρ,
and hence

Lρϕ = −∆ρ.
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Proof. Writing ρ = ρ0e
ϕ gives ∇ρ = ρ∇ϕ and ∆ρ = ∇ · (ρ∇ϕ), which is (6.1).

The definition (6.1) then yields Lρϕ = −∇ · (ρ∇ϕ) = −∆ρ.

Combining (6.1) with (6.1) gives

∆ρ = −κ ρm.

Thus the static Fisher equation is equivalent to a Poisson equation for the
coarse-grained density, sourced by the matter density.

6.2 Effective potential and Newtonian limit

To compare with Newtonian gravity we define an effective potential

Φeff := −c2

2 ϕ = −c2

2 log ρ

ρ0
.

The associated acceleration field is

g := −∇Φeff = c2

2 ∇ϕ.

Using Lemma 6.1 one obtains

∇ · (ρg) = c2

2 ∇ · (ρ∇ϕ) = c2

2 ∆ρ.

In terms of Φeff the static Fisher equation (6.1) reads

− 2
c2 LρΦeff = κ ρm.

For later use it is convenient to record the exact relation between Φeff and ρ.
From (6.2),

∆Φeff = −c2

2 ∆ log ρ

ρ0
= −c2

2

(
∆ρ
ρ

− |∇ρ|2

ρ2

)
.

The second term is quadratic in ∇ρ and is small when |∇ρ|/ρ is small on the
scales of interest.
In a weak field, slowly varying regime where ρ is close to a constant background
ρ0 one may write ρ = ρ0 + δρ with |δρ| ≪ ρ0 and |∇δρ| small on the scale of
interest. To first order in the perturbation,

ϕ ≈ δρ

ρ0
, Φeff ≈ −c2

2
δρ

ρ0
, ∆Φeff ≈ − c2

2ρ0
∆δρ.

Using (6.1) with ρ = ρ0 + δρ and ∆ρ0 = 0 one has ∆δρ = −κ ρm, so (6.2)
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yields

∆Φeff ≈ c2

2ρ0
κ ρm.

Matching the Newtonian Poisson equation ∆ΦN = 4πGρm in this regime fixes

c2

2ρ0
κ = 4πG, κ = 8πG

c2 ρ0.

In this scalar sector we adopt the mass-density interpretation: ρ is a
coarse-grained mass density up to an overall constant factor, and the scalar
coupling κ absorbs both this factor and the 4πG/c2 prefactor from the
Newtonian Poisson equation. Thus the Fisher scalar sector reproduces the
Newtonian Poisson equation for Φeff on slowly varying backgrounds after a
single calibration of κ against a reference density ρ0.
Commentary. The weighted operator Lρ that controls cost, entropy production
and curvature also links a log density potential to the Newtonian Poisson
equation in a controlled weak field limit.

6.3 Self sourced branch and Fisher star

Even when ρm is independent, (6.1) admits branches where the coarse grained
density itself plays the role of the source. A simple model sets

ρm = λ ρ, λ > 0,

so that (6.1) becomes the Helmholtz equation

∆ρ+ λκ ρ = 0.

For a static spherically symmetric configuration ρ = ρ(r) with r = |x|, (6.3)
reduces to

1
r2

d

dr

(
r2dρ

dr

)
+ λκ ρ = 0.

The regular solution at the origin is

ρ(r) = ρc
sin(

√
λκ r)√
λκ r

, 0 ≤ r ≤ R,

with central density ρc and radius

R = π√
λκ

defined by the first zero of the sine. This is the classical n = 1 Lane-Emden
profile.
The total mass is

M = 4π
∫ R

0
ρm(r) r2dr = 4πλ

∫ R

0
ρ(r) r2dr = 4πλρc√

λκ

∫ R

0
r sin(

√
λκ r) dr.
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Evaluating the integral explicitly gives

M = 4π2ρc

κ3/2
√
λ

= 4λ
π
ρcR

3,

Commentary. The self sourced Fisher branch reproduces a standard polytropic
profile and ties the radius and mass to the same coupling that appears in the
weak field limit. No additional operators are required beyond Lρ.

6.4 Dynamic Fisher equation and coupling to Madelung

The Madelung companion paper develops a reversible dynamics on a pair (ρ, S)
where ρ is a probability density and S a phase. The assembled hydrodynamic
fields satisfy a continuity equation and a Hamilton-Jacobi equation regularised
by Fisher curvature. It is natural to extend that reversible system by a scalar
field ϕ governed by a Fisher-type action built from the same density and
weighted operator as in the static scalar sector.
At the level of an effective field theory on a fixed background we may take an
action of the schematic form

A[ρ, ϕ] =
∫
dt

∫
Ω

[
χ

2 ρ (∂tϕ)2 − ηc2

2 ρ |∇ϕ|2 + κ

2 ρm ϕ

]
dx,

with positive constants χ and η. Variation with respect to ϕ yields a dynamic
Fisher equation

χ∂t(ρ ∂tϕ) − ηc2 ∇· (ρ∇ϕ) = κ

2 ρm,

or, in terms of the weighted operator Lρ,

χ∂t(ρ ∂tϕ) + ηc2 Lρϕ = κ

2 ρm.

Static solutions with ∂tϕ = 0 reduce to

Lρϕ = κeff ρm, κeff := κ

2 ηc2 ,

so the dynamic sector matches the structure of (6.1) and stays within the same
elliptic class used for the cost and curvature identities.
Coupling to the Madelung sector proceeds by taking the same coarse-grained
density ρ in the action (6.4) and in the continuity equation, and by allowing the
effective potential Φeff defined in (6.2) to enter the Hamilton-Jacobi equation
as an external potential. Schematically, one replaces

∂tS + |∇S|2

2m + V +Q[ρ] = 0 by ∂tS + |∇S|2

2m + V +Q[ρ] +mΦeff = 0,

so that the log-density potential acts on the phase through mΦeff .
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Commentary. The reversible Madelung dynamics and the Fisher scalar field
can be written over the same density and the same weighted operator Lρ.
The scalar sector is introduced as an additional structure compatible with the
existing information geometry, and is kept within a scalar, weak-field, effective
description rather than promoted to a separate or complete theory of gravity.

6.5 Microscopic meaning of ρ and Fisher geometry

The density ρ enters both the metriplectic geometry and the Fisher scalar
sector as a coarse grained object. A microscopic interpretation can be given in
terms of relative entropy between nearby macrostates.
Consider a family of microscopic configurations X with probability measures
Pθ indexed by macroscopic parameters θ ∈ Θ. Coarse graining to macrostates
induces a family of densities ρθ on Ω and an associated relative entropy

S(θ∥θ′) =
∫

Ω
ρθ(x) log ρθ(x)

ρθ′(x) dx.

The Fisher information matrix on parameter space is

Iab(θ) =
∫

Ω
ρθ(x) ∂θa log ρθ(x) ∂θb log ρθ(x) dx.

This is the classical Fisher-Rao information metric on statistical manifolds
[37, 38]. In the continuous density picture the quadratic form

I[φ] =
∫

Ω
ρ(x) |∇φ(x)|2dx

is the Fisher information of a local perturbation δρ = ρφ. This is the quadratic
form that defines the H−1

ρ metric and the control cost in the metriplectic
theory. The same quadratic form appears in the kinetic and gradient terms of
the Fisher scalar field.
Commentary. At the microscopic level the Fisher functional that governs
dissipation, curvature and control cost is also the object that measures
distinguishability between nearby macrostates. In the scalar sector it measures
the cost of deforming the log density potential.

6.6 Fisher metric on metrics and the DeWitt quadratic form

The Fisher information construction can be extended to the space of metrics.
Consider a family of Gaussian random fields on a background spatial manifold
with metric gij , with covariance controlled by gij . Perturbing the metric by
hij changes the log likelihood, and the Fisher information on the space of
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symmetric tensors (hij) takes the form

G(h, h) = α

∫
Ω

(
hijh

ij + β (hi
i)2
)√

det g dx,

for suitable constants α > 0 and β. This has the same algebraic structure, up
to constants, as the DeWitt quadratic form on metric perturbations used in
canonical gravity [39].
Commentary. A Fisher metric constructed from a Gaussian field model over a
spatial slice has the same algebraic structure as the standard DeWitt quadratic
form on metric perturbations. This observation relates a familiar Fisher
construction to the configuration space metric used in canonical gravity, without
requiring any additional hypotheses.

6.7 Remarks and limitations

The constructions above stay within a scalar sector built from the same
density, the operator Lρ and the Fisher quadratic forms that appear in the
metriplectic theory. The static Fisher equation reduces to a Poisson equation for
ρ, reproduces the Newtonian Poisson equation for Φeff in a weak-field, slowly
varying regime after a single calibration, and admits self-sourced polytropic
profiles with controlled radius and mass. The dynamic Fisher equation and its
coupling to the Madelung sector show that the same ingredients can support a
scalar field acting on the phase through an effective potential. The emergence
of a Newtonian-type potential from information-theoretic structure is in the
same broad spirit as entropic gravity proposals [41], although our construction
remains strictly within a scalar Fisher sector on coarse-grained densities.
We do not attempt to derive the full Einstein equations, to model realistic
equations of state, or to address astrophysical phenomenology beyond simple
weak-field and polytropic regimes. Embedding the present scalar channel into
a full relativistic framework, or confronting it systematically with data, would
require additional structure that lies outside the axioms of this paper. In the
same spirit, the Fisher metric on metrics and its DeWitt-type quadratic form
are recorded as a geometric echo of standard constructions rather than as a
proposal for a new fundamental theory.
The purpose of this section is therefore limited but concrete: once the Fisher
geometry on densities is fixed by the metriplectic closure, there is a natural
scalar sector aligned with the Newtonian limit that can be written down without
introducing further operator machinery. It provides a worked example of how
standard gravitational analogies can be expressed within the same information
geometry as the dissipative channel, while keeping the scope explicitly effective
and scalar.
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7 Conclusion

The companion paper isolates the reversible corner and its Fisher curvature; the
present work fixes the dissipative channel and records which identities survive
locally once G and the boundary class are specified. Within the common
information-geometric conventions, the two papers can be read as a single
Fisher-regularised information hydrodynamics on (ρ, S): the reversible sector is
forced to the Fisher-Schrödinger structure, while the present work determines
a compatible metriplectic geometry and its instantaneous diagnostics. Read
together, they provide a minimal reversible dissipative split in which one current
is decomposed into two quadratures with explicit certificates on both sides,
under stated axioms only.
On the dissipative side, a single weighted operator Lρ,G and pairing ⟨·, ·⟩ρ,G

fix the geometry. The equality dial saturates exactly on the gradient-flow ray
virr = ∇· (ρG∇µ), with ⟨virr, µ⟩2 = 2Pirrσ̇ as in the main cost-entropy identity;
curvature coercivity controls the local Hessian on the H−1

ρ (G) unit sphere, and
the quadratic control cost provides a slice-local reader. These three scalars are
instantaneous and insensitive to the reversible bracket at fixed density, and
they come with targeted falsifiers that trip as soon as symmetry, ellipticity,
positivity, or the tangent model is altered.
On the reversible side, the no-work certificate and H−1

ρ (G) orthogonality
characterise the cone defined by antisymmetry and the weighted Liouville
identity. In the companion study this structure supports the Fisher curvature
and the linear Schrödinger completion, with independent falsifiers built from
residual diagnostics, symmetry algebra and superposition tests. In this joint
reading, the Schrödinger equation appears as the reversible fixed point of
Fisher-regularised information hydrodynamics, while the present paper supplies
a metriplectic closure and irreversibility diagnostics that are compatible with
it without extending the axioms.
The assembled linear-response and holonomy picture stays local and under
control. Linear response obeys a Kramers-Kronig relation under an analyticity
guard; sectoriality and ultraviolet behaviour are quantified on a fixed slice; slow
loops in control space carry a small geometric phase with integer winding away
from branch points. All of these statements are realised by the same KKT
machinery and complex reader used for the equality dial. They offer concrete
observables that can, in principle, be compared to numerical simulations or
experiment-adjacent models in dissipative and quantum settings, without
changing the underlying closure.
The Fisher scalar sector fits into the same frame as an optional application
slice. Using the weighted operator Lρ,G and the Fisher quadratic form on
coarse-grained densities, we recorded a log-density potential with a controlled
Newtonian limit, self-sourced polytropic profiles, and a simple dynamic Fisher
equation that can be coupled back to the Madelung Hamilton-Jacobi equation
as an effective potential. The reversible Madelung dynamics and the Fisher
scalar field share the same density and the same weighted operator; the scalar
sector is introduced as an additional structure compatible with the existing
geometry rather than as a separate theory, and is kept within a scalar, weak-field
regime.
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Outlook remains local and under guard. A natural next step is to delimit
the minimal hypotheses behind the metriplectic closure itself, test additional
boundary classes with the same dial-and-modulus readers, and compare with
alternative tangent models in discrete and quantum contexts, such as quantum
Markov semigroups and Lindblad generators, where entropy-curvature relations
take different but related forms. We make no uniqueness or global equivalence
assertions. Within scope, the assembly supplies a compact set of slice identities,
diagnostics and repairs that render the reversible-dissipative split operationally
testable in computation and experiment-adjacent numerics; identifiability of J
from F -based scalars alone is not claimed.
Taken together with the reversible analysis of The Converse Madelung
Question, the present work provides a minimal reversible-dissipative pair
built on a common Fisher geometry. Quantum dynamics, linear response
and a simple scalar sector can all be expressed over this shared structure
without expanding the axioms, offering a small but coherent step towards an
information-geometric view of reversible and irreversible dynamics within the
quant-ph and neighbouring communities. Fisher-information and entropic
derivations of quantum mechanics [35, 36, 40] provide important context: here
the Fisher sector and its Schrödinger completion arise as necessity statements
inside a metriplectic and hydrodynamic framework, rather than as independent
postulates.

8 Related work and context

Our setting overlaps with classical metriplectic and GENERIC constructions
(symmetric G, antisymmetric J , entropy production). Our contributions
include:
(i) an equality-saturated cost-entropy inequality in the weighted H−1

ρ (G)
geometry,
(ii) curvature coercivity bounds linking Fisher curvature to minimal H−1 path
cost, and
(iii) operational falsifiers (equality dial, coarse-grain commutator, complex
quadratures) that make the metriplectic structure numerically testable on
coarse-grained quantum densities.
Metriplectic and GENERIC frameworks ground nonequilibrium thermodynamics
[2–5]. Optimal transport and the Otto calculus give the tangent geometry for
diffusion, displacement convexity, and curvature bounds, with the dynamic
fluid formulation and convexity principles due to Benamou-Brenier and
McCann, Otto’s porous-medium gradient flow, and AGS as the standard
monograph [6–9, 13–16].
Stability of gradient flows under Γ-convergence is classical [17, 18]. Log-Sobolev
and transport inequalities support curvature and EVI viewpoints [19–21].
Metric-measure lower curvature provides a complementary framework [22–24].
Our curvature-coercivity estimator in Appendix H tracks observed relaxation
rates on the heat-flow oracle and matches the uniform-state Fourier anchor.
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Parallel settings include unbalanced transport via Hellinger-Kantorovich when
mass is not conserved [27, 28], thermodynamic length for optimal dissipation in
control [29–31], and geometric mechanics and double bracket dissipations [32–
34]. In our setting the H−1

ρ (G) path cost and length in Sec. 5.5.4 provide the
analogous state space geometry for density protocols. The companion paper
develops the reversible classification and the role of Fisher curvature with
operational falsifiers [1].
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A Boundary classes, regularity, and gauges

Domain and admissible boundaries. Let Ω ⊂ Rd be either a d-torus
(periodic box) or a bounded Lipschitz domain with outward unit normal n.
We work in one of the following boundary classes:

(A1) Periodic: fields are periodic and all integration by parts identities hold
without boundary terms.

(A2) No-flux: the physical flux j satisfies j · n ≡ 0 on ∂Ω, hence
∫

Ω ∇· j dx = 0.
Unless explicitly stated, all statements in the main text are scoped to (A1) or
(A2). Dirichlet or inflow boundaries are outside scope, see Section 4 for the
precise identities that fail there. All integration by parts identities used in the
paper are justified only within these admissible classes.

State and regularity class. The state is a strictly positive density ρ : Ω →
(0,∞) with

ρ ∈ H1(Ω),
∫

Ω
ρ dx = M > 0, ρmin ≡ ess inf

Ω
ρ ≥ ε > 0.

We write L2
#(Ω) for mean zero functions on Ω. The positivity lower bound ε is

a scope parameter and appears in the coercivity constants below. In numerics
we monitor ρmin and declare the diagnostics out of scope if ρmin < ε.

Free energy and chemical potential. The free energy F [ρ] is Fréchet
differentiable on the positive cone and defines the chemical potential

µ = δF

δρ
up to an additive constant.

Only ∇µ appears in the dynamics and in the power balances, hence the constant
gauge in µ is irrelevant. When needed, we fix

∫
Ω µdx = 0.

Weighted Poisson operator and coercivity. Define the weighted Poisson
operator Lρ : H1(Ω)/R → H−1(Ω) by

Lρϕ = − ∇· (ρ∇ϕ),

with domain consisting of mean zero H1 functions in the periodic case, and
of H1 functions with ∇ϕ · n = 0 in the no-flux case. For ϕ, ψ in the domain,
integration by parts yields

⟨ϕ,Lρψ⟩ =
∫

Ω
ρ∇ϕ · ∇ψ dx = ⟨ψ,Lρϕ⟩,

so Lρ is symmetric and nonnegative. Moreover,∫
Ω
ρ |∇ϕ|2 dx ≥ ρmin

∫
Ω

|∇ϕ|2 dx ≥ cP (Ω) ρmin ∥ϕ∥2
H1/R,
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where cP (Ω) > 0 is a Poincaré constant that depends only on Ω and the
boundary class. Hence Lρ is coercive on mean zero potentials, with coercivity
constant proportional to ρmin.

H-1 pairing and uniqueness of potentials. For v ∈ H−1(Ω) with zero
mean, the Riesz map induced by Lρ defines the weighted H−1 norm

∥v∥2
H−1(ρ) = inf

ϕ∈H1/R

{∫
Ω
ρ |∇ϕ|2 dx : v = ∇· (ρ∇ϕ)

}
.

Coercivity in (A) implies existence and uniqueness of the potential ϕ solving
∇· (ρ∇ϕ) = v, modulo constants. We always fix the mean-zero gauge on ϕ.
This is the unique potential used in the cost functional and in duality estimates.

Conservative divergence form and mass conservation. Let j = ρ u be
any flux with u ∈ L2(Ω)d. The conservative update is ∂tρ = −∇· j. In classes
(A1) and (A2),

d

dt

∫
Ω
ρ dx = −

∫
Ω

∇· j dx = −
∫

∂Ω
j · ndS = 0,

so total mass is conserved. All variational statements in the main text are
written in divergence form to preserve this identity at the discrete level as well.

Irreversible and reversible fluxes. Within the admissible class, the
irreversible flux has the form

jirr = − ρG(ρ, x) ∇µ,

where G is a bounded, symmetric, positive operator that acts locally at each
point x and depends on ρ only through its value at x. The reversible flux jrev
is

jrev = − ρ J(ρ, x) ∇µ,
and it satisfies the scalar no-work identity∫

Ω
µ∇· (ρ J ∇µ) dx = 0 for all smooth µ,

which holds if J⊤ = −J and ∇·(ρJ) = 0 (Appendix B). In both cases, boundary
class (A1) or (A2) ensures compatibility with the conservative form.

Work, dissipation, and the equality case. The instantaneous irreversible
power and entropy production at a fixed state ρ are

Pirr(ρ;µ) = 1
2

∫
Ω
ρ (∇µ)·G(ρ, x) (∇µ) dx, σ̇(ρ) = − d

dt
F [ρ] = −

∫
Ω
µ∂tρ dx.
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For the realised irreversible direction virr = ∇· (ρG∇µ) one has, on periodic or
no-flux boundaries,〈

virr, µ
〉

= − 2Pirr(ρ;µ), σ̇(ρ) = 2Pirr(ρ;µ).

Consequently the sharp Cauchy-Schwarz equality reads〈
virr, µ

〉2 = 2Pirr(ρ;µ) σ̇(ρ).

Here ⟨·, ·⟩ is the L2 pairing on Ω. For any other flux with the same power,
the left side is strictly smaller. Identity (A) and the no-work condition for
the reversible flux, ⟨vJ , µ⟩ = 0, are the two scalar certificates used in the
diagnostics.

Discrete realisation and tripwires. In the spectral code we implement the
2/3 projector P on all nonlinear operations to avoid aliasing and we compute
the mass integral from the zero Fourier mode. We evaluate Pirr using the
projected gradient to match the subspace of virr and we enforce the boundary
class by construction. The diagnostics report:

(D1)
∫

Ω ∂tρ dx = 0 to machine precision,
(D2) the equality gap 2Pirrσ − ⟨virr, µ⟩2 decreases with mesh refinement,
(D3) the reversible power

∫
Ω ρ∇µ · J∇µdx is at numerical zero.

Any violation of these tripwires indicates a departure from the boundary classes
or regularity stated above.

Scope guard for vacua. If ρmin ↓ 0 the coercivity constant in (A)
degenerates and the potential ϕ becomes nonunique across components where
ρ vanishes. Our scope is restricted to ρmin ≥ ε. Weak solutions with vacua can
be treated by working on connected components of {ρ > 0} and by fixing the
gauge of ϕ on each component. This regime is outside the assertions of the
main theorems but can be diagnosed by monitoring ρmin.

B Reversible no-work, weighted Liouville form, and
orthogonality

Aim. We record precise conditions under which the reversible channel
performs no-work on the free energy and exhibits an exact orthogonality with
the irreversible channel. The key object is a weighted Liouville structure that
depends on the state ρ.
Setting. Work on the domain and boundary classes of Appendix A. Let F [ρ] be
Fréchet differentiable on the positive cone, with chemical potential µ = δF/δρ
determined up to an additive constant. A reversible flux has the general form

jrev(ρ, µ) = − ρ J(ρ, x) ∇µ,
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The reversible generator is the conservative update

∂tρ
∣∣
rev = − ∇· jrev = ∇·

(
ρ J(ρ, x) ∇µ

)
.

No-work condition. Define the reversible power

Prev(ρ;µ) =
∫

Ω
µ∂tρ

∣∣
rev dx = −

∫
Ω
µ∇·

(
ρ J ∇µ

)
dx.

Integration by parts within the boundary classes and the antisymmetry of J
yield the algebraic identity below.

Lemma B.1 (no-work equivalence). Assume J(ρ, x) is pointwise
antisymmetric, J⊤ = −J , and satisfies the weighted Liouville identity

∇·
(
ρ J(ρ, x)

)
= 0 in the sense of distributions.

Equivalently, each column of the matrix field ρJ is divergence-free, i.e. ρJ
is solenoidal with respect to the Lebesgue measure.
Then Prev(ρ;µ) = 0 for all smooth µ with any constant gauge, hence along
reversible trajectories F [ρ(t)] is constant.
Conversely, if Prev(ρ;µ) = 0 for all smooth µ and all states ρ in the
admissible class, then J must be antisymmetric and satisfy (B.1).

Proof. Under the assumptions (and working with the unique mean-zero KKT
potential on the positive cone),

Prev = −
∫

Ω
µ∇· (ρJ∇µ) dx =

∫
Ω
ρ (∇µ)⊤J ∇µdx +

∫
Ω
µ
(
∇· (ρJ)

)
· ∇µdx.

The second integral vanishes by (B.1). The first vanishes pointwise since
a⊤Ja = 0 for all vectors a if J⊤ = −J . For the converse, take test potentials of
the form µ = ϕ+εψ and evaluate Prev at several choices; linear independence in
ϕ, ψ forces antisymmetry of J and (B.1). Details are standard and omitted.

Weighted bracket Define the reversible generator on functionals A[ρ] via

{A,F}ρ ≡
∫

Ω

δA

δρ
∇·
(
ρ J ∇µ

)
dx = −

∫
Ω
ρ∇
(δA
δρ

)
· J ∇µdx,

with µ = δF/δρ and where the second equality uses (B.1) to remove a boundary
term. Under Lemma B.1, the bracket is skew:

{A,F}ρ = − {F,A}ρ.

We do not require the full Jacobi identity for the results in the main text. The
only properties used are skewness, Leibniz, and that {F, F}ρ ≡ 0.
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Orthogonality of reversible and irreversible channels. Let the
irreversible direction be virr = ∇·

(
ρG∇µ

)
with G = G⊤ ≻ 0 local. Consider

the weighted H−1 pairing induced by Lρ = −∇· (ρ∇·), as in Appendix A.
Denote by ϕ the unique mean-zero potential solving − Lρϕ = virr. Then

⟨vrev, ϕ⟩ =
∫

Ω
ϕ∇· (ρ J ∇µ) dx = −

∫
Ω
ρ∇ϕ · J ∇µdx

=
∫

Ω
ρ∇µ · J ∇ϕdx =

∫
Ω
µ∇· (ρ J ∇ϕ) dx = 0,

where the third equality uses antisymmetry and the last uses (B.1). Hence vrev
lies in the H−1

ρ orthogonal complement of the irreversible cone. This establishes
the metriplectic orthogonality used in the equality case and in the diagnostics.

Uniqueness of the reversible class within the no-work cone. Suppose
J1 and J2 are antisymmetric and satisfy (B.1). Then for any µ,∫

Ω
µ∇·

(
ρ (J1 − J2) ∇µ

)
dx = 0.

Hence J1 and J2 generate the same scalar invariants on F . Differences between
reversible generators that maintain (B.1) are invisible to the equality dial.
Identifiability of J requires additional observables beyond F ; we do not assert
such identifiability in the main text.

Failure modes and tripwires. If either hypothesis of Lemma B.1 fails, the
scalar certificate breaks in a controlled way:
• If J⊤ ̸= −J , then pointwise a⊤Ja can be nonzero and Prev picks up a bulk

term.
• If ∇· (ρJ) ̸= 0, then even for antisymmetric J a boundary-free bulk term

survives:
Prev =

∫
Ω
µ∇· (ρJ) ∇µdx,

which is generically nonzero. In the spectral code this appears as a reversible
power at O(1) relative scale, so the PR dial triggers.

• If boundaries violate the admissible classes, integration by parts produces
boundary work of the form

∫
∂Ω µρ(J∇µ) · ndS, which is detected by the

mass and equality dials.

Discrete realisation. In the diagnostics we implement two checks:
(R1) Power dial: evaluate Prev =

∫
ρ∇µ · J∇µdx at machine zero by using

a Liouville-compatible field Jρ = c ρ−1ε (with constant c and fixed
antisymmetric ε), so that ∇· (ρJρ) = 0 holds exactly on the grid.

(R2) Divergence dial: evaluate ∥ ∇· (ρJρ∇µ) ∥2, which vanishes to roundoff
for Jρ as above, certifying the algebra; departures scale with ∥∇J∥ when J
varies in space and decay under refinement.
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When J varies in x, both dials remain valid but no longer vanish exactly; they
scale with the size of ∇J and with grid refinement in a way consistent with
Appendix C.

Relation to Hamiltonian hydrodynamics. Condition (B.1) is the
density-weighted analogue of a divergence-free Hamiltonian flow in canonical
variables. The bracket (B) is the natural pushforward of the canonical bracket
under the Madelung map when restricted to functionals of ρ alone. Our results
rely only on skewness and no-work, not on a full Jacobi structure on the space
of densities.

Summary. The reversible class that performs no-work on F is characterised
by the weighted Liouville identity (B.1) together with antisymmetry of J .
Under these hypotheses the reversible and irreversible channels are orthogonal
in the weighted H−1 pairing, the scalar power certificate Prev = 0 holds for all
µ, and the diagnostics in Section G report machine-zero values in the constant
J case, with controlled departures when J varies smoothly in space.

C Coarse-graining and commutator

Reported commutator dial. We compute rel(ℓ) = ∥Cℓ(Q(ρ)) −Q(Cℓρ)∥L2

and rel(ℓ)/ℓ2. All nonlinear products are 2/3-dealiased, and the same Gaussian
filter is applied before norms so pairings live in the same spectral subspace.

Aim. We quantify how a microscopic irreversible generator fails to commute
with coarse-graining at small filter width ℓ. The main statement is that the
commutator between the coarse-graining operator Cℓ and the irreversible
evolution is of order ℓ2 on smooth states, with an explicit leading-order
structure.

Set-up and notation. Let Ω be either a periodic box or a bounded Lipschitz
domain with no-flux boundaries, as in Appendix A. Let the irreversible
generator be

∂tρ = Q(ρ) = ∇·
(
ρG(ρ, x) ∇µ(ρ)

)
, µ(ρ) ≡ δF

δρ
,

with G bounded, symmetric, positive and local in x, and F Fréchet differentiable
on the positive cone. For concreteness, many examples in the text take
F [ρ] =

∫
ρ(log ρ− 1) dx+

∫
U(ρ, x) dx with U smooth in ρ and x.

We define the coarse-graining operator Cℓ as convolution with a centred,
isotropic mollifier Kℓ of width ℓ > 0, normalised to unit mass, and with
vanishing first moments. For a Gaussian filter,

(Cℓf)(x) =
∫

Ω
Kℓ(x− y)f(y) dy, Ĉℓf(k) = e− 1

2 ℓ2|k|2 f̂(k).
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Moment relations give, for smooth f ,

Regularity and constants. Throughout this appendix we assume ρ ∈ H3(Ω)
with ρmin > 0, A(ρ, x) = ρG(ρ, x) and µ(ρ) are C2 in ρ and smooth in x, and
G is uniformly elliptic with bounds 0 < γmin ≤ ξ⊤G(ρ, x) ξ ≤ γmax < ∞. All
K-constants below depend only on (ρmin, γmin, γmax) and the H3 norm of ρ on
the stated domain and boundary class.

Cℓf = f + ℓ2

2 ∆f + O(ℓ4) in L2.

Commutator. We study

Rℓ(ρ) ≡ Cℓ

(
Q(ρ)

)
− Q

(
Cℓρ

)
.

The first term evolves then coarse-grains. The second coarse-grains then evolves.
The assertion is that ∥Rℓ(ρ)∥L2 scales like ℓ2 for smooth ρ with ρmin > 0.

Lemma C.1 (Local expansion). Let A(ρ, x) ≡ ρG(ρ, x) and write
Q(ρ) = ∇·

(
A(ρ, x) ∇µ(ρ)

)
. Assume A and µ are C2 in ρ and smooth in x

on the positive cone. Then

Rℓ(ρ) = Cℓ

(
∇· (A∇µ)

)
− ∇·

(
A(ρℓ, x) ∇µ(ρℓ)

)
, ρℓ := Cℓρ

= ℓ2

2
[
∆ ∇· (A∇µ) − ∇·

(
(∂ρA) ∆ρ∇µ + A∇(∂ρµ∆ρ)

)]
+ O(ℓ4),

with all quantities evaluated at (ρ, x) and where ∂ρA and ∂ρµ denote Fréchet
derivatives applied to ∆ρ in the direction of the Laplacian perturbation
coming from (C).

Sketch. Apply (C) to Cℓ acting on scalars and vector fields, and to the
compositions A(ρℓ, x) and µ(ρℓ) via first-order Taylor in ρℓ −ρ = ℓ2

2 ∆ρ+O(ℓ4).
Then expand ∇· (A∇µ) at (ρℓ, x) to the same order. Collecting terms yields
(C.1). Regularity and ρmin > 0 ensure all coefficients are bounded.

Proposition C.2 (Order ℓ2 commutator). Under the assumptions
above there exists K = K(ρ,G, F,Ω) > 0 such that, for ℓ small,

∥Rℓ(ρ)∥L2 ≤ K ℓ2
(
∥ρ∥H3 + 1

)
, hence ∥Rℓ(ρ)∥L2

∥Q(ρ)∥L2
= O(ℓ2).

Proof. By Lemma C.1 the leading remainder is a linear combination of terms
with three spatial derivatives falling on ρ and µ(ρ), with coefficients bounded
on the positive cone by smoothness of A and µ. Standard product estimates
in Hs on Lipschitz domains then give (C.2). The denominator is nonzero for
nontrivial states away from equilibrium.
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Interpretation. Coarse-graining and evolving do not commute, but the
defect is O(ℓ2) for smooth states under the stated bounds. The ℓ2 law is
certified numerically, both in absolute and relative form.

Reversible contribution. If the reversible flux is jrev = − ρ J(x) ∇µ with
∇· (ρJ) = 0, then

∂tρ
∣∣
rev = ∇· (ρJ∇µ).

If J is constant in space, Cℓ and the reversible generator commute exactly on
periodic domains (and on no-flux boxes for filters supported away from the
boundary), since convolution commutes with constant-coefficient differential
operators in the interior. If J varies smoothly in x, an expansion identical in
spirit to Lemma C.1 shows a defect of order ℓ2 with coefficients involving ∇J
and ∇2J , bounded by the same regularity and ellipticity constants.

Discrete normalisation and the Reported commutator dial. In the
diagnostics we report the relative commutator

rel(ℓ) = ∥Cℓ(Q(ρ)) − Q(Cℓρ)∥L2

∥Q(ρ)∥L2
, and the ratio rel(ℓ)

ℓ2
.

The coarse-graining Cℓ is implemented spectrally as multiplication by e− 1
2 ℓ2|k|2 .

We use the same Gaussian C∞ mollifier for all runs; top-hat filters were tested
and found to spoil the observed ℓ2 law, as expected. To avoid aliasing we
apply the 2/3 projector P to all nonlinear products before computing Q(ρ) and
again to the outputs, so that all pairings and norms live in the same spectral
subspace. The empirical observation in Section G is that rel(ℓ)/ℓ2 remains in
a narrow band for small ℓ, consistent with Proposition C.2.

Leading-order drift under coarse-graining. Although (C.2) suffices for
the dial, it is useful to record the induced drift on the operator. Writing
CℓQ(ρ) = Q(ρ) + ℓ2

2 ∆Q(ρ) + O(ℓ4) and expanding Q(Cℓρ) via Lemma C.1,
one finds

Q(Cℓρ) = ∇·
(
ρG∇µ

)
+ ℓ2

2 ∇·
(

(∂ρ(ρG)) ∆ρ∇µ + ρG∇(∂ρµ∆ρ)︸ ︷︷ ︸
closure drift

)
+ O(ℓ4).

Thus, to leading order, coarse-graining renormalises the irreversible operator
by a correction quadratic in ∇ρ and linear in ∆ρ, with coefficients controlled
by (ρmin, γmin, γmax); this matches the observed stability of the equality dial
under mild filtering.

Reversible generator. For smooth antisymmetric J and Gaussian
coarse-graining,

Jℓ = J + 1
2 ℓ

2 ∆J + O(ℓ4),

with the O(ℓ4) residual verified numerically on the same grids and Gaussian
filters used for the commutator dial.
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Scope and limitations. The analysis above relies on smoothness and on
locality of G and µ. If F contains nonlocal interactions via convolution kernels
or if G encodes finite-range hydrodynamic couplings, the same machinery
applies with extra commutator terms involving the kernel length scale. In that
case, the normalised dial remains meaningful but the ℓ2 law can cross over to
a mixed law in ℓ and the nonlocal range.

Numerical check. For the entropy-only case with G(x) = 1 + 0.4 cos(2x)
we observe

rel(ℓ)
ℓ2

≈ constant for small ℓ,

with weak dependence on resolution after de-aliasing and projection. This
matches Proposition C.2 and validates the use of the commutator dial as a
guard for form stability under mild coarse-graining.

D Necessity chain and short proofs

We now summarise the logical flow from the seven axioms (A1-A7) to the
local metriplectic structure, giving short proofs of each link and identifying
the scalar certificates that lock the geometry.
Equality dial refers to the irreversible scalar certificate; PR dial reports the
reversible power; the commutator dial is defined in Appendix C.

D.1 From A1-A4 to the weighted H−1 tangent

A1 (mass conservation) and A4 (probe locality) ensure that all admissible
variations of ρ occur through conservative directions v = − ∇· (ρ u) with
u ∈ L2(Ω)d. Defining the potential ϕ by u = − ∇ϕ gives the weighted Poisson
operator

Lρϕ = − ∇· (ρ∇ϕ),
symmetric and coercive on mean-zero H1 functions (Appendix A). Every
admissible v can thus be represented uniquely as v = − Lρϕ up to constants.
This establishes the weighted H−1

ρ tangent space and provides the setting for
the quadratic form of A3.

D.2 From A3-A5 to the irreversible generator

A3 postulates a local quadratic power

Pirr(ρ;µ) = 1
2

∫
Ω
ρ (∇µ)·G(ρ, x) (∇µ) dx.
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A5 (steepest descent) requires that the realised virr maximises σ = −⟨v, µ⟩
subject to fixed Pirr. By Cauchy-Schwarz in the ρ-weighted G−1 metric one
obtains

⟨v, µ⟩2 ≤ 2Pirr σ̇(ρ),
with equality only for v = ∇· (ρG∇µ). Hence

virr = ∇· (ρG∇µ),

and the equality certificate

⟨virr, µ⟩2 = 2Pirr σ̇(ρ)

which is verified numerically in Appendix G, lines N=256-4096 | PASS. Any
modification of G to include nonlocal coupling or non-quadratic terms breaks
this identity, as shown by the falsifier sweep. Thus the local quadratic form
and steepest-descent rule are not assumptions but necessities within A1-A5.

D.3 From A6 to the reversible class

A6 demands that the reversible channel perform no-work on F , i.e. Prev = 0
for all µ. Lemma B.1 (Appendix B) shows this is equivalent to

jrev = − ρ J(ρ, x) ∇µ, J⊤ = −J, ∇· (ρJ) = 0.

The second condition enforces antisymmetry; the third is the weighted Liouville
identity. Conversely, these imply Prev = 0 identically, producing the reversible
no-work identity ∫

Ω
ρ (∇µ)·J (∇µ) dx = 0,

verified in the diagnostics as PR = 0.000e+00 | PASS. Hence A6 singles out a
unique orthogonal complement to the irreversible cone.

D.4 Orthogonality and metriplectic closure

Let ϕ solve − Lρϕ = virr. Using antisymmetry of J and ∇· (ρJ) = 0,

⟨vrev, ϕ⟩ =
∫

Ω
ϕ∇· (ρJ∇µ) dx = −

∫
Ω
ρ∇ϕ·J ∇µdx = 0.

Thus the reversible and irreversible directions are H−1
ρ -orthogonal. Together,

they define the metriplectic decomposition

∂tρ = ∇· (ρG∇µ) + ∇· (ρ J ∇µ),

with G = G⊤ ≻ 0, J⊤ = −J , and ∇· (ρJ) = 0. The irreversible channel
satisfies the equality certificate, the reversible channel the no-work certificate,
and both preserve total mass.
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D.5 Verification chain in diagnostics

Remark (Four checkpoints). Equality on the irreversible ray, no-work on
the equality dial, orthogonality in H−1

ρ , and conservative mass with exact
DC pinning form a minimal pass-fail chain. Any break trips immediately.

We use equality dial uniformly for the instantaneous scalar diagnostic of the
no-work or equality condition.
• Equality dial: confirms Proposition 2.2 and the steepest-descent equality.
• Nonlocal falsifier: breaks the equality, confirming necessity of A3.
• Reversible PR dial: reports machine-zero power, confirming A6.
• Orthogonality: follows analytically and is indirectly checked by the

simultaneous success of the previous two dials.
Together these complete the necessity chain: every axiom has a direct empirical
or algebraic certificate, and every certificate fails immediately when an axiom
is relaxed.

E Operator facts

Wasserstein tangent, Poisson operator, and coercivity

Define Lρϕ = −∇· (ρ∇ϕ) on the domain of mean zero H1 functions with
periodic or no-flux boundaries. For mean zero ϕ, ψ ∈ H1,

⟨ϕ,Lρψ⟩ =
∫

Ω
ρ∇ϕ · ∇ψ dx = ⟨ψ,Lρϕ⟩,

so Lρ is symmetric and positive on the mean-zero subspace. Coercivity follows
from

∫
Ω ρ |∇ϕ|2 dx ≥ ρmin

∫
Ω |∇ϕ|2 dx. The H−1

ρ inner product is

⟨a, b⟩H−1
ρ

≡
∫

Ω
ρ∇ϕa · ∇ϕb dx, −∇· (ρ∇ϕa) = a, −∇· (ρ∇ϕb) = b,

which is well defined on mean zero tangents [6–9].

KKT characterisation of minimal cost

Given v = ∇· (ρu) define the functional

J [u, ϕ] = 1
2

∫
Ω
ρ u⊤G−1u dx+

∫
Ω
ϕ
(
∇· (ρu) − v

)
dx.
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Stationarity in u gives G−1u− ∇ϕ = 0, hence u⋆ = G∇ϕ. The constraint gives
−Lρ,Gϕ = v, where Lρ,Gϕ ≡ − ∇· (ρG∇ϕ). Substituting back yields

Cmin(ρ; v) = 1
2

∫
Ω
ρ (∇ϕ)⊤G(∇ϕ) dx,

with constants controlled by ellipticity bounds γmin, γmax and the positivity
margin ρmin.

Proof of Proposition 3.1 (cost-entropy inequality)

Let v = ∇ · (ρu) and define the ρ-weighted pairing ⟨a, b⟩ρ =
∫

Ω ρ a · b dx.
Integration by parts yields

⟨v, µ⟩ = −
∫

Ω
ρ u · ∇µdx = ⟨u, G−1(G∇µ)⟩ρ.

Cauchy Schwarz in the G−1 metric gives

⟨v, µ⟩2 ≤
( ∫

Ω
ρ u⊤G−1u dx

)( ∫
Ω
ρ (∇µ)⊤G(∇µ) dx

)
= 2 C(u) σ̇(ρ).

Minimising over admissible u gives the stated lower bound for Cmin(ρ; v).
Equality holds if and only if u is everywhere collinear with G∇µ.

Proof of curvature coercivity

Let v = − ∇·(ρ∇ψ) with mean zero ψ and normalise ∥v∥2
H−1

ρ
=
∫

Ω ρ |∇ψ|2 dx =
1. Relate this to the quadratic form that defines Cmin by noting that for φ
solving −∇· (ρ∇φ) = v (the H−1

ρ potential),∫
Ω
ρ (∇φ)⊤G(∇φ) dx ≤ γmax

∫
Ω
ρ |∇φ|2 dx = γmax ∥v∥2

H−1
ρ
,

and the reverse inequality uses γmin.
We recall the Rayleigh formulation

κmin(ρ) = inf
v ̸=0

⟨HF (ρ) v, v⟩
∥v∥2

H−1
ρ

.

By definition of κmin one has the sharp bound

⟨HF (ρ) v, v⟩ ≥ κmin(ρ) ∥v∥2
H−1

ρ
.
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Using the ellipticity bounds

γmin

∫
Ω
ρ |∇φ|2 dx ≤

∫
Ω
ρ (∇φ)⊤G(∇φ) dx ≤ γmax

∫
Ω
ρ |∇φ|2 dx,

and 2 Cmin(ρ; v) =
∫

Ω ρ (∇φ)⊤G(∇φ) dx, we obtain the corollary

⟨HF (ρ) v, v⟩ ≥ κmin(ρ)
γmax

· 2 Cmin(ρ; v).

Proof of Lemma 3.4 (alignment identity in the (ρ,G) metric)

Let ϕ solve −Lρ,Gϕ = v with Lρ,Gϕ ≡ − ∇· (ρG∇ϕ). Define the (ρ,G) inner
product on vector fields by

⟨a, b⟩ρ,G ≡
∫

Ω
ρ a⊤Gbdx, ∥a∥2

ρ,G = ⟨a, a⟩ρ,G.

For the minimiser u⋆ = G∇ϕ (by A.2) one has

⟨v, µ⟩ = −
∫

Ω
ρ u⋆ · ∇µdx = − ⟨∇ϕ,∇µ⟩ρ,G.

Moreover,
2 Cmin(ρ; v) = ∥∇ϕ∥2

ρ,G, σ̇(ρ) = ∥∇µ∥2
ρ,G.

Hence

R(ρ; v) ≡ ⟨v, µ⟩2

2 Cmin(ρ; v) σ̇(ρ) =
⟨∇ϕ,∇µ⟩2

ρ,G

∥∇ϕ∥2
ρ,G ∥∇µ∥2

ρ,G

= cos2 θρ,G ∈ [0, 1],

with R = 1 if and only if ∇ϕ is collinear with ∇µ (equivalently u⋆ ∥ G∇µ).
This proves Lemma 3.4.

F Code archive

All numerical checks are performed using short, self-contained Python scripts
hosted at:

https://github.com/feuras/metriplectic/

The scripts implement direct numerical tests of the metriplectic structure,
dissipation identities, and equivalence statements discussed in the main text.
Each test is designed to be fully reproducible using only NumPy, SciPy, and
pandas, and all produce text-only console outputs. The code does not rely on
any external packages or plotting tools.

Structure and scope
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• 0A_axiom_diagnostics.py
A consolidated, review-ready dial suite: EVI probe with a saturation readout
on the irreversible ray; Noether no-work symmetry showing invariance of σ̇,
κmin, and Cmin; alignment identity printing cos2 agreement; torus coercivity
constant with an explicit γλ bound and a sampled check; single-axiom
falsifiers for symmetry of G, locality, positivity margin, and no-work, each
with clear console trip lines; local tomography of G from scalar maps with a
two-state cross-check; and the orthogonality identity ⟨virr, G

−1vrev⟩H−1
ρ

≈ 0.
• 00_axiom_diagnostics.py Runs the metriplectic axiom suite: equality

refinement check with mass k0, nonlocal-closure falsifier sweep, conservative
versus non-conservative tripwire, reversible no-work identity in 2D,
coarse-grain commutator scaling, and probe identifiability of G, all via
console dials with pass or fail verdicts.

• 01_wave-dispersion_probe-fft_suite.py Tests dispersion and
reversibility of the conservative limit through probe-based FFT diagnostics.
Reports isotropy, damping, and time-reversal errors.

• 02_metriplectic_equivalence_1d_periodic_kkt.py Verifies the
metriplectic equivalence and inequality in a 1D finite-volume geometry
using a sparse KKT solver. Confirms Cmin = σ̇/2 for exact solutions and
the bound ⟨v, µ⟩2 ≤ 2 Cmin σ̇ for random admissible directions.

• 03_path-entropy_invariance_metriplectic_batch.py Runs a
high-precision 2D batch test of path-integrated entropy production under
mixed reversible and dissipative evolution. Confirms the integrated identity∫
σ̇ dt = ∆F across multiple seeds and reversible amplitudes.

• 04_heat-identity_phase-blind_pinnedDC.py Evaluates the pure
dissipative (λ = 0) case with exact Fourier semigroup integration and DC
mass pinning. Verifies monotonic decay of F and non-negative σ̇, confirming
phase-blind invariance.

• 05_metriplectic_identity_phase-blind_pinnedDC.py Extends the
preceding test to include reversible shifts interleaved with exact heat steps.
Both isolated and coupled runs satisfy the integral identity within numerical
precision.

• 06_metriplectic_commuting-triangle.py Combines all preceding
channels into a single consistency test for the commuting triangle between
reversible, dissipative, and constraint flows. Confirms the metriplectic
structure preserves identity exactness under composition.

• 01_dispersion.py Probes linear dispersion and reversibility in the
conservative limit via mode injections and FFT readouts. Reports isotropy
of group velocity, damping floor, and time reversal errors across shells.

• 02_kk_resolvent.py Computes the frequency response χ(ω, k) from
the linearised KKT resolvent and verifies Kramers-Kronig with a single
calibration factor cHT = 1.000 ± 0.005 for the discrete Hilbert transform.

• 03_entropy_phase_eta.py Traces the controlled mix v(η) = (1 − η)vG +
ηvJ . Logs the equality dial R and complex modulus M along the path, with
R dropping monotonically and M pinned to one within estimator floor.

• 04_diffeo_slice.py Tests slice covariance under smooth relabellings with
full Jacobian weights in both operator and pairings, imposing the mean-zero
constraint in the pulled measure. Confirms invariance of R and M to
numerical floor on matched subspaces.

• 05_coarsegrain_commutator.py Measures the Gaussian coarse graining
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commutator defect across a decade in filter width ℓ. Recovers the ℓ2 law
and flags breakdown under non smooth filters.

• 06_structure_falsifier.py Single axiom failure suite. Injects asymmetric
metric parts, wrong tangent norms, and pulls G outside divergence, and
breaks weighted Liouville. Records the resulting signatures in R, M , and
the no-work meter.

• 07_holonomy_loop.py Evaluates the geometric phase Φ of the complex
reader on slow parameter loops. Shows sign flip under loop reversal and
area scaling for small rectangles in control space.

• 08_sectoriality_scan.py Scans the linear spectrum of the dissipative
generator. Fits ℜω(k) ≈ −D2|k|2 −D4|k|4 and confirms sectorial resolvent
bounds and monotone energy decay.

• 09_em_slice_2d.py Electrodynamic style slice projection in 2D with
J = c ρ−1ε. Reads E = −∇µ and B = cρ. Quantifies reversible no-work
and detects the anomaly term when ∇ · (ρJ) ̸= 0.

• 10_optical_metric_poisson.py Identifies the optical metric g ∝ (ρG)−1

on a slice and solves the Poisson type law ∇ · (ρG∇µ) = σ. Visualises
irreversible ray bending under spatial gradients of ρG.

• 11_maxwell_slice.py Maxwell style consistency checks for the slice
analogy. Compares conservative forms built from (E,B) and documents
boundary class effects and constant matrix cases.

• 12_covariance_boost.py Equal time re slicing and boost covariance test.
Recomputes the KKT solve and pairings on matched subspaces and confirms
that R and M are invariant up to solver tolerance.

• 13_anomaly_inflow.py Constructs compensator J ′ to cancel ∇ ·
(
ρ(J +

J ′)
)

and restore the reversible no-work identity. Logs σ̇anom before and after
repair.

• 14_holonomy_quantisation.py Counts the winding n = 1
2π

∮
d arg⟨∇ϕ,∇µ⟩C

in two parameter control space. Shows integer stability under small
deformations that avoid branch points.

• 15_optical_gravity_lensing.py Lensing style readout for irreversible
rays using the optical metric picture. Measures deflection angles consistent
with index gradients and compares with the n = (ρG)−1/2 correspondence.

• 16_uv_sectoriality.py Ultraviolet control diagnostics for composite
observables. Verifies |χ(k)| decay at least as |k|−2 and confirms no external
renormalisation is required within the stated class.

• 17_holonomy_curvature_map.py Computes complex pairing Z(a, θ)
over a control grid and evaluates Berry curvature via plaquette phases.
Confirms smooth nonvanishing reader, trivial Chern index C = 0 and clean
KKT and Liouville diagnostics on the metriplectic holonomy base case.

• 18_holonomy_sanity_check.py Global sanity scan of Z(ϕ, θ) over an
extended control torus. Verifies |Z| remains well bounded away from
zero on 240 × 240 points, with no candidate defects or nontrivial winding,
demonstrating absence of spurious monopoles in natural control families.

• 19_holonomy_coarsegrain_invariance.py Tests coarse graining
invariance of the complex reader and Berry curvature. Compares fine and
Gaussian coarse grained states, showing phase of Z and Chern index are
preserved while |Z| is rescaled by an almost constant factor, evidencing RG
stable holonomy.

• 20_protocol_cost_vs_entropy.py Compares metriplectic path cost
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and Shannon entropy change for competing protocols between the same
endpoints. Evaluates H−1 metric action and length for linear and wiggled
amplitude schedules, demonstrating strong path dependence of cost at fixed
∆S and T .

• 22_holonomy_synthetic_monopole.py Synthetic testbench for the
holonomy machinery on a known phase vortex in control space. Uses the
same plaquette and loop algorithms to recover total flux ∑F ≈ 2π, Chern
number C = 1 and loop winding n = 1 for loops encircling the origin and
n ≈ 0 otherwise.

• 23_speedlimit_flat_geodesic_check.py Two-mode H−1
ρ (G) speed-limit

test in a nearly flat patch of density space. Constructs a family ρ(x; a1, a2)
on a periodic domain and compares four distinct protocols (linear,
wait-then-jump, jump-then-wait, overshoot-then-return) between the same
endpoints. For each, solves the KKT equation at midpoints and evaluates
the interval cost Cn =

∫
ρG|∂xϕ|2dx, total action A, length, and entropy

change ∆S. In a flat metric patch the straight-line protocol should
approximate the geodesic; the script verifies this numerically, with all
compressed or wiggled paths showing strictly larger action.

• 24_speedlimit_curved_geodesic_search.py Geodesic search in a
curved H−1

ρ (G(ρ)) patch induced by a density-dependent mobility G(ρ) =
exp[γG(ρ/ρ0−1)]. Uses the same two-mode density family but now the metric
is genuinely position-dependent. Benchmarks a baseline linear protocol
against an optimised sine-basis control ansatz with fixed endpoints. A batch
random search over control coefficients identifies strictly lower-action paths
in the curved metric, demonstrating that the straight line in (a1, a2) space
is generically not a geodesic once G varies with ρ. Outputs action, length,
entropy change, and diagnostic KKT convergence for both protocols, along
with plots of aj(t) and C(t).

• 25_fisher_scalar_gravity_checks.py End-to-end reproducibility script
for the Fisher-scalar sector. Verifies three core identities used in the analysis:
(i) the operator identity Lρϕ = −∇· (ρ∇ϕ) for ϕ = log(ρ/ρ0); (ii) the
Fisher-Laplacian relation ∆Φeff = −(c2/2)

(
∆ρ/ρ− |∇ρ|2/ρ2); and (iii) the

self-sourced radial Helmholtz branch. The script solves the radial ODE,
recovers the n = 1 analytic profile ρ(r) = ρc sin(kr)/(kr), and compares
numerical and analytic radius, mass, and diagnostic compactness GM/(Rc2).
All tests return machine-level agreement, confirming the internal consistency
of the scalar sector.

Numerical methods
All integrals are evaluated using uniform-grid rectangle or Simpson quadrature
rules consistent with the discrete spectral representation. For dissipative
channels, DC modes are pinned exactly in Fourier space to ensure strict mass
conservation. Time integration uses exact semigroup updates or second-order
Heun/Runge-Kutta schemes where appropriate. Reported iteration counts are
printed together with (γmin, γmax) and ρmin to expose conditioning; DC modes
are pinned exactly in Fourier space for strict mass conservation. Reversible
channels are implemented as shift operators in phase or configuration space
and preserve the free energy to machine precision. Poisson and KKT solves use
preconditioned conjugate gradients on the mean-zero subspace, with relative
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residual 10−10 in the energy norm; the same discrete gradient and divergence
are used in forward and adjoint roles to preserve the ρ-weighted pairing. The
mean-zero gauge is enforced by zeroing the DC mode at each solve.
The results are verified across independent random seeds, grid resolutions, and
parameter sweeps. All reported quantities are reproducible within standard
double-precision floating point tolerance.

Reproducibility
Each script runs independently and produces a single console log summarising
the diagnostics. No plots are generated or required. Running all scripts in
sequence reproduces the complete numerical verification suite supporting the
analytical results of this work. All source files are archived at the GitHub
repository above.

G Diagnostics and falsifiers

We certify the axioms and the necessity results by five console dials reproduced
by 00_axiom_diagnostics.py. All evaluations use conservative divergence
form, a 2/3 spectral projector on nonlinear operations, subspace consistent
pairings for the equality certificate, and exact mass from the zero Fourier mode.
Boundary and regularity classes are as in Appendices A-B.

G.1 Equality dial with refinement

We measure the gap

∆eq ≡ 2Pirr σ̇ − ⟨virr, µ⟩2,

which must converge to zero under mesh refinement if the local quadratic
metric and the steepest descent direction hold. Typical output:

== Equality dial with refinement (1D, P-consistent) ==
N= 512 | ... | gap=-1.527e-02 | ... | PASS
N= 1024 | ... | gap=-7.235e-03 | ... | PASS
N= 2048 | ... | gap=-3.518e-03 | ... | PASS

Run constants. Scripts print ρmin, (γmin, γmax), measured κmin, equality gap,
PR, and iteration counts, for example:

state: min rho=7.075e-01 | G:[gmin=5.00e-01,gmax=1.40e+00] |

kappa_min=1.00e+00 kappa_min=1.00e+00

A second backend confirms the equality on a conservative finite-volume KKT
scheme (02_metriplectic_equivalence_1d_periodic_kkt.py).
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The gap decays like O(dx) and the mass integral is at machine zero, certifying
Proposition 2.2 and the cost-entropy equality certificate.

G.2 Nonlocal falsifier

We replace ∇µ by a smoothed field before forming j, keep Pirr local, and
remeasure the equality. The certificate fails by order one margins:

== Nonlocal falsifier sweep (1D, P-consistent Pirr) ==
N=4096 | sigma=0.20 | ... | gap=2.205416e-01 | VIOLATES equality
N=4096 | sigma=0.60 | ... | gap=4.926686e-01 | VIOLATES equality
N=4096 | sigma=0.90 | ... | gap=2.274482e-01 | VIOLATES equality
N=4096 | sigma=1.20 | ... | gap=6.519462e-02 | VIOLATES equality

Hence local quadratic dissipation is required within scope, matching A3 and
the destructive side of Proposition 2.2.

G.3 Conservative vs non conservative tripwire

We contrast a conservative update with a non conservative surrogate. The
latter leaks mass:

== Conservative vs non conservative tripwire (1D, P-consistent) ==
Integral v_cons dx(k0) = -7.051-18 expected near 0
Integral w_non dx(k0) = 4.162e-03 non-zero indicates mass leak

This guards A1 at the discrete level and rules out false positives from boundary
or aliasing artefacts.

G.4 No-work certificate for A6

A nonzero reading arises only if antisymmetry or the weighted Liouville
constraint is broken at the current ρ.

== Reversible no-work identity (2D) ==
PR = 0.000e+00 | relative = 0.000e+00 | ||v_rev||2 = 4.213e-14 | PASS

Dial outcomes and causes.
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Outcome Primary cause at fixed ρ

PR ≈ 0 with constant J and exact mass Within A6 no-work cone
PR ̸= 0 under same setup J⊤ ̸= −J or ∇· (ρJ) ̸= 0

This certifies Proposition 2.3 and the weighted Liouville identity of Appendix B.

G.5 H−1
ρ orthogonality readout

We report the weighted pairing ⟨vrev, ϕirr⟩H−1
ρ

where Lρϕirr = virr:

== H^{-1}_rho orthogonality (1D) ==
< v_rev , phi_irr >_{H-1(rho)} = 3.2e-13 | PASS

Machine-zero values certify metriplectic orthogonality under Proposition 2.4.

G.6 Coarse grain commutator scaling

We report the normalised commutator

rel(ℓ) = ∥Cℓ(Q(ρ)) − Q(Cℓρ)∥2
∥Q(ρ)∥2

, and rel(ℓ)
ℓ2

.

For small ℓ the ratio stabilises in a narrow band (grid-independent to leading
order), in line with Appendix C:

== Coarse-grain commutator scaling (1D, P-consistent, normalised) ==
N=4096 | ell=0.10 | ... | (rel)/ell^2 = 2.500e+00
N=4096 | ell=0.20 | ... | (rel)/ell^2 = 1.602e+00

G.7 Probe identifiability

A modest probe set yields a well conditioned Gram matrix for G:

== Probe identifiability of G (1D) ==
basis size = 24, min sing = 2.421e+00, max sing = 4.903e+02,
cond(B) = 2.025e+02 identifiability verdict = PASS

This supports Proposition 2.1 on recoverability of the quadratic action of G. For
separation at a fixed ρ one may take small Fourier probe sets of size m = 2d+2
in d = 1, 2, 3; identifiability is up to the ellipticity window (γmin, γmax).
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Run metadata. State health for the run shown: min rho = 7.075e-01,
min G = 5.000e-01. Script: 00_axiom_diagnostics.py. All excerpts above
are from a single execution of the public archive.

Catalogue of tests used in this section.
(T1) Baseline conservative suite (Appendix F): probe-FFT dispersion fits

ω2 ∼ c2k2, anisotropy ellipse fits under cx ̸= cy, bounded energy drift
with leapfrog, and a time-reversal round trip. Purpose: establish that the
reversible plumbing behaves as intended before metriplectic checks.

(T2) Equality and inequality on 1D periodic grids (Appendix F):
face-centred Lρ,G and a sparse KKT solve give (i) equality Cmin = σ̇/2 on
the gradient-flow ray v0 = −Lρ,Gµ using the exact mean-zero potential,
and (ii) the global inequality ⟨v, µ⟩2 ≤ 2 Cminσ̇ for random admissible
v = −Lρ,Gψ, reported via the ratio R and alignment angles.

(T3) Path-entropy invariance, batch (Appendix F): event-stop at the first
F (t) = Ftarget shows

∫ t⋆
0 σ̇ dt = F (0) −Ftarget independent of reversible drift

J ; multiple amplitudes and two spatial patterns confirm invariance across
paths.

(T4) Heat-only identity and phase-blindness (Appendix F): exact spectral
heat with per-step DC pin verifies ∆F =

∫
σ̇ dt with rectangle-rule and

midpoint variants, mass is exact by construction, and duplicate runs with
distinct labels remain identical (phase-blindness).

(T5) Reversible stirring plus heat, identity on G-steps (Appendix F):
interleave exact shifts ρ(x) 7→ ρ(x− v∆t) with heat; accumulate σ̇ only on
G-steps and confirm ∆F =

∫
σ̇ dt to tolerance.

(T6) Commuting-triangle consistency (Appendix F): bundles the reversible
shifts, dissipative steps, and the constrained KKT solve to check that the
instantaneous scalars and integrated identities are insensitive to channel
ordering within solver tolerance; includes a small-k curvature oracle at
uniform density.

G.8 Quantities computed at a fixed state

Let ρ be a fixed strictly positive density, G be symmetric positive, and F be
convex. We evaluate:

(i) Entropy production σ̇(ρ) =
∫
ρ (∇µ)⊤G(∇µ) dx.

(ii) Curvature κmin(ρ) via the Rayleigh problem (E), implemented on the
mean-zero subspace under the H−1

ρ pairing [6, 7, 9].
(iii) Minimal cost Cmin(ρ; v) by solving −Lρ,Gϕ = v with Lρ,Gϕ ≡ − ∇·(ρG∇ϕ),

then evaluating the energy form in (E). For the equality case we take
v0 = −Lρ,Gµ.

Discretisations share the same gradient and divergence to preserve adjointness
for the ρ-weighted inner product. Periodic boxes use spectral derivatives with
two-thirds de-aliasing; one-dimensional tests use conservative finite differences
that are symmetric under the discrete L2

ρ pairing. All KKT potentials are
computed and paired on the same grid and mean-zero subspace, soR = cos2 θρ,G
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is evaluated as a single Hilbert-space cosine without gauge drift.

G.9 Alignment angle and near-equalities

Given v and its KKT potential ϕ solving −Lρ,Gϕ = v, define

cos θρ,G ≡ ⟨∇ϕ,∇µ⟩ρ,G

∥∇ϕ∥ρ,G ∥∇µ∥ρ,G
, ⟨a, b⟩ρ,G =

∫
Ω
ρ a⊤Gbdx.

Lemma 3.4 gives the identity R(ρ; v) = cos2 θρ,G, so near-equalities correspond
to small angles between ∇ϕ and ∇µ in the (ρ,G) metric. For intuition we also
report the Wasserstein-tangent proxy

cosϑ ≡
⟨v, v0⟩H−1

ρ

∥v∥H−1
ρ

∥v0∥H−1
ρ

, v0 ≡ −Lρ,Gµ,

which coincides with θρ,G when G = I and is equivalent up to ellipticity
constants otherwise. When G is uniformly elliptic, γmin∥∇ψ∥2

ρ ≤ ∥∇ψ∥2
ρ,G ≤

γmax∥∇ψ∥2
ρ, hence

γmin
γmax

cos2 θρ,G ≤ cos2 ϑ ≤ γmax
γmin

cos2 θρ,G.

G.10 Protocols and state families

Two state families are used.
• Synthetic snapshots. Smooth positive fields are constructed by filtering

Gaussian samples in Fourier space and renormalising mass to one, optionally
followed by a short relaxation under the dissipative channel to generate
representative structure while preserving positivity. Positivity is maintained
either by a parametrisation ρ = ρmin + eϑ during transient steps or by
clipping at machine epsilon for fixed-state evaluations.

• Flow snapshots. Short segments of the metriplectic flow (2.5) with J = 0
and constant G produce a sequence of fixed states at which the three scalars
are evaluated.

Unless noted, two-dimensional runs use spectral derivatives with two-thirds
de-aliasing; one-dimensional referee tests use N ∈ {128, 256, 512, 1024}
with conservative finite differences. Scripts print reproducible configuration
summaries.

G.11 Headline observations

Across state families and grids we observe:
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(O1) Equality on the gradient-flow ray. For v = v0 = −Lρ,Gµ the ratio R
matches one to solver tolerance, confirming Proposition 3.1. See (T2).

(O2) Global inequality for random tangents. For random admissible v =
−Lρ,Gψ, the ratio R lies below one, with a tight envelope given by cos2 θρ,G

as predicted by Lemma 3.4. See (T2).
(O3) Curvature coercivity and uniform anchor. The Rayleigh estimate

(3.2) is stable across grids and state families; near uniformity the measured
smallest curvature agrees with Proposition 3.5. The small-k oracle at ρ ≡
const is exercised in (T6).

(O4) Identity under composition. The instantaneous scalars and integrated
identities are insensitive, within solver tolerance, to the ordering of reversible
shifts, dissipative steps, and the KKT solve. See (T6).

G.12 Path-entropy invariance under reversible drift

Fix a free energy F [ρ] with chemical potential µ = δF/δρ, a symmetric positive
G, and an antisymmetric J in the ρ-weighted pairing. Consider

∂tρ = ∇·
(
ρ (J∇µ+G∇µ)

)
, σ̇(ρ) =

∫
Ω
ρ (∇µ)⊤G(∇µ) dx.

Under periodic or no-flux boundaries and J⊤ = −J (pointwise or in L2
ρ),

d

dt
F [ρ(t)] = ⟨µ, ∂tρ⟩ = −

∫
Ω
ρ (∇µ)⊤G(∇µ) dx ⇒ dF

dt
= −σ̇(ρ).

Hence for any trajectory that first hits a target level Ftarget,∫ t⋆

0
σ̇(ρ(t)) dt = F [ρ(0)] − Ftarget,

which is independent of J . In particular, the total dissipative entropy to
reach the same Ftarget is path-independent across reversible drifts that are
antisymmetric in the stated sense.

Remark (Numerical protocol and result). We implement an event stop at
the first crossing F (t) = Ftarget with linear interpolation of t and σ̇. On
1922 periodic grids with G = I, λ = 0, and reversible fields J of amplitudes
0, 2, 5, 10 in two spatial modes, batch runs give∣∣Stotal(J) − Stotal(0)

∣∣ ∈ [10−13, 10−5],

with a median near 10−6, while arrival times t⋆ do differ across J . For every
run, Stotal ≈ F (0) −Ftarget to within the reported solver tolerance. See (T3)
for the batch harness, (T4) for the heat-only oracle, and (T5) for interleaved
reversible-dissipative evolutions with σ̇ accumulated only on G-steps.
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G.13 Numerical details and tolerances

Rayleigh and Poisson solves terminate at relative residual 10−10 unless
stated. Spectral derivatives use two-thirds de-aliasing in two dimensions.
One-dimensional conservative operators preserve symmetry under the discrete
L2

ρ inner product. Random seeds, grid sizes, and tolerances are printed by
each script. Full filenames are listed in Appendix F.

Complementarity and outlook. The reversible bracket and Fisher
curvature in the companion paper provide the geometric skeleton; the
present analysis supplies the dissipative musculature. Both operate under
the same local axioms and diagnostics, and both admit falsifiers that fail
once the geometry is altered. Taken together they delineate the minimal
reversible-irreversible split consistent with information-geometric curvature,
without asserting global unification or uniqueness beyond the stated scope.
These are necessity statements within the axioms; we do not extrapolate beyond
the stated function spaces, ellipticity bounds, or boundary class.

H Additional consistency checks

Log-Sobolev curvature and relaxation rate

Setting. We consider the heat flow ∂tρ = ∆ρ on the periodic domain TL

at fixed λ = 0. At each time we compute the entropy gap F (t) − F∞ and
the Fisher information I(t) =

∫
Ω |∂xρ|2/ρ dx. On the L-periodic box with

unit mass and λ = 0, the minimiser is the uniform density ρ̄ = 1/L and
F∞ =

∫
TL
ρ̄ log ρ̄ dx = − logL.

The local log-Sobolev estimator is

κinst(t) = I(t)
2(F (t) − F∞) , κ̂ = min

t∈[0.05T,T ]
κinst(t).

We also fit the late-time exponential decay rate rfit of F (t) − F∞. Observation.
For a smooth mixed-mode initial ρ on T40 with N = 512 and dt = 2 × 10−3, we
obtain κ̂ ≃ 2.47 × 10−2 and rfit ≃ 4.93 × 10−2, satisfying rfit ≈ 2κ̂ to numerical
precision. Interpretation.
This shows within the present discretisation that the empirically measured
curvature controls the exponential relaxation of F (t), as predicted by the
log-Sobolev bound F (t) − F∞ ≤ (F (0) − F∞)e−2κt. No new assertion is
made beyond consistency between the measured curvature and the observed
relaxation rate.
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Algorithm (metric tomography, up to a scalar). Selectm band-separated
probes vi; solve −Lρ,Gϕi = vi on the mean-zero subspace; form Hij =
⟨∇ϕi,∇ϕj⟩ρ,G =

∫
ρ∇ϕ⊤

i G∇ϕj dx. With g = (g11, 2g12, g22) and Hij = Aij · g,
least-squares recovers g up to a global scale. We report shellwise condition
numbers and uncertainty bands.

Talagrand-type transport inequality

Setting. Along the same heat-flow trajectory as above, we computed the
squared Wasserstein distance W 2

2 (t) between ρ(t) and the uniform density via
the monotone rearrangement map T (x) = LFρ(x) with cumulative distribution
Fρ(x) =

∫ x
0 ρ(y) dy. Using the curvature estimate κ̂ from the previous item,

the predicted transport-entropy constant is Cpred = 1/κ̂. Observation. For all
times t ≥ 0.2T , the inequality

W 2
2 (t) ≤ Cpred (F (t) − F∞)

is satisfied with negative slack maxt[W 2
2 − Cpred(F − F∞)] ≈ −6.7 × 10−4.

Interpretation. Within the accuracy of the pseudospectral scheme and the
rearrangement implementation, the transport-entropy relation holds when the
constant is chosen from the independently measured curvature.
This supports that the same κ governs both relaxation and transport in this
geometry, without asserting new analytic results. This choice coincides with
κmin(ρ) for the uniform anchor used in the main text.

Relaxation spectrum and curvature spectrum

Setting. For single-mode perturbations ρ(x, 0) = ρbar(1 + ε cos kphysx)
with small ε, we evolved the heat flow and measured (i) the exponential
decay rate rfit(k) of the entropy gap and (ii) the curvature estimate
κ̂(k) = mediant I/(2(F − F∞)). The linear theory predicts rtheory = 2k2

phys
and κ(k) = k2

phys. Observation. For k = 1 . . . 5 on T40, we find relative errors
|rfit −2k2|/(2k2) ≲ 10−4 and |κ̂−k2|/k2 ≲ 10−3, limited by late-time round-off.
Interpretation.
The measured relaxation spectrum coincides with the curvature spectrum
to numerical precision, confirming that the instantaneous curvature κ(k)
accurately encodes the equilibration rate of each Fourier mode. This agreement
is a direct consistency check of the theoretical identification between curvature
and dissipation in the reversible-dissipative geometry.
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