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Abstract

We work in the universal information hydrodynamics (UIH) framework
developed in two companion papers, in which reversible quantum dynamics and
irreversible response are organised in a local metriplectic geometry driven by a
convex free energy, a Fisher information metric, and an antisymmetric no-work
channel. Within this setting the irreversible drift is always a Fisher gradient
flow in a weighted H~! geometry, equipped with a cost entropy inequality and a
curvature coercivity bound that are invariant under the addition of compatible
reversible dynamics. In the present paper we show that this structure has a
canonical realisation for Fokker Planck equations, finite Markov chains and
GKLS semigroups, and that it can be reconstructed operationally from process
and state tomography on real quantum hardware.

On the classical side we identify, for any reversible Markov generator Q with
stationary law n, a Fisher Dirichlet operator G = Q diag(n) that saturates the
cost entropy inequality mode by mode and generates a Fisher gradient flow of
the relative entropy in the hydrodynamic Fokker Planck limit. On the quantum
side we show that, in a wide class of thermal, nonreversible and coherent GKLS
models, the symmetric part of the real generator in the stationary BKM metric
has a density block that coincides exactly with this classical Fisher operator, so
that population dynamics are always classical Fisher information hydrodynamics
while circulation and coherence effects live in the skew part J. We prove a finite
dimensional UIH hypocoercivity theorem in which the large time decay rate of
the semigroup generated by K = G +J is bounded below by a positive multiple of
the Fisher spectral gap of G, and we construct a simple renormalisation scheme
that preserves Fisher dissipation on chosen observables and exhibits a robust
diffusive Fisher universality basin. In one dimensional Fisher diffusions this
scheme supports a Fisher analogue of the Jarzynski relation with renormalisation
stable free energy differences.

We implement a suite of IBM Quantum experiments that realise this picture
on a superconducting qubit. Process tomography of idle and driven circuits
yields an effective real generator K in a Pauli basis whose metric adjoint split
in the BKM metric at the device stationary state produces a clean metriplectic
decomposition K = G + J; independent idle depths are consistent with a single
time homogeneous generator; the dissipative spectrum of G sets an information
theoretic speed limit for BKM Fisher decay; and a curvature test shows that
the same BKM metric is the local Hessian of quantum relative entropy at the
stationary state. On both synthetic models and hardware reconstructions the BKM
metric, the Hamiltonian symplectic form and a compatible complex structure
assemble into a Kéhler triple that is approximately preserved by UIH coarse



graining, while cross coherence diagnostics turn the reconstructed generators into
a practical UIH universality spectrometer. All claims are backed by a reproducible
Python archive that includes constructive Fokker Planck to Markov to GKLS lifts,
hypocoercive decay diagnostics, fluctuation and renormalisation experiments,
and hardware K tomography. Taken together, these results provide evidence that
the UIH programme is both mathematically coherent and experimentally visible,
with emerging signatures of universality in gaps, fluctuation free energies and
Kihler RG structure.
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1 Introduction

Open quantum systems are most often described either at the microscopic level
by GKLS master equations for density matrices or at the macroscopic level by
irreversible transport equations and stochastic differential equations. Between these
two descriptions lies a growing body of work in which dissipative evolution is organised
as a gradient flow in an information geometry, with Fisher metrics, entropy production
and hypocoercive decay replacing bare operator norms as the natural objects. In
practice, however, the reversible and irreversible channels of a given open-system
model are rarely assembled into a single geometric structure, and it is not clear a priori
which parts of that structure are universal and which depend on microscopic details.

In two companion papers [1, 2] we introduced a universal information hydrodynamics
(UIH) framework that begins to address this question. The reversible channel is
written as a Hamiltonian flow on a pair (p, S) of density and phase variables, while the
irreversible channel is generated by a symmetric mobility operator G that determines
both a Fisher information metric and a weighted H~! geometry. A single convex free
energy drives the irreversible drift, and the combination of G with an antisymmetric
no-work operator J produces a local metriplectic structure. Within this setting we
proved a cost entropy inequality that links control cost to entropy production, and a
curvature coercivity bound that links Fisher curvature to the irreversible drift. Both
statements are invariant under the addition of any reversible flow generated by an
antisymmetric operator satisfying a weighted Liouville condition.

The first aim of the present paper is to show that this abstract structure has a canonical
realisation in both the Fokker—Planck and reversible Markov settings, and a numerically
rigid realisation across a wide class of GKLS semigroups. On the classical side, once
a reversible Markov generator Q and its stationary distribution 7 are fixed, there is a
unique Fisher-Dirichlet operator

G = Q diag(n)

that saturates the cost entropy inequality mode by mode and realises the irreversible
channel as a Fisher gradient flow. In the hydrodynamic limit this operator generates
an overdamped Fokker—Planck equation with the same free energy, Fisher metric and
Dirichlet structure, placing discrete reversible chains and continuum Fokker—Planck
equations on a single UIH ladder.

On the quantum side we show that for a broad class of GKLS models, including
coherent and nonreversible examples, the density block of the metric-symmetric part
G of the real generator in the stationary BKM metric is exactly this same classical
Fisher operator. Population dynamics are therefore always classical Fisher information
hydrodynamics, with all coherence and circulation effects living in the antisymmetric
part J. We construct explicit lifts from continuum Fokker—Planck flows to reversible
Markov chains and diagonal GKLS generators, and show that coherent Hamiltonian
dressing leaves the density-sector Fisher geometry unchanged. Many distinct GKLS
models therefore share the same irreversible Fisher hydrodynamics, differing only in
their skew channels.

The second aim is to study the large-time behaviour of the full UIH generator K = G +J.
We prove a finite dimensional UIH hypocoercivity theorem in which the asymptotic
decay rate of the semigroup generated by K is bounded below by a positive multiple



of the Fisher spectral gap of G, with the proportionality constant depending only on
dimensionless coupling parameters that measure the strength of J relative to G. Once
the stationary geometry and Fisher gap are fixed, coherent circulation can reshape
trajectories and induce non-normal transients but cannot arbitrarily slow the irreversible
drift along density modes. We then introduce a UIH renormalisation group that coarse-
grains generators while preserving Fisher dissipation on chosen observables, and we
show numerically that a wide class of Fokker—Planck, Markov and GKLS models
flow to a diffusive Fisher universality basin. In one-dimensional Fisher diffusions this
provides a Fisher analogue of the Jarzynski relation with renormalisation-stable free
energy differences.

The third aim is to demonstrate that this picture can be reconstructed operationally.
Using IBM Quantum hardware we perform process and state tomography of idle and
driven circuits on a superconducting qubit, reconstruct effective short-time generators
K via matrix logarithms, and obtain clean metriplectic decompositions K = G + J
in the stationary BKM metric. Independent idle depths agree with a single time-
homogeneous generator. The dissipative spectrum of G sets an information-theoretic
speed limit for the decay of the BKM quadratic functional, and a curvature diagnostic
confirms that the same BKM metric is the local Hessian of quantum relative entropy.
A complex-structure test shows that the BKM metric, Hamiltonian symplectic form
and a compatible complex structure organise into an approximate Kéhler triple that is
preserved by Fisher-preserving coarse-graining. Cross coherence diagnostics turn the
reconstructed generators into a practical UIH universality spectrometer, distinguishing
full UIH closures from diagonal baselines and identifying Fisher-active modes.

All results are supported by a reproducible Python archive that includes constructive
Fokker—Planck to Markov to GKLS lifts, hypocoercive decay diagnostics, renormalisa-
tion experiments, Fisher—Jarzynski and Kihler RG tests, IBM K-tomography, curvature
and BKM speed-limit diagnostics, and permanent links to the code in Appendix A.

1.1 Reader roadmap

Section 2 recalls reversible Fisher hydrodynamics and the metriplectic framework,
fixing notation for the Fisher metric, reversible current and entropy production. It
emphasises that the same Fisher geometry underlies both the reversible Madelung
picture and the irreversible metriplectic structure.

Section 3 introduces finite dimensional information manifolds and shows how a UIH
generator K on perturbations decomposes as K = G + J into a Fisher-gradient part
G and a Hamiltonian part J. It defines the metric, the Fisher gap on the traceless
subspace, and the basic hypocoercive setting used in the rest of the paper.

Section 4 constructs diagonal GKLS generators from detailed-balance Markov chains
and identifies the Fisher—Dirichlet density block as the unique UIH realisation of the
density sector.

Section 5 takes the hydrodynamic limit to overdamped Fokker—Planck equations,
showing that the same Fisher—Dirichlet operator governs diffusion in the continuum.

Section 6 treats coherent GKLS models with genuine off-diagonal operators, showing
that the density sector again closes to a classical Fisher generator while circulation and



coherent effects live in the skew channel J.

Section 7 develops the UIH hypocoercivity theorem for finite dimensional generators,
bounding the decay rate of K in terms of the Fisher gap and dimensionless UTH
couplings built from J and [G, J].

Section 8 introduces the UIH renormalisation group, preserves Fisher dissipation
on chosen observables, and identifies a diffusive Fisher universality basin in the

(AF, g1, &2) plane.

Section 9 presents numerical tests of decay clocks, Fisher floors and coupling-parameter
behaviour across representative Markov, Fokker—Planck and GKLS examples.

Section 10 implements UIH channel tomography and universality spectroscopy on
IBM Quantum hardware: process tomography of idle and driven channels is used to
reconstruct K in the BKM geometry, splititinto G and J, and estimate (A, Anyps €15 22)
together with an emergent Kéhler structure and holomorphicity defects. Section 11
summarises the UIH picture, discusses falsifiers, and outlines extensions to larger
probe sectors and many-body systems.

2 Background from the reversible and dissipative Fisher geometry

This section gathers the parts of the companion work that will be used in the sequel.
The aim is to make the present paper logically self contained for a reader who is willing
to accept the main theorems of the previous studies, without repeating proofs. We
therefore state the reversible Fisher Schrodinger structure on (p, S), the dissipative
Fisher metriplectic structure on p, and the way in which both are organised by a single
underlying Fisher information object.

Commentary. This section only fixes the geometric stage. There is one Fisher
geometry on densities, and it supports two kinds of motion. The antisymmetric
operator J generates the reversible Schrodinger flow at fixed entropy; the
symmetric operator G generates the dissipative gradient flow that relaxes
entropy. Later, when we look at Markov chains, Fokker-Planck equations and
GKLS generators, we are simply realising these same two Fisher quadratures in
concrete models.

2.1 Reversible Fisher Schrodinger sector

The reversible companion paper [1] works with hydrodynamic variables p(x, ) and
S(x,t) on configuration space, treated as probability density and phase potential.
Dynamics are generated by a Poisson bracket on functionals F[p, S] of Dubrovin
Novikov type, restricted by locality, Euclidean invariance, global phase symmetry, and
reversibility. Within that class the classification reduces the bracket to the canonical

form
O0F 6G OF 6G
{F,G}:/ —— — —— | dx,
op 68  OS op

up to equivalence inside the axioms. In particular, {p(x),S(y)} = 6(x — y).



The Hamiltonian functionals of interest are of the form

2
Hlp.S] = / (%wmmg[p] d,

where the first term is the usual kinetic energy in hydrodynamic variables, the second is
a potential term, and Q[p] is a local curvature functional built from p and its gradient.

The equations of motion are the continuity equation and a Hamilton Jacobi equation
with an extra potential coming from Q. Reversibility and the projective linearity
requirement at the complex level restrict Q to be the Fisher functional on p. Concretely,
one finds that the only admissible local functional of the form

Flp] = / F(0)Vpl2dx

whose Euler Lagrange contribution can be absorbed into a linear complex Schrodinger
equation after a local complexifier ¢ = \/ﬁe‘s /" is the Fisher functional

Flpl = 4a [ [7ypPdx
with @ > 0 playing the role of #2/(2m). The associated potential

__, AP
Qalp) = a\/ﬁ

is then the usual quantum potential. With this choice, the equations of motion for
(p, S) are equivalent to the linear Schrodinger equation for ¢, and the scale « is fixed
by many body and symmetry arguments.

At this reversible level the Fisher object is therefore a curvature term in the Hamilton
Jacobi equation. It is determined by axioms that know nothing about Lindblad
operators or dissipation. It is precisely this object that will reappear in the dissipative
and hydrodynamic sectors.

2.2 Dissipative Fisher metriplectic sector

The dissipative companion paper moves to a density only description. The state
space is a set of strictly positive densities p on a domain Q, with fixed total mass and
admissible boundary classes (periodic or no flux).

A free energy functional F[p] induces a chemical potential u = 6F/§p up to an
additive constant. The irreversible part of the dynamics is assumed to be local and
quadratic in Vyu at fixed p, with a symmetric positive definite mobility tensor G (p, x)
that is uniformly elliptic on the domain.

Under a short list of axioms, including a steepest descent principle at fixed state and
locality of probes, one shows that the only possible irreversible drift is the continuity
form

Pl =V (0 G(p.x) Viu(p)),



and that the instantaneous irreversible power
1
Pie(ps ) = 5 / pVu-G(p,x) Vudx

induces a weighted H, !(G) norm on conservative tangents v at fixed p. The associated
entropy production is

a(p) = /qu -G (p,x) Vudx,

and a cost entropy inequality relates o (p), the minimal quadratic cost Cyin(p0; V)
to realise a given tangent v, and the instantaneous dissipation (v, u). A curvature
coercivity bound further shows that the Hessian of F at p is bounded below by a
curvature constant times the squared H, " norm of v.

The reversible drift at the density level is represented by an antisymmetric operator
J(p, x) that generates fluxes of the form

Jrev = —pJ(p,x) Vp,

subject to a weighted Liouville constraint V- (pJ) = 0 and the no work condition
f 10 plrevdx = 0. Under these conditions the reversible sector is orthogonal to the

irreversible cone in the H-! inner product, and the instantaneous scalars &, Cy,, and
the curvature constant depend only on G and F.

The Fisher information reappears in this dissipative sector as the curvature of F and
as the metric underlying the H; I geometry. In particular, when F is chosen to be a
relative entropy functional with respect to a reference density and G is taken to be a
scalar mobility, one recovers the standard Fokker Planck and Wasserstein gradient flow
structures.

The companion paper goes further and records detailed diagnostics and falsifiers, but
for the present work it is enough to know that within the axioms the symmetric G and
antisymmetric J are fixed up to simple gauges, and that the irreversible and reversible
parts can be cleanly separated.

2.3 Common Fisher structure

Both companion papers [1, 2] are built around a single Fisher object. In the reversible
Schrodinger sector Fisher curvature appears as a regulariser of the Hamilton Jacobi
equation and is responsible for the quantum potential.

In the dissipative metriplectic sector Fisher information appears as the curvature
of the free energy and as the metric that underlies the H,; ! geometry and its cost
entropy relations. The present paper does not introduce a new Fisher functional. It
instead explores how these existing structures interact with Lindblad generators and
hydrodynamic limits.

At a practical level this means that all constructions in the sequel will assume a fixed
Fisher geometry on the density manifold. The symmetric mobility G is the same one
that appears in the metriplectic study.



The antisymmetric operator J is the same one that appears in the reversible study, at
least at the level of coarse grained densities. The new object K = G + iJ that will
be introduced in the next section is therefore not an extra degree of freedom. It is a
complex packing of existing operators that simplifies the bookkeeping when one wants
to talk about reversible and irreversible quadratures in the same breath.

3 Information manifolds and UIH K flows

We now introduce the language in which the rest of the paper will be written.

We regard the set of states, classical or quantum, as a manifold equipped with an
information metric and a complex mobility operator. The symmetric part of the mobility
encodes irreversible gradient flow with respect to a free energy, the antisymmetric part
encodes reversible Hamiltonian flow, and Lindblad generators appear as particular
ways of coupling these parts when the states are density matrices rather than scalar
densities.

3.1 Information manifolds

An information manifold is a smooth manifold M of states equipped with three
pieces of structure. First, there is a free energy functional F: M — R, usually a
relative entropy or energy functional that plays the role of a Lyapunov function for the
irreversible dynamics.

Second, there is an information metric g on the tangent bundle 7 M, typically a Fisher
type Riemannian metric that arises as the Hessian of F or of a related divergence.
Third, there is a compatibility between F' and g that allows one to define a gradient
flow of F on M with respect to g.

In the classical density setting M is the space of strictly positive densities p with fixed
mass on a domain Q. The free energy F|[p] is often taken to be a relative entropy
/ plog(p/p.)dx plus potential terms, and the Fisher metric can be realised through
the weighted H; ! geometry defined by the elliptic operators L, and L, . In the
quantum setting M can be taken as the convex set of density matrices on a Hilbert
space. The role of F is played by the Umegaki relative entropy or a related quantity,
and the Fisher metric becomes a quantum information metric on density matrices. For
the explicit examples in this paper we will mostly work in the classical setting, but the
quantum examples inherit the same logic.

Commentary. Here we forget about PDEs and work in a finite-dimensional
laboratory. We take a vector space with a metric M and split a linear operator
K into a symmetric part G and a skew part J. The symmetric G is the “friction”
or downhill part in the metric, the skew J is the “rotation” or sideways part,
and K = G + J just packages them together. All of the K-split statements in
this section are linear algebra, but the same patterns will reappear for Markov
chains, Fokker-Planck flows and GKLS semigroups.




On such a manifold the gradient V, F is defined implicitly by the relation

8p(VgF(p),v) = DF(p)[v]

for all tangent vectors v € T, M. In the density setting the metric g, is represented in
terms of the elliptic operators by

gp(vow) = / PV, - Gp.x) Vo d,

where ¢, and ¢, are potentials solving Poisson type equations L, ¢, = -V,
and similarly for w. The metriplectic paper shows that, under the stated axioms,
the irreversible drift is exactly —V,F and is represented as a continuity equation
0p =V-(pGVu) with u = 6F /5p.

3.2 Complex mobility operator

To prepare for the Lindblad discussion it is convenient to lift this gradient flow picture
to the cotangent space. Instead of working directly with tangent vectors v, we consider
covectors p that play the role of chemical potentials or Hamiltonian potentials. The
metric g and its inverse identify tangent and cotangent spaces, and the irreversible
drift can be written schematically as vi; = G p where p is the gradient of F and G is a
positive selfadjoint operator with respect to g.

The reversible sector meanwhile is encoded by an antisymmetric operator J that maps
covectors to tangent vectors in such a way that the power (Jp, p) vanishes for all p. In
the density setting J is represented via the weighted Liouville identity and generates
divergence free fluxes. In the quantum setting J corresponds to the commutator with a
Hamiltonian and generates unitary evolution that preserves the von Neumann entropy.

The complex mobility operator K is then defined by
K=G+1J.
Acting on a complex potential
U=pu+iy

with u the chemical potential and  a Hamiltonian potential, K produces a complex
current of the form

v =R(KU)

which can then be inserted into a continuity equation. In the density case this gives
op=-V-], j=pR(KVU),

with j decomposed into reversible and irreversible parts. In the Schrodinger case, after
the complexifier, the same structure can be read at the level of the wave function. In
the Lindblad case, K acts on matrix valued potentials and the continuity equation is
replaced by the GKLS master equation.

The usefulness of K is twofold. Conceptually, it packages the symmetric and
antisymmetric mobility into a single object that carries both quadratures. Practically,

10



it allows one to write diagnostics and inequalities in a compact way. For example, the
cost entropy inequality and curvature coercivity bounds of the metriplectic paper can
be viewed as statements about the real part of K on the real axis of potentials, while
reversible invariance corresponds to the imaginary part dropping out of certain scalar
functionals.

3.3 Schrodinger, Fokker Planck, and Lindblad as K flows

Within this abstract language, the three families of dynamics that concern us can be
described informally as follows.

First, Schrodinger evolution on pure states corresponds to a purely imaginary K with
G = 0 and J given by the Hamiltonian commutator in the appropriate representation.
The free energy is constant, and the state moves along level sets of F. At the
hydrodynamic level this structure is encoded by the reversible companion paper in the
canonical bracket on (p, S) and the Fisher curvature.

Second, Fokker Planck evolution in the overdamped regime corresponds to a purely
real K with J = 0 and G given by the Fisher metriplectic mobility. The state moves
down the gradient of F' with respect to the H [jl (G) metric. The dissipative companion
paper characterises this class in detail and shows that, under the stated axioms, the
irreversible flow is uniquely determined by G and F'.

Third, Lindblad evolution on density matrices mixes both parts. In the GKLS
representation the generator of a contractive semigroup is a sum of a Hamiltonian
commutator and a dissipator built from jump operators. When the jump operators and
stationary state obey detailed balance, the dissipator can be interpreted as a gradient
flow of the quantum relative entropy with respect to a quantum Fisher metric, while
the Hamiltonian part is reversible.

In the special class of models studied in this paper the dissipator reduces on the
diagonal to a classical Fisher gradient flow of the Kullback Leibler divergence, and the
Hamiltonian part becomes a familiar reversible operator. The resulting dynamics on
the diagonal sector can then be seen as a projection of a K flow compatible with the
classical Fisher geometry.

The rest of the paper will make these schematic statements precise for a concrete
family of GKLS generators with diagonal jumps and for their hydrodynamic limits.

Section 4 will introduce the finite dimensional GKLS model, show explicitly how
its diagonal sector reduces to a reversible Markov chain, and identify the equality of
quantum and classical entropy decay curves.

Section 5 will construct the hydrodynamic limit and show that the limiting Fokker
Planck equation is exactly a Fisher metriplectic gradient flow. Section 6 will use a
simple coherent two level GKLS model to illustrate how J feeds into an effective G
on coarse grained populations in a strong dephasing regime. The present section is
therefore the conceptual backbone that allows these examples to be read as instances of
a single universal information hydrodynamics. This finite dimensional picture serves
as a laboratory for the UIH K split.

In the next section, we embed it into diagonal GKLS semigroups whose density sector

11



is exactly Fisher-Dirichlet, while in Section 6 we show that the same split arises in
coherent GKLS models once the BKM metric at the stationary state is used.

The continuum Fokker-Planck flows of Section 5 and the numerical and hardware
tests in the appendices then demonstrate that the same structures control irreversible
response from classical overdamped Langevin dynamics all the way to real, physical
noisy, superconducting qubits.

4 Finite GKLS with diagonal jumps and classical reversible chains

In this section we give a fully explicit family of finite dimensional GKLS generators
that act as Lindblad semigroups on density matrices and reduce exactly to classical
reversible Markov chains on their diagonal sector.

For diagonal states, the quantum relative entropy with respect to the stationary state
coincides identically with the classical Kullback Leibler divergence, so the entropy
decay curve of the GKLS semigroup on that sector is exactly the same as that of the
corresponding Markov chain. This realises the discrete Fisher gradient flow on the
probability simplex as a special case of a quantum information hydrodynamics, in
a way that is completely transparent at the level of matrix elements and supported
numerically by the script ®1_gkls_diagonal_to_markov_checks.py.

Commentary. This section answers a concrete question: what does the UITH
picture look like for an honest Lindblad jump model? We start from a thermal
GKLS generator, restrict the dissipator to the energy eigenbasis to obtain a
classical Markov generator Qmarkov, and then symmetrise with respect to the
stationary law to obtain the Dirichlet operator G. The Fisher metric and entropy
decay in the diagonal sector are not fitted by hand; they are determined entirely
by the GKLS data.

4.1 Set up and notation

Let H = C" be a finite dimensional Hilbert space with orthonormal basis {[i)}7 .
A density matrix p is a positive semidefinite operator on H with unit trace. We will
work in the matrix representation of g in the basis |i):

N
p= 2 Punlm)nl. pun = (mlpln).
m,n=1
Fix a strictly positive probability vector # = (xy,...,my) with }; 7; = 1. Think of

as a discrete Gibbs distribution or stationary measure.

We introduce non negative rates k;; > O for all ordered pairs i # j. These rates will act
as the jump intensities of a continuous time Markov chain in the classical picture, and
as the amplitudes of Lindblad jump operators in the quantum picture. A convenient
way to enforce detailed balance with respect to 7 is to start from a symmetric matrix

12



a;j = aj; > 0 with zero diagonal and set

Ty . .
T
T 7Tj
mikji = midjiy | = @i NTTG = Taigy = = ki,
J 2

so detailed balance 7;k j; = 7 ;k;; holds automatically.

Then

On the quantum side we define Lindblad jump operators

Lij = ~kij i){jl, i #J,

and we consider a GKLS generator with these jumps and no Hamiltonian term. That
is, the evolution of a density matrix p; is governed by

d A A A T A
apt = L(ps) = Z (LithL:-rj - %{LijLij,Pt})-
i+j

We will show that this semigroup has a unique stationary state

N
#= ) mili)dil,
i=1

and that its action on diagonal density matrices coincides exactly with that of a
reversible Markov chain with generator built from {k;;}.

4.2 Diagonal sector and reversible Markov chain

We first show that the diagonal and off diagonal matrix elements of g, evolve in a
simple and decoupled way under (4.1). Using the definitions (4.1) and (4.1), one
checks

LLij = kij 1)

Writing 6 = X, Pmn|m){n|, a short computation shows that the diagonal entries
satisfy
Pii = Z (kijpjj = kjipii),
j#i

while the off diagonal entries satisfy

1 1
Pmn = _Epmn Z kim — Epmn Z kin, m # n.

l#+m I#n

The derivation is standard: the term L;; pALiTj only contributes to diagonal entries, and

the anticommutator term involves projectors |j){j| that act diagonally in the chosen
basis.

13



Equation (4.2) shows that the off diagonal entries decay exponentially to zero with
a rate bounded below by half the total outgoing rate from the corresponding indices.
They do not feed back into the diagonal entries. Equation (4.2) shows that the diagonal
entries are closed under the evolution.

If we define the population vector p(t) by
pi(1) == pii(1) = (il peli),
then (4.2) can be written as
pi(t) = > (kijpj (1) = kjipi(2)).
J#i

This is exactly the master equation of a continuous time Markov chain on {1, ..., N},
with transition rates k;; from j to i. If we define a generator Q by

Qij =kij, 1#], Qiiz—zkji,
J#i
then (4.2) can be written as
p(1) =0 p(1),

where the column vector p has entries p;. The detailed balance identity (4.1) is
equivalent to

miQij = m;Qji,
so Q is a reversible generator with invariant distribution .

We also note that the stationary quantum state 7 satisfies £(7) = 0. Indeed, in the
basis |{) we have
#= ) mliil.
i

and using detailed balance each term in (4.1) cancels when applied to 7, in a manner
analogous to the usual classical detailed balance identity. Thus 7 is the unique
stationary state of L in the full quantum system, and its diagonal entries are the unique
stationary distribution r of the classical chain.

4.3 Quantum relative entropy and classical Kullback Leibler divergence

For a general density matrix g the Umegaki quantum relative entropy with respect to
7t is defined by

S(pll7) = Tr(p(log p —log 7).

When both p and 7 are diagonal in the same basis, the logarithms act elementwise, so
if p =3 pili) (il and & = 3, 7;]i) (i, then

N N
AllA Pi
S(pli#) = Y pilog pi ~logm) = ) pilog — =t Diu(pllm),
i=1 i=1 !

the classical Kullback Leibler divergence from p to 7.

14



Suppose now that the initial state gy is diagonal, so that g, remains diagonal under the
GKLS evolution (4.1) and the corresponding population vector p(z) evolves by (4.2).
Then for all times we have

S(plI#) = Dxr(p(1)||7).

The decay of quantum relative entropy along the diagonal sector of the Lindblad
semigroup is therefore identical, pointwise in time, to the decay of classical relative
entropy along the corresponding Markov chain.

The evolution (4.2) is generated by a reversible Q, so it admits a well known Dirichlet
form representation. One can show that

N
d 1 D) . D
DOl = -3 3 wiks (& - —{) (log 2 g ﬂ_{) .

dr =] T Ty J
Every term in the sum is non negative by the usual monotonicity of the logarithm, so
the derivative is non positive, and is zero if and only if p;/x; is constant in i. Thus
Dy decays strictly along the Markov chain unless p = m, and the same holds for the
quantum relative entropy of diagonal states under the GKLS evolution.

In the language of the metriplectic companion paper, (4.3) expresses the entropy
production as a discrete Fisher quadratic form in the logarithmic gradient of p/nx.
Indeed, the difference p;/m; — pj/x; is a discrete gradient in the tilted variable, and
the factor 7;k;; is a discrete mobility. The entire finite dimensional picture is thus
a discrete counterpart of the Fisher metric and H, ! geometry that appear in the
continuum.

4.4 Numerical verification

The script 01_gkls_diagonal_to_markov_checks.py implements this construc-
tion for concrete choices of N, 7 and k;;. It constructs the Lindblad superoperator
L in vectorised form, builds the Markov generator Q, and evolves both the GKLS
equation and the Markov master equation from the same diagonal initial state. At a
fixed set of times it compares:

* the population vectors extracted from the diagonal of p, and from the Markov chain,
and
* the relative entropies S(p;||#) and Dky (p(¢)||x).

The script reports the maximum difference in populations and in relative entropy
over the time grid. In all tested cases these differences are at the level of numerical
integration error, confirming (4.2) and (4.3) at the level of floating point computations.
For completeness, the script also checks positivity and normalisation of the density
matrix along the evolution.
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5 Hydrodynamic limit and Fisher metriplectic Fokker Planck flows

We now move from finite dimension to continuum. We keep the classical reversible
chain constructed above but embed it in a family indexed by a lattice spacing a
and endowed with a nearest neighbour structure. In the limit @ — O the master
equation of the chain converges to an overdamped Fokker Planck equation with
drift determined by a potential V and diffusion coefficient D. We then show that
this Fokker Planck equation is exactly a Fisher metriplectic gradient flow with
mobility tensor G = DI and free energy F[p] = f plog(p/m)dx, as described in the
dissipative companion paper. Scripts 02_markov_to_fp_limit_checks.py and
03_fp_fisher_metriplectic_checks.py provide numerical support.

Commentary. The finite reversible chain from Section 4 is now sent to a
continuum limit. Jumps turn into drift and diffusion, and the discrete Fisher-
Dirichlet form becomes the quadratic form of an overdamped Langevin /
Fokker-Planck operator. The same Fisher geometry and K-split survive the
limit. In the weighted H, ! Fisher geometry the continuum Fokker-Planck
operator again takes the form K = G + J, with G giving entropy production
and J giving incompressible transport.

5.1 Reversible chain on a lattice

For simplicity we work in one spatial dimension and with a periodic or reflecting
domain. Fix a macroscopic interval [—L, L] and a lattice spacing a > 0, and let

x;i =—L +1ia, i=0,1,...,.N—1,

where Na = 2L. We consider indices modulo N in the periodic case.

Let V: [-L,L] — R be a smooth potential, and fix a diffusion coefficient D > 0.
Define the discrete Gibbs weights

N-—

r = o ep(~V)/D),  Za= Y exp(~Vix)/D)

—_

1=
We will write m; when the dependence on « is clear from context.

We now define nearest neighbour rates that satisfy detailed balance with respect to 7
and have the natural diffusive scaling in a. For each i set

_ D Tivl _ D T
kijiv1 = — [— kiv1,i = — :
a T a Ti+1

This is the one dimensional specialisation of (4.1). It satisfies detailed balance in the
sense that

D
mikiv1,i = miv1ki iz = ;Vﬂiﬂ'iﬂ-
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The generator Q (@) of the chain is then
Ql(tllll = ll+17 Ql(’al)l _kll 15 Ql(la) = l+1i_kl 1,i»

with all other entries zero. The master equation for the population vector p{®) (¢) =

(P! ()N

PEO) = ki1 pL () + kiiaip (1) = (ki + kic1,2)p (1),

The stationary distribution of this chain is 7(%), and detailed balance ensures reversibil-
ity.

5.2 Flux form and continuum limit

To extract a continuum equation, it is convenient to rewrite (5.1) in flux form. Define
the flux across the bond between sites i and i + 1 by

Ji+l/2 = kiw zP( “ — ki l+1pl(_?_1)

Then (5.1) can be written as
ﬁ,(a) =Jic12 = Jiv1)2-
Introduce the tilted variables

(a)()

i

=2

so that pga) = fi(a)ni. Using (5.1) and detailed balance, we can write the flux as

D it
Jivip=— Tl ,(a) \/ - z(fl)
i
/ T /71 1
— 2 i f(a) i+ l+1fl(a)
a Tivl

= S () - lﬁh

This is a discrete gradient in f (@) with a mobility prefactor \/m; ;1.

We now define a piecewise constant density p(@) (x, ) by

(a)
N t
pwkmn>=35;l,

sothat 3; p a)(t) = 1 approximates /p(“)(x t)dx = 1. Similarly define 7(%) (x;) =

n;/a, so that 7(@) approaches the continuum Gibbs density 7 (x) o exp(=V(x)/D) as
a—0.

17



In the formal limit a — 0, one shows that

Vrimicr = an(xiz1)2),

where x;11/2 = x; + a/2, and

9 9% a8, f(xivi ),

where f(x,1) = p(x,1)/n(x). Thus

D
Jisi2 = - m(Xi41/2) Ox f(Xiz1/2)-

Using (5.2) and dividing by a we have

1

1
8 p Y (x;,1) = EP,@ = E(Ji—l/Z = Jiv172) = =0<J (x;, 1),

where in the limit we can identify
J(x,t) = =D n(x) dx f (x,1) = =D (dxp(x,1) — p(x,1) Ox log w(x)).
The continuum equation is therefore
Op(x,1) = =0xJ(x,1) = Ox(D dxp + D p dx log ).
Since log 7(x) = =V (x)/D + const, we have d, logm = =V’ (x)/D, so
Op = 0x(D dxp — pV’) = 0x(pV’) + D Oxxp.

This is the standard overdamped Fokker Planck equation with drift potential V and
diffusion coeflicient D.

The same argument extends to higher dimensions and more general neighbour graphs.
The key point is that the diffusive scaling k;; ~ Da~? and the detailed balance
structure ensure that the macroscopic limit is a second order operator of the form
V- (pVV + DVp), which is the continuum Fisher metriplectic drift with G = DI and
free energy built from the Gibbs density.

5.3 Fokker Planck as a Fisher metriplectic K flow

We now identify the Fokker Planck equation (5.2) with a Fisher metriplectic K flow in
the sense of the dissipative companion paper. The generalisation to higher dimensions
is straightforward.

Let p(x, t) be a smooth strictly positive density on [—L, L] and define the continuum
Gibbs density

L
m(x) = le_v()‘)/D, Z = / e VXD gy,
z L
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Define the free energy functional

_rt p(x)
Flp] = /_Lp<x) log 25 .

A variation p - p + en with [ 5 = 0 yields

Vv
oF = / n(x) (logp(x) +1+ (Dx))dx,
so the chemical potential is
oF Vv
ulx) = m =logp(x) + % + const.

The constant does not affect gradients and can be ignored.

We choose the mobility tensor G = D acting as a scalar multiple of the identity. In
one dimension this gives

Lp,G¢ = _ax(pDaxd’)-

The irreversible Fisher metriplectic drift is then

Op = Ox (PDax,u) .

Using (5.3), we have

O
pDO =D Oyp + pV’.

Inserting this into (5.3) gives exactly (5.2). Thus the Fokker Planck equation obtained
from the hydrodynamic limit of the reversible chains is exactly the Fisher metriplectic
gradient flow of F' with mobility G = D, in the class singled out by the dissipative
companion paper.

The entropy production along the flow is

d

S Flpd = / pdhp dx = / 1O (pD ) dx = - / pD (9,

assuming suitable boundary conditions. This is minus the square of the H!(G) norm
of u, and coincides with the continuum limit of the discrete Dirichlet form (4.3). In
particular, the decay of F along the Fokker Planck flow is the continuum counterpart
of the decay of Kullback Leibler divergence along the reversible chain, and the discrete
Fisher form in (4.3) converges to the continuum Fisher form f pD|0p|?dx.

5.4 Numerical verification

The script 02_markov_to_fp_limit_checks.py implements the reversible chains
described above for a sequence of lattice spacings and compares them to a numerical
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solution of the Fokker Planck equation (5.2). For each spacing a it:

« constructs Q%) and evolves the master equation (5.1) for a fixed initial density
profile,

« interpolates the resulting discrete density p (%) (x, r) to a common grid, and

¢ compares it to the Fokker Planck solution p(x, ) at the same times.

The code reports error norms E (a) between p(®) and p and estimates a convergence
rate in @ using a log log fit. In all tested regimes the errors decay at the expected order
dictated by the spatial discretisation, and the discrete relative entropy F[p(®)] decays
along curves that converge to the continuum decay of F[p].

The script 03_fp_fisher_metriplectic_checks.py works directly at the contin-
uum level. It discretises the Fokker Planck equation (5.2) on a fine grid and, at each
time step, computes:

* a finite difference approximation to 9, p,
¢ the Fisher metric right hand side d, (o Ddyu), and
¢ the free energy F[p] and the quadratic form / pD (0, p)*dx.

It then checks numerically that d;p matches 8, (pDdxu) to within discretisation error,
and that dF /dt ~ — / oD (0, u)*dx along the evolution. These diagnostics provide a
concrete numerical confirmation of the Fisher metriplectic structure at the PDE level.

Together, the reversible GKLS to Markov reduction of Section 4 and the hydrodynamic
Fisher Fokker Planck limit of this section show that the entropy decay and Fisher
geometry of a simple class of Lindblad semigroups can be understood entirely in terms
of classical Fisher gradient flows on densities, once one restricts to the diagonal sector
and passes to the macroscopic scale.

6 Coherent GKLS models, coherences, and effective Fisher chains

The examples so far have been deliberately classical in flavour. Lindblad generators
with diagonal jump operators and no Hamiltonian term act as quantum lifts of reversible
Markov chains, and their entropy decay on the diagonal sector is exactly classical. In
this section we consider a genuinely coherent GKLS model in which the Hamiltonian
and the dissipator are not simultaneously diagonal, so that populations and coherences
interact. At the level of the full density matrix the evolution is first order in time and of
GKLS type, but at the level of populations alone the dynamics becomes second order
and non Markovian. In a strong dephasing regime one can nevertheless eliminate the
coherences and obtain an effective classical Markov chain for the populations. This
effective chain falls inside the Fisher metriplectic class, and its rates depend on the
Hamiltonian part in a way that makes the interplay between J and G explicit.

Commentary. Up to now the dissipative sector came from GKLS generators
that were already diagonal in the energy basis. Here we let a genuinely coherent
GKLS model run and ask what the diagonal density alone “sees”. The off-
diagonal coherences feed into an effective Markov generator on the populations,
and its symmetric block is still a Fisher-Dirichlet operator. In UIH language,
the coherent J sector renormalises the effective G seen by the coarse-grained
density, but it does not destroy the underlying Fisher-metriplectic structure.
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6.1 A qubit GKLS model with coherences

We work with a single qubit and choose a basis in which the Lindblad operator is
diagonal but the Hamiltonian is not. Let {|0), |1)} be the eigenbasis of o, and set

H:%crx, L =+yoy,

with real parameters w > 0 and v > 0. The GKLS equation reads

d, . . 1 .
P = —i[H, p] + Lp,L" - E{LTL,Pt}-

This generator has a unique stationary state g, = %I and describes coherent rotations
about the x axis combined with dephasing in the o, basis.

It is convenient to write the state in Bloch form,

pr = %(I +x()oy + y(1)oy + z2(1) o),

where the real vector (x, y, z) lies in the unit ball. Inserting this parameterisation into
(6.1) and using the usual Pauli algebra, one finds that the Bloch components satisfy
the linear system

X =-2yx,
y=-2yy-wz,
7= wy.

The dissipator damps the x and y components at rate 2y and leaves z unchanged, while
the Hamiltonian couples y and z through precession at frequency w. The stationary
point is at x = y = z = 0, corresponding to the maximally mixed state p..

The population of the excited state |1) is

1+z(2)
2 9

p1(1) = (11p|1) =

and the ground state population is po(?) = 1 — p1(¢) = 17+(t) The diagonal sector is
therefore determined by the single function z(7).

Combining (6.1) and (6.1) we can eliminate y. Differentiating (6.1) gives
= wy = w(-2yy - wz7) = 2ywy — w’z.
Using wy = z from (6.1), we obtain
F4+2yi+wz=0.

This is the equation of a damped harmonic oscillator with natural frequency w and
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damping coefficient 2y. In terms of the population p; we have

pr+ 2vp+ 0 (pr - 5) =0,
Thus, although the full GKLS equation (6.1) is first order in time, the induced dynamics
on the coarse grained population variable p; is second order and involves an inertial
term ;. There is no exact closed first order Markovian equation for p; alone at finite
v; any attempt to write p; as a function of p; only would require keeping track of
hidden variables that encode the coherence y.

6.2 Overdamped limit and effective two state chain

In the strong dephasing regime y > w, the variables x and y are fast and strongly
damped, while z evolves slowly. On timescales large compared to y~! but not so large
that z has fully relaxed, the system is effectively overdamped and one can eliminate y
adiabatically from the dynamics.

Formally, on the slow manifold one can set ¥ ~ 0 in (6.1) and solve for y in terms of z:

w
O~ 2yy-—wz = yz—gz.

Substituting this into (6.1) gives an effective first order equation for z:

wl

IR wy = —Zz.
Equivalently,
. w
z=—-kz+r(t), K=—,
2y
where r(¢) is a small residual term that vanishes in the asymptotic regime y — oo at
fixed w. In terms of the population p; this reads
1 w? w? 1
= tx -2 p-1) = - (pi - 5).
P1 =52 4y( p1—1) 5, P17 5

This is exactly the master equation of a symmetric two state Markov chain with states
|0) and |1), stationary distribution 79 = 7r; = 1/2, and transition rates

2
w
kor = k1o = 3

Indeed, the master equation for such a chain is
1
P1 =—kiop1 + koipo = —kiop1 + ko1 (1 — p1) = —Zklo(pl - 5),

so identifying coefficients gives 2k19 = w?/(2y) and hence ko = w?/(4y).
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The effective generator

B

-k k w?

is reversible with respect to 7 = (1/2,1/2). The free energy functional on the
population simplex is the relative entropy

I-pi 1
log 2L
12 TP,

1
Pi
Flpl= ) pilog ™= = (1~ py)log
i=0 !

Writing p = p; and suppressing the time argument, we can calculate

l1-p
1/2

—1+10g%+1:10g

p
1-p

dF
dp

= —log

Thus the discrete chemical potential is

dF p
=—=1 :
n(p) ap - oeTT,

The effective Markov dynamics for p can then be written as a one dimensional gradient
flow

p=-M(p) u(p),
with mobility
W p-1)2
~ 2y log(p/(1-p))’
For p € (0,1) and p # 1/2 the numerator and denominator have the same sign, so

M (p) > 0. At the symmetric point p = 1/2 one can use 1’Hospital’s rule to define the
limit

M(p)

. p—1/2 1

lim —————— = —,

p—1/2log(p/(1-p)) 4
so M extends smoothly to a strictly positive function on the open interval. The
dynamics (6.2) is therefore a Fisher type one dimensional gradient flow of F with

a state dependent scalar mobility M (p), entirely analogous to the continuum Fisher
metriplectic flows considered in the dissipative companion paper.

This example shows that even a tiny quantum system with genuine coherences produces,
in a suitable regime, an effective classical chain whose entropy decay and metric
structure sit inside the Fisher metriplectic class. The reversible Hamiltonian part J
does not appear directly in the irreversible entropy production, but it does feed into the
effective mobility through the factor w? /vy in (6.2).

6.3 Numerical illustration

The script 04_gkls_coherence_elimination_checks.py implements the qubit
GKLS model (6.1) in the Bloch representation and compares the exact GKLS evolution
to the effective Markov chain dynamics in the overdamped regime.
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Concretely, the script:

* integrates the linear system (6.1) to (6.1) for chosen values of w and y with y > w,
from an initial state with non equilibrium populations and nonzero coherences;

* extracts the population pi(¢) and fits its long time decay to a single exponential,
obtaining an effective rate & for the relaxation of p; to 1/2;

« compares & to the theoretical value w?/(2y) predicted by (6.2);

« constructs the effective two state Markov chain with rate k = w?/(4y) and integrates
its master equation from the same initial population, comparing the resulting p?ﬁ(t)
to the population curve from the full GKLS dynamics in the overdamped regime.

In regimes where y/w is large, the numerical results show that the slow tail of p;(¢)
under the full GKLS evolution is well described by the effective exponential with rate
w?/(2y), and that the effective two state chain reproduces the population dynamics
on timescales larger than y~! to within the numerical accuracy of the integrator. The
script reports the mismatch between the fitted and theoretical rates and the maximum
deviation between p(¢) and p‘;'ﬁt(t) over a chosen time window. These diagnostics
quantify how the coherent reversible part feeds into the effective irreversible dynamics
of populations when coherences are fast variables.

From the perspective of the information manifold, this example realises a projection
of a quantum % flow onto a one dimensional classical Fisher metriplectic flow, with
an effective mobility that depends quadratically on the Hamiltonian amplitude and
inversely on the dephasing rate. It provides a concrete instance of the principle that,
although reversible operators do not contribute directly to entropy production, they
can modify the effective irreversible channel seen by coarse grained observables.

6.4 Signatures on IBM Quantum hardware

The abstract K split and Fisher-Lindblad picture are not restricted to classic computing.
To test them on actual quantum hardware we performed a series of IBM Quantum
experiments.

We first carry out a K tomography experiment on a noisy idle channel of a supercon-
ducting qubit, detailed in Appendix D.1. A depth four identity circuit is reconstructed
by one qubit process tomography in the Hermitian Pauli basis, yielding a channel
superoperator R. From its unique stationary state pgs we build the BKM metric M
and restrict R to the traceless Pauli block Ry;. Assuming Ry ~ exp(AtK) for some
effective generator Ky, we compute Ky by a matrix logarithm and perform the metric
adjoint split

Ktﬁr = M[;IK;—Mtra Gy = %(Ktr + Ktﬁr)a Ju = %(Ktr - Ktﬁr)

On representative runs both the symmetry residual |My Gy — (MyGy) || and the
skewness residual ||MJy + (MyJy) T || are at the level of machine precision, while the
dissipative spectrum of —sym(MGy,) is strictly positive. This is a direct experimental
realisation of the UIH K split on hardware.

A second experiment tests semigroup scaling across two idle depths, showing that the
same K governs the idle dynamics over a range of time scales to within small channel
level deviations compatible with sampling noise and drift, detailed in Appendix D.2.
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A third experiment uses the BKM metric and the dissipative spectrum to formulate and
verify an information theoretic speed limit on the hardware: the smallest eigenvalue
of —sym(MGy) sets the natural decay clock for the quadratic functional F(u) =
%uTMtru, and the full K flow decays faster than the pure gradient flow, as predicted by
the one current two quadratures picture, detailed in Appendix D.3.

Finally, a curvature test confirms that the BKM metric extracted from pg is the local
second order curvature of quantum relative entropy for small unitary perturbations,
with measured entropy changes tracking the quadratic BKM prediction across three
independent directions, detailed in Appendix D.4.

CPTP-repaired two qubit K tomography and semigroup decay. A final suite
of hardware tests targets the genuinely noncommuting two qubit idle channel of the
ibm_fez backend. For a depth-4 identity circuit we perform full two qubit process
tomography, reconstruct a completely positive and trace preserving map T, by a
spectral CPTP repair, and extract a traceless block T¢p . The unique stationary state
pss of T, determines the BKM metric M and its restriction My, to the traceless operator
space. A matrix logarithm defines an effective generator K¢, := log(T¢p,«), and
performing the metric-adjoint split
Kb = MZ'KI M, Gep i= L(Kep + KF Jep 1= 3 (Ko — k%)
P tr SeptHr cp 2 \7xep cp/» cp 2\ Cp cp

again yields symmetry and skew-symmetry residuals at machine precision, demonstrat-
ing that the metric adjoint picture persists in the full two qubit setting. The dissipative
Fisher spectrum is then directly accessible as the eigenvalues of —sym(MGp).

Three independent datasets (4k, 6k and 8k tomography shots) display the same
structure. The Fisher dissipative spectrum {4;} obeys Amin < -+ < Amax < 0 with
slowest rates between —3.5 x 1073 and —1.4 x 10~2 depending on shot count, while the
spectral condition number of My, remains modest. For each dataset nine distinct initial
conditions are constructed by perturbing the stationary state pg along orthonormal
directions in the BKM metric. The evolution p, := pg + ¢ K@y is propagated for
t € [0, 60] and its quantum relative entropy Dprm (¢ ||,0ss) is monitored as a function
of time.

In all runs the relative entropy exhibits clean exponential decay. Fitting log Dk ()
over short windows (¢ € [0.5,5]) and long windows (¢ € [20, 60]) yields decay rates
between —2 x 1072 and —9 x 10~2 depending on the initial condition. Crucially, every
observed decay rate is strictly more negative than the Fisher gap Ani, extracted from
Gp, with ratios slope/Amin ranging from 2 to 25. This is the expected signature of
the cost-entropy inequality: the Fisher gap provides a geometric lower bound on
irreversible decay under the full K flow, and the hardware dynamics lie safely above
this floor.

A particularly sharp test uses the “gap mode” initial state obtained by taking an eigen-
vector of G corresponding to Ay, and constructing a traceless BKM-orthonormal
perturbation of pg. If the UIH picture were not geometrically faithful for the recon-
structed channel, this state would yield the most stringent challenge to the Fisher gap
prediction. Instead the behaviour aligns cleanly with theory: the gap mode decays
exponentially with rates again significantly faster than the Fisher gap, with no violation
in any dataset.
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The semigroup extrapolations to ¢ = 60 inevitably leave the positive cone for some
initial conditions, as the matrix logarithm does not enforce GKLS form at intermediate
times. However positivity is maintained for early times (¢ < 10), the decay rates are
already stable by ¢ ~ 5, and all relevant quantities in the Fisher-Lindblad tests depend
only on K, and on Dgrm(p:||pss) with eigenvalues clipped inside the logarithm. The
positivity excursions therefore do not affect the validity of the speed-limit comparison.

Outcome. These two qubit tests provide an independent and far more demanding
validation of the geometric content of the UIH framework. The BKM metric extracted
from hardware determines a Fisher dissipative operator whose smallest eigenvalue
acts as an experimentally measurable irreversible clock; the full K flow constructed
from the same data respects this bound across a wide family of initial conditions;
and even the eigenvector-engineered gap mode obeys the same inequality. Together
these results show that the Fisher-Lindblad structure, originally derived abstractly
from reversible-dissipative metriplectic theory, is realised quantitatively on a real
superconducting device, further reinforcing the geometric smoking guns established
above.

Together these hardware results provide geometric smoking guns for UIH on supercon-
ducting qubits: the K split, the Fisher dissipation spectrum as an irreversible clock,
and the identification of the BKM metric as the local information curvature are all
realised experimentally on a real device.

6.5 Hydrogen tunneling in palladium as an external Fisher-Lindblad testbed

The two state tunneling experiment of Ozawa et al. [14] on hydrogen in palladium
provides a particularly clean external testbed for the Fisher-Lindblad picture developed
here. In their setup a 10 nm Pd film is loaded with hydrogen at low temperature,
creating a metastable population of H atoms in tetrahedral (T) interstitial sites which
relax into energetically favorable octahedral (O) sites upon annealing. The dynamics
is read out through the in plane resistance, and for each anneal temperature T the
resistance trace R(¢;T) is accurately fitted by a single exponential,

R(#;T) = Roo(T) + AR(T) e 7 (1),

with 7=!(T) interpreted as the T to O hopping rate.

By combining channeling nuclear reaction analysis with density functional and path
integral calculations, Ozawa et al. show that the relevant hydrogen dynamics can be
modeled as a two site system with an energy splitting AE ~ 1.8 meV between an
active T level and a higher O vibrational level, coupled to both phonon and conduction
electron baths. The measured hopping rate 7~!(7) exhibits three regimes: a high
temperature Arrhenius law with activation energy E Zlgh ~ 64 meV attributed to over
barrier diffusion, an intermediate Arrhenius regime with a small barrier EM¢ ~ 3 meV
associated with phonon assisted resonant tunneling, and a low temperature regime
where
YT) o T?K-1, K ~0.41,

in agreement with Kondo style theory for nonadiabatic electron mediated tunneling in
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an asymmetric double well.

At the level of occupations pr(t), po(t) the hydrogen subsystem can be represented
as a reversible two state Markov chain

—kr—o(T) ko-1(T)

Q) =\ kyso(T)  —kour(T)

), mr(T) « e BAE no(T) =1-np(T),

with detailed balance nr k1,0 = moko—71 and nonzero eigenvalue A(T) = k7—,0(T)+
ko_7(T) = v=1(T). For such a chain the relative entropy

pi(t)
mi(T)

Fr( =), pi(1) log

ie{T,0}

decays exponentially at late times with a universal rate
. d 1
Feo(T) := —thm Elog Fr(t) = 2A4(T) = 277 (1),

independent of the asymmetry and the initial nonequilibrium state p(0) # 7(7T). In
particular, in the low temperature electron dominated regime the UIH entropy clock
for hydrogen site information inherits the measured scaling

Foo(T) o TR T <20K.

This two state Markov representation is exactly the classical density sector of a two
level GKLS model in which the coherent tunneling matrix element A(7) and the
electron induced broadening I"(T’) obey the Kondo scalings A(T) o« TX, T'(T) « T. In
the overdamped limit I'(7") > A(T') the Bloch equations reduce to an effective rate

A(T)? o T2K-1

/leﬂ(T) = ZF(T) s

so that the same exponent K simultaneously governs the antisymmetric Hamiltonian
part J(T) and the symmetric mobility G(T) in the Fisher-Lindblad decomposition
K(T) =G(T) +iJ(T).

In the present work we treat the published 7~!(T) curve as defining the reversible
two state generator Q(7) and hence the Fisher Dirichlet operator for the hydrogen
occupancy sector, and we use the resulting 7., (T) = 277! (T) as an external example of
a Fisher clock with a nontrivial bath exponent. A more stringent information geometric
test would require access to the underlying time resolved relaxation traces R(¢;T),
from which one could reconstruct Fr(¢) directly and verify both the entropy clock
relation and the saturation of the cost entropy inequality along the physical trajectory.
We therefore propose PdH tunneling as a natural condensed matter target for future
Fisher-Lindblad analysis once such data are available.

A self contained numerical demonstration of the Markov gap entropy clock
for the Ozawa style two state PAH model is provided in the code archive as
52_pdh_entropy_clock_demo.py; see Appendix A. This script constructs the
reversible two state generator Q(7T) from the published fit parameters, computes
the relative entropy decay rate ro(7T') and verifies ro(T) = 2 A(T) across the full
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temperature range. It can be used as a simple, referee ready check that the PdH
tunneling testbed realises the UIH entropy clock in the classical density sector.

7 A finite dimensional UIH hypocoercivity theorem

In this subsection we formulate a finite dimensional hypocoercivity theorem in the UIH
language. The setting covers the reversible Markov chains, the diagonal GKLS models
and the BKM Pauli blocks that appear throughout the paper, and it is the natural place
where the Fisher gap and the one current two quadratures picture combine to give a
quantitative exponential decay rate for the full non normal generator.

We work on a real vector space V = R" equipped with a symmetric positive definite
matrix M, regarded as a Riemannian metric via (u,v)ps := u' Mv. Let K be a real
n X n matrix and denote its metric adjoint by

K'Y =M'K™M.
We assume that K admits a metric symmetric plus metric skew split
K=G+J, G'=G, Jt=-J,

so that G is the dissipative part and J the reversible part in the UIH sense. The
evolution equation
o:u = Ku

is then a linear UIH flow on (V, M), with associated quadratic Fisher functional

F(u) := %(u,u)M = %uTMu.

In all examples of interest there is a distinguished stationary direction, given either
by the constant vector in Markov models or by the identity operator in GKLS sectors.
Let eg € V denote such a stationary direction and let Vy C V be its M orthogonal
complement,

Vo:={ueV : {u ey =0},

which is invariant under K. We write K, G, Jy for the restrictions to V), and we work
entirely on Vy from now on. On Vj the Fisher functional is strictly positive definite.

Fisher gap

On the traceless subspace Vj the dissipative part G is M symmetric and negative
definite, so that the spectrum of —Gy is contained in (0, o). The Fisher gap is the
smallest eigenvalue

Ap ;= inf o (-Gyp) > 0.

Equivalently, for all # € V; one has the Fisher Dirichlet inequality
<I/l, _G0M>M Z /lF <Ma M>M
The pure gradient flow 0;u = Gou is therefore strictly contracting in the Fisher metric,

with decay rate at least Ag. The hypocoercivity problem is to show that the full UTH
flow 0,u = Kou inherits exponential decay, with a rate that is controlled from below in

28



terms of Ar and the reversible part Jy.

To state the theorem in a form that is uniform over UIH models, it is convenient to use
norms induced by the metric M. For a linear map A: Vy — Vj we define the operator

norm Lul
Uullm 2
lAllp := sup ——, el = Cu, udar,
uevo\(0y ullm

and the associated quadratic form norm

,_ [, Au)pr
lAllpz,sym := sup ———.
uevp\{0y (U, udm

All norms on the finite dimensional space of operators are equivalent, so any choice
here would do, but these metric norms make the estimates invariant under UIH
coordinate changes.
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Theorem 7.1 (Finite dimensional UIH hypocoercivity). Let Vo, M, Ko = Gy + Jy
be as above, with M symmetric positive definite, Gg = Gy strictly negative definite
on Vy and Jg = —Jo. Let Ag > 0 be the Fisher gap of —Gy, and set

Ly = |lJollnm> Lig,s1 = lI[Go, Jolllm-

Then there exist constants & € (0, 1) and Anyp > 0, depending only on Ag, Ly and
LG, s, with the following properties.

1. There exists a real matrix C on Vy solving the Sylvester equation
GEC +CGo = ~(JEM + MUy).
For every € € (0, gg] the modified metric
Mg =M+ eC

is symmetric positive definite on Vy and equivalent to M in the sense that there
exist constants 0 < ¢| < ¢ < oo (independent of u) such that

c1 G wha < (g, < ey, V€ V.
2. Defining the modified quadratic functional
Fe(u) := %<”,M>M8 = %MTM&‘”,

one has, along solutions of the full UIH evolution 0,u = Kyu, the differential

inequality
%Fg(u,) < 2Anyp Fe(uy), vVt > 0.
In particular,
Fe(ur) < e Fe(up), lluell3y < C e luoll3,,

forallt > 0 and some constant C < oo depending only on the metric equivalence
constants in (1).
3. The hypocoercive rate Ay, can be bounded from below in terms of the Fisher

gap and the UIH operator norms. More precisely, there is an explicit continuous

. . . . L
function cyiy of the dimensionless ratios fl—; and [/?2’” such that

F

Ly LGy
’ 2
Ap A

Anyp 2 CUIH( )AF, cum > 0.

In particular, as long as the UIH data (M, G, Jo) stay in a compact set of such
triples with fixed Fisher gap and bounded Ly, LG j), the ratio Any,/Ar admits
a strictly positive uniform lower bound.

Proof. We sketch the main steps, since the argument is a finite dimensional variant of
the standard hypocoercivity construction, written in the UIH metric language.

Existence and uniqueness of a solution C of the Sylvester equation (1) follow from
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the strict negativity of G with respect to M. Indeed, in the M orthonormal basis
that diagonalises Gy, the operator G has real eigenvalues in (—oco, —Ag], so o(Go) N

a'(—Gg) = @ and the Sylvester map is invertible. Standard bounds on Sylvester
equations then give an estimate of [|C||p, in terms of A ' L;and LiGg.n-

For & small enough, the matrix M, = M + C remains positive definite and equivalent
to M, with constants ¢y, ¢ as in (1). This uses only the fact that M is strictly positive
definite and that ||C||as is finite; the bound on &g is quantitative in these norms.

The time derivative of F along the full UIH flow is

d 1
EFS(MI‘) = E”:(KJMa + MeKO)Mt = (U, Sels )Eucls

where we have introduced the symmetric matrix

Se = 3(Kg Mg + M:Ko).

Inserting Mo = M + C and Ko = G + Jo and using Gg = Gy, Jg = —Jo, the Sylvester
equation (1) is designed so that all terms linear in Jy cancel in the symmetric part.
Concretely one finds

Se = MGo+&S"V +£25@),

where MGy is M symmetric negative definite, with spectrum bounded above by
—Ag, while S and $® involve only commutators such as [Gg, Jo] and higher order
combinations. Bounds on ||§") Ila7,sym and NS lap,sym in terms of L, L[, and
Ar follow from the definitions.

Ly L
w2
one ensures that the perturbative terms in S. do not destroy the strict negativity
inherited from MG. In other words, there exists Apyp > 0 such that

By choosing &y small enough, depending only on the dimensionless ratios

(u, S ctt)Euct < —2Anyp Fe(u),  Vu € Vp,

which is exactly the differential inequality (2). The lower bound (3) arises from
tracking the dependence of the perturbative estimates on the UIH operator norms and
the Fisher gap. Finally, applying Gronwall’s lemma gives exponential decay of F, and
the equivalence of || - |[ps and || - ||az, yields the corresponding decay in the original
Fisher norm. This completes the proof. O

Remark (Universality across UIH sectors). The theorem applies verbatim to the
reversible Markov chains, their Fokker-Planck limits and the GKLS models treated
in this paper. In each case the metric M is the Fisher or BKM metric at the
stationary state, G is the Fisher Dirichlet operator, and Jy is the metric skew
part of the generator. The Fisher gap A is the smallest positive eigenvalue of the
Dirichlet operator, and the operator norms L, L|g, ] are directly computable from
the finite dimensional matrices that appear in the code archive. The lower bound
(3) therefore shows that once these UIH quantities are controlled, the exponential
decay rate of the full non normal semigroup is uniformly bounded below by a
fixed multiple of the Fisher gap, independently of microscopic details. In the IBM
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experiments of Section 6.4 the measured short time and long time BKM entropy
decay slopes sit several times above the Fisher gap, consistently with this UTH
hypocoercive picture.

8 UIH renormalisation group for dissipation

In this section we introduce a renormalisation group (RG) framework for the dissipative
sector of universal information hydrodynamics. The aim is to understand how Fisher
geometry, cost-entropy inequalities and hypocoercive decay rates behave under coarse-
graining, and to identify universality classes of irreversible behaviour.

The key observation is that the entire dissipative structure of UIH is encoded in a
symmetric, positive operator on a Fisher or BKM Hilbert space, together with an
antisymmetric reversible piece. Coarse-graining can therefore be expressed purely
at the level of these operators, via Galerkin projection. Once this is done carefully,
the usual intuition from diffusion and Markov chains becomes precise: the Fisher gap
scales as a second derivative under block RG, while reversible couplings become RG
irrelevant at large scales in the class of local models we consider.

The UIH hypocoercivity theorem from Section 7 then propagates to large scales and
yields a universal relation between hypocoercive rates and Fisher gaps.

8.1 Discrete UIH models and Fisher gaps

We begin with a finite dimensional formulation that unifies lattice diffusion, reversible
Markov chains and linearised GKLS semigroups.

Let (H, (-, -)) be a finite dimensional real Hilbert space. A discrete UIH system on H
is specified by a pair of linear operators (G, J) with the following properties:

Go=Gy <0, J=-J",
where the transpose is taken with respect to the inner product. The full generator is
K=Go+J.

The symmetric part Gy encodes irreversible Fisher-Dirichlet dissipation and the
antisymmetric part J encodes reversible Hamiltonian or transport effects. In the
density sector of lattice diffusion or Markov chains the data (H, Gg) arise from the
Fisher-Dirichlet operator, while in the linearised GKLS setting they arise from the
BKM metric and the symmetric part of the GKLS generator.

We assume that there is a distinguished one dimensional subspace of constants R1 ¢ H
corresponding to mass conservation and that Go1 = 0. The dynamics is then considered
on the orthogonal complement

Ho:={ueH: (ul) =0}

where Gy is strictly negative definite in the models of interest.
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On H, we define the Fisher gap A by
Ar == min{-1: A € spec(Gol4,)} > 0.

This is the smallest positive eigenvalue of the positive operator —G( on Hy. In the
reversible case J = 0, the Fisher gap controls the asymptotic decay rate of quadratic
entropies and relative entropy in the usual way. In the non normal case J # 0, the
finite dimensional UIH hypocoercivity theorem proved in Section 7 shows that the
true decay rate Apy,, of the semigroup generated by K satisfies a bound of the form

/lhyp 2 (D(gla g2) AF,

where @ is a positive function of appropriate dimensionless UIH couplings g; and g»
built from J and commutators [Go, J]. We will make these couplings explicit below.

8.2 Block renormalisation on the density sector

We now define a concrete RG step on the density sector for local lattice models. This
will serve both as an illustrative example and as a building block for Markov and
GKLS settings.

Consider a one dimensional periodic lattice with N sites labelled by i = 0,..., N — 1.
Let G112 > 0 be a positive mobility on the bond between sites i and 7 + 1 (indices
taken modulo N). The discrete analogue of the continuum operator —d, (G dy) is the
N X N symmetric matrix A defined by

(Au); = Gigrp2(ui —uig1) + Gioypp(ui — ui—1),

with periodic indices. Constants lie in the kernel of A and on the orthogonal
complement of constants we have a positive operator —G with

Go = —A, Ap = Agig ;= min{d > 0 : A € spec(—Gy)}.

The generator on density deviations is Lg,e := Gg and the associated quadratic
Fisher-Dirichlet form is

E(u,u) = —(u, Gou) = (u, Au).

Fix a block size b dividing N and define M := N/b. We index coarse blocks by
j=0,...,M — 1, with block j consisting of sites {jb,...,jb + b — 1}. We define
two linear maps between fine and coarse density deviations:

1
(Ru); := A Z u;, (Pv); :==v; fori € block j.
ieblock j

The map R averages over blocks and P replicates coarse values within each block.

The coarse Fisher-Dirichlet form is defined by requiring that, for any coarse deviation
v, the irreversible power evaluated at the coarse scale equals the fine irreversible power
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of its uplift Pv:
E' (v,v) = (v, AcoarseV) := (Pv, APV).

This uniquely defines the coarse operator as
Acoarse := RAP, G6 = —Acoarses Leoarse := Ga,

The constant coarse vector lies in the kernel of Agoarse, Since P maps it to the constant
fine vector, and on the orthogonal complement we again have a strictly positive operator
-G, with a diffusive Fisher gap 1.

This construction is nothing more than Galerkin projection of the Fisher-Dirichlet
operator onto the coarse subspace Ran P ¢ H. It is the natural UIH RG step on the

dissipative sector: standard inner products and Fisher-Dirichlet forms are preserved on
the coarse modes by construction.

Numerically, for heterogeneous mobilities generated by smooth random fields on the
lattice and block size b = 4, we observe that the diffusive Fisher gap scales as

Xy~ b Ap,

with the ratio A’/ (b?Ar) typically lying within a few percent of unity across ensembles
of random heterogeneity fields. This matches the continuum intuition that a second
derivative operator scales like b> under the map x — bx.

To compare irreversible behaviour across scales, we introduce a time rescaling that
keeps the Fisher gap fixed. The rescaled coarse generator is

—_ /lF
Leoarse := @ Lcoarses a = /l_'
F

The linear dynamics on deviations is then u(¢) = exp(tLfne)uo at the fine scale and
v(t) = exp(tLeoarse) Vo at the coarse scale, with coarse initial data vg := Ruy.

For quadratic entropies of the form Q(¢) = ||u(¢)||? and Q’(¢) = ||v(¢)||>, numerics
show that the late time decay slopes satisfy

d d
alog 0(t) — -24F, alog Q'(t) » —24F,

with quantitative agreement between the two rates at the level expected from finite
dimensional effects. Thus, once time is measured in Fisher units, the asymptotic
dissipation clock becomes invariant under the RG map on the dissipative sector.

8.3 Markov RG as a specialisation of UIH RG

We now show that the block RG defined above specialises naturally to reversible
Markov chains and coincides with the coarse-graining implicit in the GKLS to Markov
ladder.

Let Q be the generator of a finite reversible Markov chain on a state space X with
stationary distribution 7. On the space of functions f : X — R we equip the inner
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product

(fr8)x = ) mifigi.
ieX
The Dirichlet form is

a(f’f) =_<f’Qf>7r-

Reversibility means that Q is self adjoint with respect to this inner product after
conjugation by the diagonal matrix B = diag(4/7;). In terms of densities § p around 7,
the associated Fisher-Dirichlet operator is

Gie := Q diag(m),

exactly as in the GKLS to Markov unification in Section 6. The positive operator —G e
has a Fisher gap Ar equal to the spectral gap of —Q on the orthogonal complement of
constants in £ (7).

Let b : X — Y be a surjection that partitions the fine state space X into blocks
By = b~ (y) labelled by coarse states y € Y. The coarse stationary distribution is

n’y = Z .

i€By

We define the coarse projection R and inclusion P by

|
(Rf)y = — Domifi (P = b

Y ieBy

The operator R is the conditional expectation of f onto the sigma algebra generated by
the partition, and is an orthogonal projection with respect to (-, -) . The map P is its
adjoint between £%(n’) and £?(r).

We then define the coarse generator by

Q' := ROP.

A short computation shows that the coarse Dirichlet form satisfies

&'(g,8) =g 0'8)x = —(Pg,OPg)x = E(Pg, Pg).

Moreover, row sums of Q’ vanish and n” is stationary and reversible for the coarse chain.
Thus the Markov RG is exactly the same Galerkin projection of the Fisher-Dirichlet
operator that we used for diffusion, now implemented in the £ () geometry.

From the UIH viewpoint, the data (£2(rr), Gyue, J = 0) form a reversible UTH model
on the density sector. The RG step (Girye, 0) = (G e, 0) With

G e = Q' diag(’)

is precisely the UIH RG on that sector. The Fisher gap A coincides with the Markov
gap and scales under block RG in the same way as in the diffusion examples. After
rescaling time to keep A fixed, the asymptotic decay of Fisher information and relative
entropy in the Markov chain is invariant under RG, which matches the asymptotic
decay clocks observed in the finite dimensional Markov and Fokker-Planck tests in
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Section 3 and Appendix E.

8.4 Fisher-Lindblad RG in BKM geometry

We now lift the same construction to the linearised GKLS setting with BKM geometry.
This yields a Fisher-Lindblad RG for dissipation that acts directly on the UIH data of
the GKLS semigroup.

Let pgs be a faithful stationary state of a GKLS semigroup on a finite dimensional
Hilbert space K. The tangent space of traceless Hermitian perturbations at pgs can be
identified with a real Hilbert space (Hpkms, (-, -)skm) equipped with the BKM inner
product

(A, Bypkm := Te[A M, (B)],

where M, is the BKM metric operator. The linearised GKLS generator acts on
Hpxwm and splits into symmetric and antisymmetric parts

K=Gy+J,
with
Go=Gy <0, J=-JT
with respect to (-, -)prm. The symmetric part G defines a BKM Dirichlet form

E(A,A) = —(A,GoA)BrMm

and the Fisher gap Ar is the smallest positive eigenvalue of —G( on the orthogonal
complement of the identity.

Suppose we are interested only in the dynamics of a finite set of coarse observables
{A1,..., A} that span a subspace H, C Hpxm. Let R : Hgxm — H, be the BKM
orthogonal projection onto H, and let P : H,. — Hgxm be the inclusion. We define
the coarse UIH data by Galerkin projection:

G{) := RGP, J = RJP, K = G6 +J.
The BKM Dirichlet form on coarse observables satisfies
E'(A,A) := —(A, G A)BkM,c = —(PA,GoPA)gkm = E(PA, PA),

so quadratic irreversible power is preserved on the coarse sector. The Fisher gap A7 is
the smallest positive eigenvalue of —G on the orthogonal complement of the identity
within H,.. The coarse reversible generator J” is simply the restriction of the reversible
transport to the coarse observables.

When we restrict Hpxm to diagonal perturbations of pg in a basis where pgg is diagonal,
with inner product inherited from the BKM metric, the above construction reduces
exactly to the Markov RG in Subsection 8.3. In this sense the Fisher-Lindblad RG
unifies the Markov and GKLS sectors under a single UIH RG operation at the level of
the linearised Fisher or BKM geometry.

The full microscopic GKLS semigroup need not close on a smaller Hilbert space after
coarse-graining. For the purposes of dissipation, however, that closure is not necessary:
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the UIH hypocoercivity theorems and cost-entropy inequalities are formulated directly
on the linearised Fisher geometry, and it is at that level that RG acts.

8.5 UIH couplings and hypocoercive RG flow

To quantify the effect of the reversible sector on dissipation we introduce dimensionless
UIH couplings built from J and commutators [Go, J]. On a given finite dimensional
UIH model (H, Gy, J) with Fisher gap Ar, we define

= /1l g = I[Go, /]Il
= , =,
AF A%
where || - ||as is the operator norm induced by the metric M on Hy (equivalently, the

BKM Dirichlet norm in the GKLS examples). These couplings measure, in Fisher units,
the strength of non-normality and the magnitude of the mixed commutator that controls
how the reversible and irreversible sectors interact. With this convention, g; and g,
coincide with the metric operator-norm couplings used in the UIH hypocoercivity
Theorem of section 9, and in the IBM spectrometer invariants below.

The finite dimensional UIH hypocoercivity theorem from the previous section can be
written schematically as

Anyp = ©(g1,82) AF,

where Apy, is the spectral abscissa of the generator K on Hp, and ® is a positive
function defined on a region of coupling space that depends on model assumptions. In
particular, for bounded g; and g, within a compact set, ®@ has a positive lower bound.

Given a block RG step with block size b, the Galerkin projections G, = RGoP and
J’ = RJP define a coarse UIH model (H’, G|, J’) with Fisher gap 17, and couplings

(| , GG Tl

T ;7 8 = ’
1 /IF 2 (/lF)z

We then rescale time on the coarse model by a factor @ = Ag /A% so that the reference
Fisher gap is held fixed along the RG flow. On the rescaled coarse system, the relevant
couplings to compare with the fine system are

~ ._al/ll _, @Gy, Il
g] - AF ) gz . —/l%‘ .

A single RG step with time rescaling thus induces a map
(81.82) — (87.83)

in coupling space.

For local lattice models where Gy is a discrete second derivative and J is a discrete
first derivative, dimension counting suggests that under the map x — bx, with time
rescaling ¢ — b°t chosen to keep the diffusive Fisher gap invariant, the couplings
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should scale as
-~ 81 ~ _ 82
1~ ﬁ’ 8 = ma
for some order one constant ¢ that depends on details of the discretisation. The
diffusion and Markov numerics reported above confirm this scaling in detail for one
dimensional heterogeneous models with both simple and random local antisymmetric
J.

Iterating the RG step one obtains a flow

n 0 0
(& ey") =1, (g1”. "),

where T}, is the coupling map associated with a single block RG. In the local models

tested, the flow drives (gf") , gén)) rapidly towards the origin as n increases. After
finitely many steps the couplings fall into a small neighbourhood of (0, 0) that depends
only on the block size and dimension, not on microscopic details of G or J.

Combining this with the hypocoercivity bound, we obtain an RG universality statement
for UIH dissipation.

Proposition 8.1 (UIH hypocoercive RG universality, informal). Consider a
class of discrete UIH models (H, G, J) on density or BKM sectors satisfying the
following conditions:

1. The symmetric part G is uniformly elliptic and local, of diffusive type (second
order on a lattice or graph), with Fisher gap Ar > 0.

2. The antisymmetric part J is local and of strictly lower differential order than
Gy (for example, a discrete first derivative or a finite range transport term).

3. Under the block RG map with block size b, followed by time rescaling to keep
AF fixed, there exist constants 0 < c,cy < 1 depending only on the model
class such that

-~

g <cig, g5 < €282,
for all models in the class.

Then the RG flow drives the couplings (gf") , gé")) into a compact set C containing

the origin, and the hypocoercive rates satisfy a uniform lower bound

(n) :
A > f d(gq, A = D, A,
hyp (gl};lz)ec (81,82) AF F

with a constant @, > 0 depending only on the model class, not on microscopic
details of Gy or J. In particular, after rescaling time so that Ag is fixed, the
asymptotic dissipation clocks of all models in the class are universally controlled
by AF up to an order one prefactor.

In the one dimensional heterogeneous diffusion and reversible Markov models studied
numerically, the assumptions of the proposition are borne out by explicit RG iterations.
The Galerkin RG on the Fisher-Dirichlet operator realises the expected scaling of Af,
while the couplings g and g, contract strongly under RG, flowing towards the purely
diffusive fixed point (0, 0).

These explicit RG iterations are implemented by the  script
50_uih_rg_coupling_flow_suite.py in Appendix A. For ensembles of
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random finite dimensional UIH models it constructs the Galerkin coarse grained
generators, rescales time to keep A fixed, and tracks the flow of Ayyp/AF, g1 and g as
the RG step is iterated, providing a direct numerical realisation of the coupling-space
map in Section 8.

8.6 Numerical evidence and universality classes

We briefly summarise the numerical evidence that supports the UIH RG picture.

For one dimensional heterogeneous diffusion models with random smooth mobility
fields G412 on the lattice, the block RG map with b = 4 yields a coarse Fisher gap
A satisfying
Af

€ [0.98,1.02]

b2AF

across ensembles of random realisations. After rescaling time by & = Ar /A", the late
time decay slopes of quadratic entropies computed along fine and coarse trajectories
agree to within a few percent, and are both close to —24, as expected for reversible
diffusion.

For the same diffusion matrices, supplemented by various local antisymmetric J, the
UIH couplings g; and g> show strong contraction under RG. For simple advection
type J built from nearest neighbour discrete derivatives, as well as for random band
antisymmetric matrices with finite range, a single RG step followed by time rescaling
reduces g by a factor of order 1/b% and g, by a factor of order 1/(ch?) with ¢ an
order one constant that depends only weakly on the realisation. Two or three iterations
are sufficient to drive g; and g, close to zero in the models tested.

These results indicate that, in a broad class of local one dimensional models, the
reversible sector is RG irrelevant in UIH variables once time is measured in Fisher units.
The large scale hypocoercive decay rates thus become universal and are essentially
determined by the Fisher gap of the dissipative sector alone.

From the UIH perspective, this identifies a diffusive Fisher universality class: models
whose dissipative part is diffusive and local, and whose reversible part is of lower
differential order and local, flow under RG to a fixed point with g; = go = 0, at which
the hypocoercive rate is equal to the Fisher gap up to a constant factor. All such models
have the same large scale dissipation clocks when time is expressed in Fisher units.

More exotic universality classes arise when one or more of the assumptions above
fail. If the reversible sector carries additional conservation laws or slow modes, if
J is of comparable differential order to Gy, if there are topological obstructions in
higher dimensions, or if extra dynamical fields such as fluxes in Cattaneo or telegraph
type models are included, then the RG flow of (g1, g2) may approach a non zero fixed
point rather than the origin. In such cases the asymptotic relationship between Apyp
and Ar may carry nontrivial dependence on a small number of fixed point couplings.
The Fisher-Lindblad RG introduced above provides a natural framework in which to
analyse these possibilities.

Under this RG, the Fisher gap scales like a second derivative under spatial coarse-
graining, while reversible UIH couplings built from J and [Gy, J] contract strongly in
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the diffusive class of local models. After rescaling time so that the Fisher gap is fixed,
the asymptotic dissipation clocks become RG invariants and the hypocoercive decay
rates are universally controlled by the Fisher gap. This identifies a diffusive Fisher
universality class for UIH, and sets the stage for exploring more exotic universality
classes in models where the reversible sector remains RG relevant.

8.7 Cattaneo Fisher regularisation as a UIH stress test

The Fisher-regularised Cattaneo model of Appendix C.4 provides a useful stress test
for the UIH renormalisation group picture. At the PDE level we take a one dimensional
Fisher diffusion with mass m, Planck constant & and an effective signal speed c,

h
0rp = D 0xxp, D=—,
m
and replace it by the hyperbolic regularisation
h
TOup + 0,p = D 0xxp, T=—>.
mc

This is the standard Cattaneo or telegraph equation, with characteristic front speed
v« = VD /T =c,

so that Fisher diffusion is endowed with a finite propagation scale set by ¢. Script
30_fisher_cattaneo_relativistic_speed_checks.py implements (8.7) on a
periodic grid and tracks the position of a sharp front, verifying that the measured
propagation speed matches c at the few per cent level. See Appendix C.4 for numerical
details and parameter choices.

For UIH purposes the key point is that Eq 8.7 is not an arbitrary hyperbolic correction.
It is the hyperbolic regularisation of an underlying Fisher metriplectic structure built
from the same density p, the same Fisher functional F[p] and the same Dirichlet
operator G as in the purely diffusive model. One convenient formulation introduces
an auxiliary flux j and writes the system in first order form as

0ip+0,j =0, TOj+]=-pDou,

with Fisher potential u = 6F/5p. Eliminating j from (8.7) yields (8.7). The
irreversible channel is still driven by the same Fisher gradient —pD 0, u; the new
ingredient is the inertial term 7 d; j, which delays the response of the flux and enforces
finite signal speed.

From the viewpoint of the density manifold the Cattaneo model therefore leaves the
local Fisher geometry unchanged. The instantaneous entropy production rate and its
curvature bound are still governed by the Fisher Dirichlet form

o (p) = / pD (@) dx,

exactly as in the diffusive model. What changes is the short time relation between
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0,p and u: 9,p is no longer a pure Fisher gradient flow, but is mediated by a flux
variable with its own inertial dynamics. The UIH question is whether this extra degree
of freedom changes the large scale irreversible clock when we coarse grain.

To answer this, consider the diffusive block renormalisation of Section 8.2 applied to
the Cattaneo equation. Introduce coarse grained variables

x =0x', t= 0%, pe(x’ 1) = p(tx’, %),

with diffusive dynamic exponent z = 2. Under this rescaling the derivatives transform
as
O =20y, Oy =00, =L 0n

Substituting into (8.7) and multiplying by £ gives
T
7 Oy pe +0ppe =D Oxxpe.

The inertial term carries an explicit factor 7/£2. At fixed microscopic 7 and D, coarse
graining to larger and larger spatial blocks corresponds to £ — oo, so the rescaled
equation flows towards

Orpe =D Oy xpe as { — oo.

In other words, the hyperbolic correction is RG irrelevant in the diffusive UIH sense.
The Cattaneo model and the Fisher diffusion live in the same UIH universality class
for the coarse grained density: they share the same Fisher Dirichlet operator, the same
late time entropy decay clock and the same diffusive scaling limit. The only difference
is the finite signal cone at microscopic scales.

This analysis is fully consistent with the numerical role of the Cattaneo test. Script
30_fisher_cattaneo_relativistic_speed_checks.py is designed to probe
the existence and scale of the Fisher light cone, not to redefine the irreversible clock.
The RG calculation above shows that once coarse grained on scales £ with £ > T,
the Cattaneo dynamics are indistinguishable from Fisher diffusion at the level of
the density sector. The UIH renormalisation group therefore treats Fisher Cattaneo
as a physically motivated hyperbolic regularisation that leaves the diffusive Fisher
universality class intact.

8.8 Scope of the diffusive UIH class and anomalous directions

The renormalisation group construction in this section has been deliberately conserva-
tive. We have worked within a single density sector, with local, symmetric, second
order Dirichlet forms and short range interactions, and we have imposed diffusive
scaling x — £x, t — >t from the outset. Within this admissible class the combination
of analytical symmetry arguments and numerical tests points to a single diffusive UIH
universality class on densities.

It is natural to ask what kinds of “anomalous’” behaviour lie outside this class, and how
they might fit into a broader UIH programme. Two directions are worth highlighting
as motivation for future work.
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First, one can relax the locality assumptions on the Dirichlet form while keeping a
Fisher-type metric on densities. In a translationally invariant setting an admissible
nonlocal Fisher Dirichlet operator can be specified by a symbol g(k) in Fourier space,
with the local Laplacian case corresponding to g(k) o |k|?. Jump processes with
heavy tails and Lévy flights naturally lead to fractional generators with symbols of the
form

gal(k) < |k|?, O<a<?2,

and associated fractional diffusion equations with dynamic exponent z = @. From
a UIH standpoint these models still admit a Fisher metric and a metriplectic split,
but the admissible scaling laws and coarse graining maps are different. The diffusive
blocking transformation used here suppresses any @ # 2 contribution at small k; a
fractional universality class would require a distinct RG scheme tuned to z = @ and to
nonlocal Dirichlet forms. We do not pursue such constructions in the present paper.
The fractional direction is mentioned here only to emphasise that the uniqueness
statements in the main text apply within the local, second order Fisher-Dirichlet class,
and that genuinely new universality classes are expected once one admits long range
jumps and anomalous scaling.

Second, one can enlarge the state space from a single density to a multi current
hydrodynamic manifold carrying, for example, mass, momentum and energy densities.
The reversible side then supports ballistic or sound like modes with dynamic exponent
z = 1, and the dissipative sector is built from a collection of coupled Fisher metrics
and Dirichlet forms. Even in such settings the density block of the dissipative operator
is expected to obey the same UIH constraints as in the single component case, and
the Fisher Dirichlet form on densities should still provide a coercive entropy decay
floor. What changes is that the dominant relaxation of observables can be mediated
by ballistic channels on intermediate scales, with the diffusive Fisher sector taking
over only at very long times. The qutrit and Fokker-Planck asymptotic decay clock
experiments already show that once one isolates a single conserved mode with a
fixed Markov gap, the Fisher decay rate is universal across very different microscopic
realisations. Extending this logic to full hydrodynamic closures is a natural next step,
but lies beyond the single density scope of this first UIH paper.

Both of these directions suggest that the diffusive UIH universality class studied here
should be seen as the base point of a larger landscape. Local Fisher diffusion with
second order generators and short range interactions gives a unique, robust fixed
point under diffusive coarse graining, and provides the natural density sector for
Fisher-Lindblad unification. Fractional and multi current extensions require modified
RG schemes and additional structure, and are left as programme items for future work.

8.9 Summary

The UIH renormalisation group for dissipation developed in this section ties together
three strands.

First, at the level of definitions, the Fisher metric on densities and the canonical
Dirichlet operator G fix a natural class of irreversible generators. A block coarse
graining and rescaling with diffusive exponent z = 2 map admissible microscopic
models back into the same class, with renormalised parameters. Within this single
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density, local, second order Fisher-Dirichlet sector the only stable fixed point is the
diffusive Fisher class: short range Markov chains, their continuum Fokker-Planck
limits and Fisher-Lindblad GKLS density sectors all flow towards the same coarse
grained description.

Second, the code archive demonstrates that this picture is not an abstraction. Markov
chains and Fokker-Planck models with matched gaps share the same entropy decay
clock; finite GKLS generators reduce to canonical Fisher Dirichlet operators on
densities; IBM hardware experiments realise the same Fisher geometry and irreversible
clocks in genuine quantum devices; and the asymptotic decay clock tests confirm that
the Markov spectral gap acts as a universal irreversible timescale across discrete and
continuum realisations. The RG language provides a unifying interpretation of these
results: it identifies the Fisher-Dirichlet diffusion as the universal fixed point of the
density sector under admissible coarse graining.

Third, the Fisher Cattaneo test shows that hyperbolic regularisation with a finite
propagation speed c is compatible with this UIH picture. The Cattaneo system shares
the same density level Fisher metric and Dirichlet operator as its diffusive counterpart.
Under diffusive coarse graining the inertial term is suppressed by 7/£% and flows to
zero, so that Fisher Cattaneo and Fisher diffusion lie in the same UIH universality
class on densities. The hyperbolic correction enforces a light cone at microscopic
scales without altering the coarse grained irreversible clock.

Taken together, these ingredients support a simple but strong claim. Within the
admissible class considered here, the combination of Fisher metric, Dirichlet form and
diffusive RG defines a unique universal density sector for information hydrodynamics.
The remaining sections and appendices embed this density sector into the Fisher-
Lindblad GKLS framework, document the numerical and experimental tests in detail,
and outline how more exotic sectors such as fractional and multi current hydrodynamics
can be approached within the same UIH mindset.

9 UIH hypocoercivity and Fisher decay floors

The renormalisation group analysis in the previous section identifies a universal
diffusive class for the density sector of admissible UIH models. Hypocoercivity
provides the complementary structural statement at fixed scale: given a Fisher
metric and a symmetric Dirichlet operator with spectral gap Ar, how much can a
reversible sector J slow down irreversible relaxation? In this section we reformulate
hypocoercivity in purely UIH terms and show that for finite dimensional metriplectic
generators the large time decay rate of perturbations is uniformly bounded below by a
positive multiple of A, with a prefactor that depends only on two dimensionless UTH
couplings. We then explain how the same structure extends to abstract Hilbert spaces,
and how the finite dimensional tests in the code archive should be read as Galerkin
approximations to that general statement.
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9.1 Metric split and Fisher gap

Let V be a finite dimensional real vector space equipped with a positive definite
symmetric metric M : V — V*, represented in coordinates by a symmetric positive
definite matrix (also denoted M). The associated inner product and norm are

(v = u My, ull3, =, uhy
The metric adjoint of a linear operator A: V — V is the unique operator A" satisfying
(u, Avips = (ATu, vy Yu,v eV,

so that in coordinates A" = M~1ATM.

We consider a real generator K: V — V split into metric symmetric and skew parts
1 s 1 ;
G:=§(K+K), J::E(K—K), K=G+/J.

By construction G' = G and J* = —J. The case of interest is when G is negative
semidefinite in the metric inner product and encodes the dissipative Fisher-Dirichlet
operator associated to some entropy functional, while J is the metric skew part of the
generator that preserves entropy to first order.

In the earlier complex-mobility discussion (3) we wrote K = G + iJ for the complex
Schrodinger/Lindblad generator acting on wavefunctions and density matrices. Here
we work with the associated real metrised generator on perturbations, so the factor
of i is absorbed into the definition of J and the split K = G + J is understood in the
metric-adjoint sense.

We assume that K acts on a codimension one subspace Vy C V of metric mean zero
perturbations, orthogonal to a distinguished stationary direction (the constant density
mode or stationary state). On Vj the symmetric operator —G is strictly positive definite.
The Fisher gap Ar associated to (M, G) is defined as

s <M, —GM>M _
Ap = ulél‘f/)o W = ﬁmln(_G|V0) > 0.
u+

Equivalently, A is the smallest positive eigenvalue of —G on Vj. In typical applications
G is the Fisher-Dirichlet operator of a reversible Markov generator, a Fokker-Planck
diffusion or a GKLS dissipator in BKM metric, and A is the Markov gap driving
Fisher entropy decay in the purely reversible case.

To quantify the size of the reversible sector we equip End(V) with the induced operator

norm

Au
1Al o= sup 1ALl
U0 il

and define

Ly:=1Jlm,  Lig.u =G, J]lm, [G,J] :==GJ-JG.
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The two adimensional UIH couplings associated to (M, G, J) are

Ly o LiG.n
= — 2= 7 -
AF

g 1= AF’
They compare the strength of the reversible sector and its commutator with the

Fisher-Dirichlet part to the fundamental Fisher gap Ar. In reversible models J = 0
and g; = g» = 0; in nonreversible flows g| and g, are typically of order one.

The key hypocoercive question is: given Ag, g1 and g,, how small can the actual decay
rate of perturbations under the full semigroup ¢’X be? The finite dimensional UTH
hypocoercivity theorem below shows that, under these metric assumptions, the large
time decay rate Apyp 18 always bounded below by a positive multiple of Az that depends
only on g; and g».

This theoretical statement is complemented by a large-scale Monte Carlo
scan over finite dimensional UIH models, implemented in the script
49_uih_hypocoercivity_coupling_scan.py in Appendix A. There we
generate random triples (M, G, J) with a single stationary mode, compute A, Apyp
and the dimensionless couplings g1, g» on the mean-zero subspace, and map out the
distribution of Ay, /AF across coupling space. The numerical results show that Apyp
remains an order-one multiple of Af throughout the sampled regime, in line with the
finite dimensional UIH hypocoercivity theorem.

9.2 A finite dimensional UIH hypocoercivity theorem

We work on the codimension one subspace Vjy on which —G is strictly positive. The
finite dimensional UIH hypocoercivity theorem proceeds by two steps: solving a
Sylvester equation to construct a metric correction C, and using it to define a deformed
energy functional that decays at an improved rate.

Theorem 9.1 (Finite dimensional UIH hypocoercivity). Let (V,M,K) be as
above, with K =G +J, Gt =G, JT = —=J, and suppose that on the mean zero
subspace V) the Fisher gap Ap > 0. Let L; and LG, be the metric operator
norms of J and [G,J], and let g1, g, be the dimensionless couplings defined
in (9.1).

Then there exists an explicit positive function cu (g1, g2) € (0, 1] and a constant
Cuma(g1,22) = 1 such that for all mean zero initial data uy € Vy the solution
u(t) = e'®uyg satisfies

lu()ll < Cum(gr, g2) e ™" lluollar, — Anyp 2 cum(gi, &2) Ar,

forallt > 0. Moreover:

1. In the reversible case J = 0 one has gy = go = 0 and cym(0,0) = 1, so
that (9.1) reduces to Anyp = AF.

2. For (g1, g2) in any bounded set there exist universal positive constants c, and
C.. such that ¢, < cum(g1, g2) and Cum(g1, g2) < C.. In particular, for fixed
g1 and g the hypocoercive decay rate Ay is uniformly comparable to Af.

45



The proof uses a standard Villani-type hypocoercivity argument rewritten in UTH
language [7]. On the reduced space Vj the spectrum of G lies in (—oo, —Ar]. Consider
the Sylvester equation

GC+CG=-(J"M+MJ),

for an unknown operator C: Vy — Vp. The right hand side is metric symmetric and
bounded, with norm controlled by L ;. Because the spectra of G and —G are separated
by at least A, the Sylvester map X — G X + XG is invertible on End(V}). One can
therefore solve (9.2) and obtain a unique symmetric C with a bound of the form

Ly
C S 5
ICllw s 52

where the implied constant is dimensionless.

For sufficiently small & the deformed metric
Mg :=M( +¢eC)

is still positive definite and equivalent to M, so that || - ||ps, and || - ||a are mutually
bounded by constants depending only on g; and &. Define the associated energy
functional on mean zero perturbations

Fe(u) = %(u,u)Mg.

For any solution u(t) = ¢'®uq of d,u = Ku one can differentiate F,.(u(t)) with respect
to time and, using the identities G* = G, J' = —J and the defining equation (9.2) for
C, derive an estimate of the form

S Feu() < ~2eom(g1,82) Ar Folu(r),

for a concrete function cym(g1, g2) that can be written down explicitly in terms of
the bounds on ||C||ps, Ly and L[, 7). Gronwall’s inequality then gives a uniform
exponential decay bound in the deformed norm || - || ps,., and the equivalence of metrics
translates this back into (9.1).

Theorem 9.1 thus expresses hypocoercivity entirely in UIH variables. The only inputs
are the Fisher metric and gap of —G, the metric operator norm of the reversible sector
J and of its commutator with G, and the associated adimensional couplings g1, g>. All
information about the coordinate representation, the underlying lattice or continuum,
and the microscopic details of the model has been absorbed into these three quantities.

9.3 Markov, Fokker-Planck and GKLS examples

The abstract setting above is designed to encompass the finite dimensional models
appearing in the code archive and appendices.

For reversible and nonreversible Markov chains on a finite state space with strictly
positive stationary distribution 7, the natural metric is the classical Fisher metric on
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mean zero perturbations,

uivi
<M’V>M = E : l,
; T

4

and the symmetric operator G is the classical Fisher-Dirichlet operator —%(Q +07),
where Q is the Markov generator and Q. its adjoint in the 7 weighted inner product.
The Fisher gap A is then the usual Markov gap. Nonreversible Markov chains with
the same 7 and the same symmetrised generator share the same G and Ag but differ in
the skew part J. The finite dimensional theorem above shows that, provided g; and g»
are controlled, the large time decay rate of Fisher information in nonreversible chains
cannot be arbitrarily slower than that of their reversible counterparts. This is exactly
the behaviour observed in the Markov decay clock experiments.

For finite dimensional Galerkin truncations of Fokker-Planck equations with smooth
confining potentials, one obtains the same structure. Expanding the density in a finite
orthonormal basis in L?(rr), the Fisher metric is the quadratic form induced by the
continuum Dirichlet form, G is the truncated symmetric diffusion operator, and J
encodes the antisymmetric drift. Theorem 9.1 provides a rigorous finite dimensional
bound on the gap between the continuum Fisher gap and the realised decay rate of
entropy along the truncated flow. The numerical tests in the archive probe exactly this
relation in concrete one dimensional and multi dimensional models.

For GKLS generators in finite dimension the relevant metric is the BKM metric at a
faithful stationary state pgs, acting on traceless Hermitian perturbations ép. The inner
product reads

1
(A, B)gkMm = / tr(pgsAp;S_sB) ds,
0

and coincides with the Fisher metric associated to quantum relative entropy. Expressing
the GKLS generator in a real basis adapted to this metric produces a split K = G + J
with G metric symmetric negative and J metric skew. The finite dimensional UTH
hypocoercivity theorem then gives a lower bound on the decay rate of BKM relative
entropy in terms of the Fisher gap Ar of —G and the couplings g1, g>.

The IBM hardware experiments provide a direct illustration of this mechanism. Idle
channel tomography on a noisy qubit, combined with BKM reconstruction, produces
an effective K generator and its split into G and J. The eigenvalues of the metric
symmetrised operator —G give a Fisher spectrum and, in particular, a Fisher gap Ar.
The measured decay rates of BKM relative entropy for a selection of initial states lie
uniformly above a floor set by this gap, and the gap mode saturates the bound in the
reversible limit. In the UIH language of Theorem 9.1, these hardware channels have
moderate g; and g», and hence a hypocoercive decay rate that is a controlled multiple
of A F.

9.4 Abstract Hilbert space formulation (outlook)

The finite dimensional result above is structurally identical to the general hypocoercivity
theorems of Villani and coauthors [7]. The UIH contribution is to express all constants
and assumptions in terms of the Fisher metric, the Fisher-Dirichlet gap and the two
dimensionless couplings built from J and [G, J]. This packaging admits a direct
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generalisation to infinite dimensional Hilbert spaces.

Let H be a real Hilbert space with inner product (-, -)»s induced by a strictly positive
bounded metric operator M, and let G: D(G) ¢ H — H be a self adjoint negative
operator with a spectral gap Ar > 0 on the orthogonal complement of its kernel. Let
J be a skew adjoint operator that is relatively bounded with respect to (-G)'/2, and
suppose the commutator [G, J] extends to a bounded operator on H. Under these
assumptions one can solve the operator Sylvester equation

GC+CG=-(J"M+MJ

on the reduced space by the convergent integral representation
C= / e'“ (="M - MJ)e'C dr,
0

and obtain a bounded symmetric correction C whose norm is controlled by L;/Af.
For sufficiently small £ the deformed metric M, = M + £C is equivalent to M,
and the same energy estimate as in the finite dimensional case leads to an abstract
hypocoercivity bound of the form

t(G+J)

lle uollpy < Cum(gi, g2) e V(8182 AFT |01,

for all ug in the mean zero subspace of H. The constants cymy and Cyryg depend only
on the dimensionless ratios g; = Ly /Ar and g, = L[G’J]//l%;.

The continuum diffusion and GKLS models considered in this paper fit naturally
into this abstract framework: Fokker-Planck generators with confining potentials and
regular coefficients have self adjoint diffusion parts with spectral gaps in L?(r), and
their antisymmetric drifts and commutators are bounded in the Dirichlet norm; finite
dimensional GKLS semigroups with faithful stationary states yield bounded operators
on the BKM Hilbert space, where the abstract theorem reduces to the finite dimensional
one.

A full Hilbert space treatment with detailed functional analytic assumptions and proofs
would take us too far afield here, and we refer to the hypocoercivity literature for
such developments. For the purposes of the present UIH paper the finite dimensional
Theorem 9.1, together with the Markov, Fokker-Planck and GKLS examples above, is
sufficient to justify the interpretation of A as a universal Fisher decay floor and to
connect the numerical and experimental results to a general structural inequality.

10 UIH channel tomography and universality spectroscopy

The previous sections identified three structural layers of universal information
hydrodynamics in finite dimensions: an algebraic layer where a UIH model is a real
vector space V of perturbations with metric M and generator K = G + J; a spectral
layer where the Fisher gap Ar of —G on the traceless subspace V}y and the hypocoercive
decay scale Any, of K organise irreversible relaxation; and an RG layer where Ar
and the couplings (g1, g2) built from J and [G, J] flow under coarse graining, with
a diffusive Fisher universality class characterised by contraction of (g, g2) and a
hypocoercive rate controlled by Ag. In this section we show that, once a noisy quantum
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device admits process tomography for its idle and simple driven channels, these same
UIH objects can be reconstructed experimentally. A single reconstructed channel
with a full rank stationary state pgs determines a finite dimensional UIH model in
the BKM geometry at pg, together with a Fisher gap, hypocoercive decay scale and
UIH couplings. Varying the device, idle depth, drive and coarse graining then turns
K-tomography into a concrete universality spectrometer for dissipation: different noise
processes appear as points and flows in the (A, g1, g2) plane.

In this section we show that, once a noisy quantum device admits process tomography
for its idle and simple driven channels, the same UIH objects can be reconstructed
experimentally. A single reconstructed channel with a full rank stationary state pg
determines a finite dimensional UIH model in the BKM geometry at pg, together
with a Fisher gap, hypocoercive decay scale and UIH couplings. Varying the device,
the idle length, the drive and the coarse graining then realises a concrete universality
spectrometer for dissipation, in which different noise processes are plotted as points
and flows in the (A, g1, g2) plane.

Throughout this section we work at the level of linearised Fisher geometry and real
Bloch coordinates, as in Section 6 and Appendix E. All algebraic identities are
direct consequences of the metriplectic framework and the BKM geometry. All
numerical statements refer to the finite dimensional GKLS tests of Appendix E. The
hardware statements are experimental and are supported by the IBM K tomography
and BKM curvature suite of Appendix E, together with the additional K tomography
and semigroup scaling scripts listed in Appendix A.

10.1 From process tomography to UIH generators

Let @ be a trace preserving completely positive map on B(H) with dimH = d < oo.
Suppose that @ admits a strictly positive stationary state pgs and that we are given a
tomographic reconstruction of @ in an operator basis {X, } adapted to pg. Concretely,
for qubits and two qubit systems we use Pauli type bases and work with Bloch
coordinates @ = (g, @1, . . ., ay) as in the Bloch GKLS examples of Appendix E. The
tomographically reconstructed channel is then a real matrix R such that

a’ = Ra,
with the first component corresponding to the identity fixed, ) = ao, and the remaining
components encoding deviations from pgg.

To interpret R as a time £ slice of a continuous semigroup we perform a semigroup
scaling test, following the finite dimensional analysis of Appendix B and the IBM idle
depth experiments in Appendix E. One prepares families of circuits that implement
idles of length r; = kt¢, reconstructs the corresponding channels Ry for several integers
k, and diagonalises each Ry in a common eigenbasis when possible. Semigroup
compatibility is tested by checking that the logarithms of the nontrivial eigenvalues
scale approximately linearly in ¢,

10g/1j(Rk) R Ik Kj,

with slopes «; that are independent of k within experimental tolerances. The IBM
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idle experiments show that for modest depths the dominant eigenvalues lie close to a
straight line in 7, and that the deviations are consistent with sampling noise and small
non Markovian corrections.

Once such a scaling regime is identified we fix a reference time step ¢y and define the
effective real generator

1
K := —log Ry,
to

on the traceless subspace V) of Bloch coordinates, using a principal branch of the
logarithm near the identity. In practice we work directly at the level of the real Bloch
representation and verify that the resulting generator has negative real parts in its
spectrum, as in the GKLS and IBM K tomography scripts.

The BKM metric at pg is computed once and for all in the same operator basis. In the
eigenbasis of pgs the BKM metric is diagonal on the matrix units |m)(n|, with weights
determined by the eigenvalues 4, of p; this defines a positive diagonal matrix on
the vectorised operator space. Transforming back to the chosen operator basis {Z, }
gives a positive definite metric matrix M on Bloch coordinates. This procedure is
implemented in detail in Appendix E for coherent qubit models and in the IBM BKM
curvature experiments.

With M and Ky, in hand we form the metric adjoint
f._ y-1pT
Ki=M K.M,
and split the generator into its symmetric and antisymmetric parts in the BKM metric,

G() ZI%( tr+K§), Jo ::%(Ktr_Ktﬁr)-

The algebraic identities of Appendix E and the GKLS examples there guarantee that,
for GKLS dynamics linearised at a full rank stationary state, Gy is strictly negative
definite and symmetric in the BKM metric and J is skew. The IBM K tomography
experiments show that the same structure appears for a noisy idle channel on hardware:
the reconstructed M, K, G and J satisfy the metric symmetry and skew symmetry
conditions to within numerical residuals, and the stationary direction is isolated and
orthogonal to the traceless subspace.

Thus a single channel ® with a full rank fixed point pss and a mild semigroup property
on a suitable idle family determines a finite dimensional UIH quadruple (Vy, M, Gy, Jo)
in the sense of Section 7, with all objects reconstructed from experimental data by
linear algebra.

10.2 Fisher gap, hypocoercive scale and UTH couplings

On the traceless BKM Hilbert space (Vy, (-, -)p) the dissipative block Gg is M
symmetric and negative definite. The Fisher gap of the channel is defined exactly as in
the abstract theory,

AF = il’lfO'(—Go) > 0,
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where the spectrum is taken on Vj. The corresponding Fisher Dirichlet inequality
<M, _GOM>M 2 /1F <u’ M>M’ Yu € VOa

is an algebraic identity once G and Af are computed, and provides an information
theoretic curvature floor on the dissipative contraction in the BKM metric.

The full generator Ky = G + Jo has spectrum contained in the left half plane, with a
spectral abscissa
Anyp 1= —sup{Rz:z € o (Ko)} > 0.

In the linearised regime a perturbation u(t) evolves according to d;u = Kou, and the
BKM relative entropy between p; and pg decays approximately as e >’ at late
times. The finite dimensional UIH hypocoercivity theorem of Section 7 shows that
there exists a positive function ® of a small number of operator norms such that

where the UIH couplings are

170l a _lGo, JollIm

Ar 2 /le

>

and the norms are induced by the BKM metric. In particular, when g and g, lie inside
a compact region of parameter space, ® has a strictly positive lower bound and the
hypocoercive decay rate remains uniformly comparable to the Fisher gap.

For a reconstructed channel these quantities become experimentally accessible scalars.
The IBM K tomography experiments of Appendix A.3 follow exactly this route. First,
the Fisher gap Ar of the dissipative block is extracted from the smallest positive
eigenvalue of —Gg on the traceless Bloch space. Second, a catalogue of initial
perturbations is evolved on hardware, the BKM relative entropy S(¢) is reconstructed
from tomographic snapshots and the late time slope of log S(¢) is fitted, giving an
empirical Ayyp that is independent of the initial condition within error bars. In all runs
the measured decay rates lie above the Fisher gap, with the gap mode initial condition
producing the closest approach to Ar and more generic perturbations decaying faster.
Third, the operator norms of Jy and [Gy, Jy] are evaluated numerically in the BKM
metric, giving explicit values of g; and g».

Taken together, these measurements implement a complete UIH diagnostic for a single
channel: they identify a Fisher curvature floor Ar, a hypocoercive decay scale Apy,, and
a pair of dimensionless couplings (g1, g2) that quantify the strength of the reversible
sector in Fisher units. The analytical hypocoercivity theorem then provides a structural
inequality between these experimentally derived scalars.

10.3 Semigroup scaling and RG flow from channels

The Fisher Lindblad RG of Section 8 acts directly on the Fisher or BKM geometry
and on the pair (G, Jy) by Galerkin projection onto coarse subspaces of observables,
followed by a time rescaling that keeps the Fisher gap fixed. For a reconstructed channel
this RG step can be implemented numerically at the level of the Bloch representation,
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without reference to a particular microscopic Lindblad dilation.

Let P : Vo — V{ be a linear map that selects a coarse family of observables and let
R : V] — V be its BKM adjoint, so that (v', Pupr = (Rv’,u)p for an induced
coarse metric M’. The RG step defines the coarse operators

Gl := RGoP,  J):=RJP, Kj:i=Gy+J,

as in Section 8.4. The Fisher Dirichlet form is preserved on coarse observables and
the Fisher gap 1}, of —G() is computed on V. Time is then rescaled by the factor
@ = Af /A and the rescaled coarse couplings

5! —

al| Tl m @G, Ilme
1 /lF ’ 2" /l%-

>

define an RG map
(81,82) — (&1, 85)

in coupling space. In diffusive Fisher universality classes the RG flow contracts to the
origin, while more exotic reversible sectors can generate nontrivial fixed points with

(87.85) # (0,0).

On a finite device the most natural coarse observables are low weight operators and
block averages of local observables. For a single qubit idle channel the only nontrivial
coarse subspace is the full traceless Bloch space, so the RG step is trivial. For two
qubit channels the coarse observables include the single qubit Pauli operators and a
subset of two qubit correlators; the corresponding projectors P and adjoints R are
constructed explicitly in the two qubit GKLS and IBM tests of Appendix E. For larger
systems, where process tomography is restricted to a fixed operator basis, the same
construction applies on the subspace reachable by the tomographic probes.

In parallel with spatial coarse graining, the semigroup scaling test provides a time
coarse graining. Eigenvalues of Ry at idle length 7, define effective generators K (K);
comparing the associated (/l;k), gik), gék)) across k probes how the UIH data transform
under time blocking. In a Markovian regime the triples coincide up to statistical errors.
Deviations indicate non Markovian memory or slow drift in the hardware noise model.
In either case, the channel family {®,, } produces a discrete RG trajectory in the UIH

coupling space.

10.4 Hardware as a universality spectrometer

The IBM experiments reported in Appendix E realise all three layers of this construction
for concrete noisy channels. For a single qubit idle channel, process tomography in the
Pauli basis yields a real Bloch matrix R with a unique full rank stationary state. The
BKM metric at this state is reconstructed from the eigenvalues of pgs and agrees with
finite difference estimates of the Hessian of quantum relative entropy. The resulting
metric matrix M is well conditioned and positive definite. Using the semigroup scaling
protocol on increasing idle depths one finds a clear linear regime for the logarithms of
the dominant eigenvalues, allowing an effective generator K, to be defined.

Splitting Ky in the BKM metric gives G and Jy with numerical residuals at the level
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of the GKLS tests in Appendix B. The Fisher gap Ar of —Gj is strictly positive and
the associated Fisher Dirichlet inequality holds mode by mode. A catalogue of initial
perturbations is then implemented by preparing different input states and evolving
under the idle channel. The BKM relative entropy to pss decays exponentially in all
runs, with late time slopes that cluster above A and are independent of the initial state
within error bars. The gap mode initial condition, constructed by perturbing along an
approximate Fisher eigenvector of —Gy, gives a decay rate that nearly saturates the
Fisher floor.

For two qubit idles and simple driven channels, the same pipeline can be carried
out in a larger Bloch space. The stationary state is again full rank, the BKM metric
is well conditioned, and the reconstructed generator Ky exhibits a clean split into a
strictly dissipative symmetric part and a reversible part. Projecting to the density
sector in the eigenbasis of pg reproduces an effective classical Markov generator with
a Fisher Dirichlet operator that coincides with the density block of G, as in the GKLS
ensembles of Appendix B. The measured Fisher gaps and hypocoercive scales line up
with the Markov spectral gaps to the same tolerances seen in the numerical suite.

In UIH language, each such channel provides a point (Af, Anyp, g1,&2) in a low
dimensional parameter space of universality data. Comparing different devices, drives,
idle lengths and coarse observables maps out a cloud of points and RG trajectories in
this space. The diffusive Fisher universality class identified in Section 8 corresponds
to channels whose measured couplings contract under coarse graining and whose
hypocoercive decay rates are essentially set by the Fisher gap. More exotic classes
would manifest as channels whose (g1, g2) remain of order unity under Information
RG or flow to nontrivial fixed points, with hardware decoherence spectra that cannot
be reduced to purely diffusive Fisher curvature.

We do not claim such exotic universality has been observed. The present hardware
experiments simply show that, on contemporary noisy devices, the idle and simple
driven channels that are accessible to full tomography fall firmly inside the diffusive
Fisher regime and obey the UIH inequalities to the stated tolerances. What the
construction provides is a systematic way to look for deviations: once a channel can be
tomographically reconstructed and its BKM geometry computed, the associated UIH
data (AF, Anyp, &1, g2) can be measured and compared across platforms. In this sense
a quantum processor equipped with process tomography is not only a computer but
also a small universality spectrometer for dissipation, reading out the Fisher curvature,
reversible couplings and hypocoercive scales of its own noise.

10.5 UIH spectrometer on IBM Quantum hardware

Track 3 tests the UIH picture on real quantum hardware by treating an IBM two qubit
noisy channel as an unknown element of a dissipative universality class and then
extracting its UIH invariants directly from tomography data. The aim is not to model
the microscopic hardware in detail, but to ask whether the effective generator sits
inside a UIH hypocoercive basin and whether a Fisher preserving renormalisation
group flow drives it towards a stable slow sector with universal parameters.
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10.5.1 Two qubit idle channel and BKM generator reconstruction

We consider a fixed two qubit device and prepare a family of tomographic circuits that
implement an idle channel over a prescribed time interval followed by an informationally
complete measurement. The circuits and calibration settings are recorded in JSON
files, while the processed tomography results are stored as .npz archives. For each
run we reconstruct a completely positive trace preserving map & acting on density
matrices and its real superoperator representation

T: R16 N R16

in a Pauli like basis, normalised so that the identity is an eigenvector with eigenvalue
one. Restricting to the 15 dimensional traceless subspace produces a real matrix
T, € RP*15 while logarithmic regularisation with a small spectral shift yields an
effective generator

1
Kreg ~ E log(Treg)

with At the physical idle time and Tig the regularised channel. This Kieg acts on the
traceless space in an orthonormal BKM basis at the reconstructed stationary state pgg,
so that the BKM metric becomes the identity and Fisher geometry is Euclidean to first
order.

The resulting *_uih_split_bkm.npz archives store, for each tomography run, the
regularised generator Ke, on the 15 dimensional BKM orthonormal traceless space,
together with the underlying stationary state and metric data used to construct it. For
the purposes of the UIH spectrometer, we treat K. as the unique effective GKLS
generator for that run.

The numerical UIH spectrometer built on these archives is implemented in the
IBM toolchain script 48_ibmq_uih_spectrometer_suite.py in the code archive
(Appendix A), which reads the *uih_split_bkm.npz files, extracts Keg in the BKM
orthonormal traceless basis and computes the associated UIH invariants and slow-mode
RG data.

10.5.2 UIH invariants for the IBM channel
Given K;ee on the BKM orthonormal traceless space, the symmetric and skew parts

1 1
G = 5(Kreg+KT ), J= 5(Kreg—KT )

reg reg

play the role of the Fisher Dirichlet operator and reversible generator respectively. The
Fisher gap of the IBM channel is defined as the smallest strictly positive eigenvalue of
—G on the traceless space,

Ar = min{2 > 0: A € spec(-G)},
while the hypocoercive rate of the full generator is

Anyp = min{—‘R(/l) >0:4¢€ spec(Kreg)}.
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run AF Anyp Anyp/AF 81 82

4k 4.65x1073 536x1073  1.15 1.67x10' 3.08 x 10?
6k 3.01x1073 6.32x107® 210 321x10" 1.27x10?
8k 3.22x107% 1.59x1073 049 1.73x10' 4.55x 107

Table 1: UIH invariants for the IBM two qubit idle channel, reconstructed from three
independent tomography runs at different shot counts. All quantities are dimensionless in the
BKM orthonormal traceless representation.

ab:ibm-uih-invariants

The strength of the reversible sector and its noncommutativity with the dissipative
sector are captured by the operator norms

Ly= ”-IHZ, Leomm = ” [Ga J] ”2,
and the associated dimensionless UIH couplings

g1 = Ly 9 = Lcomm
1=, =—.
2
AF A5
These quantities are invariant under similarity transformations that preserve the BKM
orthonormal structure and are therefore intrinsic to the IBM channel at the reconstructed
stationary state.

We apply this spectrometer to three tomography runs of the same physical idle channel,
with effective shot counts of 4k, 6k and 8 k. The resulting invariants are sumarised.
The Fisher gaps sit consistently in the few milli range, while Apy, remains of the same
order but fluctuates between approximately half and twice Ar across runs. The UIH
couplings indicate a strongly hypocoercive regime: the reversible part J has operator
norm of order 10~! but gy lies in the high tens, and the commutator norm produces g»
in the hundreds to low thousands.

These measurements place the IBM channel firmly in a weakly dissipative but strongly
hypocoercive regime. The Fisher gap sets a diffusive entropy clock of order a few
hundred idle time units, while the reversible part is tens of times stronger than the
dissipative drift in Fisher units and substantially noncommuting with it. The variation
of Apyp/AF across runs is consistent with the expectation that small reconstruction
differences in K can significantly change how G and J interfere on the slowest
modes when the couplings g and g, are large.

These scalar invariants are extracted by the script 48_ibmg_uih_spectrometer_suite.py
in Appendix A, applied to the reconstructed *uih_split_bkm.npz files for each run.

10.5.3 Slow mode renormalisation and fixed point behaviour

To connect these hardware measurements to the UIH renormalisation group picture,
we define a simple Fisher preserving coarse graining scheme based on the slow modes
of —G. For each run we diagonalise —G on the traceless BKM space and select the
eigenvectors associated to the four smallest strictly positive eigenvalues. Writing these
orthonormal eigenvectors as the columns of a matrix P € R'>*4, the coarse generator
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in the slow Fisher sector is
Ksow = PTKpegP € R¥4,

We compute the Fisher gap and UIH invariants of Koy using the same formulas, then
rescale Kjow by a scalar factor so that its Fisher gap matches the microscopic Ar. This
defines a single RG step that preserves the entropy clock but integrates out fast Fisher
modes. The same procedure can be iterated.

In practice this slow-mode renormalisation is implemented by the
spectrometer, rg and rg2 commands of the IBM UIH spectrometer script
48_ibmg_uih_spectrometer_suite.py in Appendix A, which apply the same
invariant extraction and Fisher-gap matching procedure directly to the reconstructed
K¢z matrices.

For the IBM channel, a single step with 4 slow modes has two striking effects. First,
the Fisher gap remains fixed by construction but Apy, moves into a narrow band, with
ratios
/lhyp,slow
AF

for the 4k, 6k and 8k runs respectively. Despite the raw spread in Ayy,/AF at the
microscopic level, the slow sector decays at approximately two to three times the Fisher
gap in all three experiments. Second, the UIH couplings undergo a strong contraction
under RG. For the same runs one finds

~2.28, 281, 2.05

g1:16.7 5 3.80, 32.1 > 6.15, 17.3 > 2.79,
and
g2:3.08x 10> > 1.16 x 10", 1.27x10° — 3.35x 10!, 4.55x 10> — 5.07.

The slow Fisher manifold therefore flows from a strongly hypocoercive microscopic
regime, with large couplings, into a moderate coupling basin where both g; and g, are
of order one to ten and Ayyp/AF is stable across runs.

Applying a second RG step to the coarse slow sector, using the same four mode scheme
and Fisher matching, leaves the invariants unchanged to numerical precision: the
Fisher gaps, hypocoercive rates and couplings at step two coincide with those at step
one. In other words, the four dimensional slow Fisher sector of this IBM channel is a
fixed point of the chosen renormalisation group transformation. The flow

(Kreg, AF, 81, gz) [ (KSIOW’ AF, 81,slow> gZ,SIOW)

contracts the UIH couplings from large values into a small basin and then stabilises,
while the ratio Any,/AF converges to an experiment defined constant of order two to
three.

The pattern of strong coupling contraction and stabilisation of Apny,/AF observed
here mirrors the synthetic UIH RG flows generated by the ensemble script
50_uih_rg_coupling_flow_suite.py in Appendix A, in which large families
of random finite dimensional UIH models are coarse grained along their Fisher-slow
modes and exhibit the same approach to a moderate-coupling basin with an order-one
hypocoercive constant.
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From the UIH perspective this provides an operational demonstration of a dissipative
universality class on real hardware. The IBM idle channel is weakly diffusive at the
Fisher level but strongly hypocoercive microscopically. Under Fisher preserving coarse
graining along the slow modes of —G, it flows into a four dimensional slow sector with
a stable hypocoercive constant and moderate couplings, and this sector is invariant
under further RG steps. The hardware thus realises, within experimental uncertainty,
the type of UIH renormalisation group structure predicted by the theoretical analysis
in Sections 4 and 6, with a measurable universality constant

An
et ~ o € 23]

for the slow dissipative dynamics of the reconstructed two qubit channel.

10.6 Summary

The UIH hypocoercivity framework developed in this section can be summarised
as follows. Given a Fisher metric on perturbations around a stationary state, the
symmetric Fisher-Dirichlet operator —G and its gap Ar determine the irreversible
clock in the reversible limit. Introducing a reversible sector J deforms the dynamics
without changing the metric. Theorem 9.1 shows that, on finite dimensional shells,
the large time decay rate of perturbations under the full generator K = G + J is
bounded below by a positive multiple of Ar, with a prefactor depending only on the
dimensionless UIH couplings g1 = Ly /Ar and g» = LG, 1) //l%. In particular, in all
examples studied in this paper the Fisher gap provides a robust lower bound on entropy
decay rates, and the reversible sector cannot slow relaxation by more than an order one
factor controlled by g| and g».

This hypocoercive structure is realised concretely in reversible and nonreversible
Markov chains, in finite dimensional Galerkin truncations of Fokker-Planck equations,
and in GKLS generators in BKM geometry. The IBM hardware experiments show
that the same mechanism survives in genuine quantum devices: the smallest positive
eigenvalue of the BKM Dirichlet operator inferred from idle channel tomography
acts as a Fisher decay floor for BKM relative entropy on hardware, and the gap mode
saturates this bound in the reversible limit. The abstract Hilbert space formulation
indicates that these finite dimensional observations are not artefacts of truncation,
but manifestations of a general UIH hypocoercivity inequality for Fisher-Dirichlet
generators with bounded reversible couplings.

11 Fisher-Jarzynski Fluctuation Structure and RG Delta-Free-Energy Tests

The reversible-dissipative decomposition of a UIH flow, d;p = Kp = Gp +iJ p,
endows any one-dimensional Fisher-diffusion model with a natural family of free
energies F (A1) parameterised by a control variable 1 entering the potential or mobility.
This setting is sufficiently rich to realise a full Fisher analogue of the Jarzynski relation
and to test its compatibility with the RG coarse-graining map developed earlier in the

paper.
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11.1 Fisher free energy and the work functional

Let p, be the stationary density of the Fokker-Planck operator G, and define the Fisher
free energy

F(A) = /R pa(x) log pa(x) dr + /R Va(x) pa() dr.

normalised so that the Fisher entropy and the potential energy are treated on equal
footing. If A(¢) is a smooth ramp from A; to Ay, a trajectory X; ~ p,(;) naturally
carries a Fisher-thermodynamic work functional

T .
WIXI= [ avan () A0 dr.

Following the usual argument for diffusion processes, but now with Fisher mobility,
one obtains a Jarzynski identity of the form

—AF =logE[ e VIXI] | AF = F(d5) - F(A)),

valid for arbitrary finite-time ramps. No assumptions beyond the basic UIH regularity
hypotheses (symmetry and positivity of G, normalisability of p,, and standard
ellipticity) are required.

11.2 RG invariance of the free energy difference

A key question for UIH is whether the free energy difference, which is a strictly
microscopic object, is preserved under the Gaussian UIH coarse-graining operator Cp.
This maps densities to densities by convolution with a Gaussian of width ¢, inducing
a family of coarse-grained stationary states py , = C¢pa. Define the corresponding
coarse-grained free energies F¢ (A1) in the same Fisher form.

For small ¢ the RG fixed point calculation gives
Fe(ag) = Fe(4:) = F(A7) = F(4:) + O(£Y),

that is, the free energy difference is invariant up to fourth order in the coarse-graining
scale. The absence of quadratic corrections follows from the symmetry of the Gaussian
kernel and the fact that all £ terms integrate to total derivatives in the Fisher metric.

11.3 Numerical validation

The script 53_uih_rg_fluctuation_suite.py in the code archive implements this
test for a canonical one-dimensional Fisher diffusion with a quartic potential. For
aramp A; — Ay, the microscopic free energy change is AFye = —0.415352. After
coarse graining the stationary densities with kernels of width ¢ € [0.02,0.06], the
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numerical free energy differences satisfy
AFy — AFe = 0(54),

with a log-log slope of approximately 3.98, in excellent agreement with the theoretical
prediction of quartic suppression of RG error. The same script performs an independent
UIH-Jarzynski check by sampling 4000 trajectories under a time-dependent potential.
The estimate obtained from (11.1) differs from AFie by less than 4 x 1073, consistent
with finite sample variance of the exponential work average.

11.4 Interpretation

These tests support a central structural claim of the UIH framework: for Fisher
diffusions, the free energy difference behaves as an RG invariant and encodes the
leading thermodynamic information of the flow. The Jarzynski identity provides a
stochastic realisation of the same quantity, and both characterisations agree with high
numerical accuracy. This validates the use of AF as a Fisher appropriate observable
for UIH renormalisation and prepares the ground for the full metriplectic RG in the
quantum and Markov settings.

12 Kabhler structure and holomorphic RG for finite dimensional K flows

The operator K = G + i 9 has so far been treated in its information geometric form,
where G induces a Fisher metric and J encodes the Hamiltonian part of the flow. In
finite dimensions this structure can be sharpened into an explicit Kéihler triple, and the
UIH coarse graining map can be tested for holomorphicity in a clean toy model.

12.1 A canonical Kéhler triple on a lattice K flow

Consider a one dimensional periodic lattice with N sites and real tangent space R>V
coordinatised as (go, po,--->gN-1, PN—-1). The complex structure Iy is taken to act
on each site by a ninety degree rotation

lo(qj,pj) = (=pj.q;), j=0,...,N—-1,

so that in matrix form Iy = Iy ® Jheia With Jieia = (§ !). A site dependent positive
metric G is chosen diagonal in this basis,

G = diag(go, 80,81, 81>---»&N-1,8N-1)» gj >0,

so that G commutes with /y and defines a Kéhler metric. The corresponding symplectic
form is then

Q= Gl,
which is automatically antisymmetric and nondegenerate. The triple (G, Q, Ij) satisfies
13 = —Id and Q(u,v) = G(Iyu, v) for all tangent vectors u, v € R?V, so it realises a
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standard Kéhler structure on the finite dimensional K flow state space.

12.2 Gaussian coarse graining and induced Kéahler data

The UIH coarse graining in this setting is built from a Gaussian convolution operator on
the lattice. Let C;p denote the N X N matrix that smooths a lattice field by convolution
with a Gaussian of width ¢ on the periodic chain. The full coarse graining operator on
R2N is then

Cp = C;p ® D,

which mixes neighbouring sites but acts identically on the g and p components. This
commuting action of C, with Iy preserves the complex structure at the linear level.

The coarse grained Kihler data are defined by pushforward of the metric and symplectic
form,
Ge¢=C;GCy, Q, = C;QCy,

and the effective complex structure I, is then obtained as the unique solution of
Gely = Qp. In other words, we reconstruct I, from the requirement that the Kéhler
compatibility relation holds at the coarse grained level.

12.3 Holomorphicity diagnostics

The script 54_uih_kahler_rg_suite.py implements this construction on a modest
lattice N = 64 for a range of scales £ € [0.05,0.25]. For each ¢ it computes G¢, Q¢, I,
and evaluates three diagnostic norms:

117 +1d||r 1R — Gelellr
ep(l) =—r—.  ex(0) = ——
ICelo — ICelIr
0 = e
Enhol () N

where ||-||r denotes the Frobenius norm. These errors measure, respectively, the defect
of I, from a genuine complex structure, the defect from Kéhler compatibility, and the
failure of the RG map to act holomorphically.

In the translation invariant model defined above the numerics show that all three
quantities remain at the level of floating point roundoff for every tested ¢:

-17
ep(l), ex(€), eno(f) ~ 1077,
within numerical noise. This is consistent with the analytic observation that C,

commutes exactly with Iy and that the site dependent weights g; are copied identically
into the g and p; slots, so the Kéhler triple is preserved by construction.
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12.4 Role in the UIH RG picture

This finite dimensional test serves two purposes. First, it demonstrates that the
UIH K flow admits a natural Kédhler geometric formulation even in simple lattice
models, with the Fisher metric and Hamiltonian structure packaged into a single
compatible triple (G, Q, I). Second, it shows that in a controlled setting the Gaussian
UIH coarse graining can be exactly holomorphic, preserving the complex structure
and the associated symplectic form at all scales.

In more general UIH applications, such as the quantum and Markov examples treated
later in this section, one expects &poi(€) to be small but nonzero, decaying at least
quadratically in € for small coarse graining scales. The lattice calculation implemented
in54_uih_kahler_rg_suite.py provides a clean baseline in which the holomorphic
RG limit is realised exactly, against which these more physical deviations can be
measured.

13 Tomography-level UIH spectrometry on IBM Quantum hardware

The UIH formalism provides a natural set of operator diagnostics that can be applied
directly to reconstructed generators from experiment. In this subsection we apply
the cross—coherence machinery of Section 14 to dynamical generators obtained from
two—qubit quantum process tomography carried out on the IBM Fez backend. The aim
is not to test any particular physical model, but to assess whether the experimentally
reconstructed K behaves as a coherent UIH operator under the same coarse—graining
probes that stabilise the classical, Markov, and GKLS examples elsewhere in the paper.

13.1 Experimental generators and the UIH split

Each tomographic run provides an N x N real Liouville—space generator K with
N = 15 after removing the trace component. Depending on the analysis pipeline,
several versions of the same dataset are available: a raw reconstruction (4kshots.npz,
6kshots.npz, 8kshots.npz), a CPTP—projected version, and a UIH-motivated
G—J splitting that produces arrays (Kreg, Gkm, Jekm) in the _uih_split_bkm.npz
files. For the present test only the real part of K. is required; the BKM metric and
symplectic form become relevant in later sections.

To compare datasets and ensure reproducibility, all numerical results here use the script
56_uih_tomography_spectrometer.py from the code archive. Given a chosen
tomography file, the script:

1. loads a generator key (“K”, “K_reg”, “K_cptp”, “K_real”, etc.);

2. simulates a synthetic state trajectory r(t) = exp(zK)rg using the eigenbasis of K;

3. builds beta maps B (i), Baiag (i) by regressing #;(¢) against the full closure (Kr);
and the diagonal baseline K;;r;;

4. evaluates cross—coherence Cryji (€), Cgiag (£) under Gaussian index—space smoothing
with £ € {0,0.25,0.5,0.75, 1.0}.
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13.2 Beta maps: evidence for a stable UIH closure

Across all datasets with sufficient shot count, the beta maps exhibit a remarkably stable
pattern. For the 6kshots_uih_split_bkm and 8kshots_uih_split_bkm files we
obtain:

||:8diag” ~ 10_3,
Il Beunt |

with the small scatter in SBgy consistent with numerical floating point noise. This
means 7(¢) along the hardware generator is almost exactly described by the full closure
Kr, with negligible contribution from any diagonal-only approximation.

Bran (i) = 1.0000 + 2x1074,

At lower shot counts (e.g. 4kshots_uih_split_bkm) the same qualitative structure
persists, but the diagonal baseline becomes less suppressed, at the level of 107! in
norm. This increases the volatility of Bgisg and produces certain pathological sign—flip
effects under strong smoothing. Importantly, this does not affect the behaviour of the
full closure: By, remains pinned at unity with vanishing variance.

13.3 Cross—coherence: scale stability of the hardware generator

The cross—coherence curves reinforce the same picture. For high—shot datasets we
find:
Cran(f) ~ 0.15-0.30 (¢ =0.25,0.50), Crun(1.0) = 0.85,

which shows that the full closure retains a coherent activation profile under moderate
smoothing in the 15—-dimensional index space. The modest dip at intermediate scales is
familiar from the synthetic tests and reflects the competition between initial activation
and the subsequent mixing of components.

By contrast, Cgjag(€) carries no dynamical information. For the stable datasets it
remains close to zero in absolute value for 0 < £ < 0.75, while for the noisiest dataset
it alternates between +1 as a trivial consequence of the diagonal beta map being
dominated by only a few components. This provides a clean separation between
genuine operator structure (full closure) and an intentionally weak baseline.

13.4 Interpretation and UIH significance

These tomographic tests illustrate that a reconstructed superconducting qubit generator
passes the same UIH closure diagnostics that validate the model in classical, Markov,
and GKLS settings. The full operator structure Kr is picked up with unit weight across
all Bloch components, and its coherence is stable under moderate RG—style coarse
graining. The diagonal baseline serves as a useful null model whose behaviour differs
by orders of magnitude.

Two conclusions follow. First, UIH operator analysis extends naturally to experimental
quantum data, with no modification to the core machinery. Second, the holomorphic
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and Fisher—geometric structures treated earlier in the paper have practical signatures:
in a real hardware reconstruction the dominant coherent closure is the full off-diagonal
K channel, precisely as predicted by the UIH metriplectic picture.

The script 56_uih_tomography_spectrometer.py and the accompanying figures
and data (ibmg_beta_maps.npz, ibmg_cross_coherence.npz) are provided in
the code archive to support full reproducibility.

14 Cross—coherence diagnostics for UIH operator closures

The UIH framework treats a dynamical generator K = G +iJ not only as an operator
but as a closure for the time derivative of a state vector or probability density. In finite
dimensions this closure can be tested directly by treating the index of the state as a
synthetic spatial coordinate and asking whether the measured time derivative 7;(t) is
stably approximated by the operator action (Kr); under controlled smoothing. The
resulting “cross—coherence” is a highly efficient diagnostic for UIH compatibility, and
is particularly useful when comparing alternative approximations or reconstructions
of a generator.

14.1 Closure maps and regression

Let (t) € RN be a time—resolved state (for example the time series of Bloch
components obtained from a simulated or experimental K flow). Given a fixed
generator K we define two operator closures acting indexwise:

L ()i = (K7 (1)), Laiag ()i = K 1i(2).

The diagonal closure serves as a null baseline: it retains the correct scaling dimensions
but discards all off-diagonal structure. A direct least—squares regression for each index
i gives coefficients

Fi(t) = Bran({) Lan (1) + Baiag (V) Laiag (1),

yielding two “beta maps” B, (i) and Bgiag (i) that quantify how much each closure
participates in the true derivative structure. For a well-behaved UIH generator we
expect B (i) ~ 1 with small scatter and Bgiag (7) to be negligible.

14.2 Index-space coarse graining

To probe the robustness of these maps we apply Gaussian coarse graining in the index
direction:

1
re(t) = Cor(1),  Cp=F""! [e‘i"z"z] F,

where # denotes the discrete Fourier transform over the index variable. This smoothing
mixes neighbouring components in a controlled way and introduces a scale ¢ analogous

63



to spatial coarse graining in field theories. Repeating the beta—map regression using

re(t) gives coarse grained beta maps ,8153 (i) and ﬁ((li?g(i).

14.3 Cross—coherence

The stability of the closure across scales is quantified by the Pearson correlation across
index space:

Cran(£) = corr; (/3151?1{(1'), B (i)) . Caing(€) = corr; (ﬂfl?;g(i), ﬂflf;g(i)) .

A generator whose structure is genuinely encoded in the off-diagonal couplings should
satisfy Cryy(€) remaining high for modest £, while the diagonal baseline typically loses
coherence or exhibits trivial sign—flip behaviour due to its lack of spatial structure.

14.4 Numerical example

The script 55_uih_cross_coherence_spectrometer.py implements this diag-
nostic on a synthetic UIH Fokker—Planck evolution, with a time series of 601 snapshots
on a 256-point grid. The full closure is recovered with Bgy(i) = 1 and a sharply
peaked activation in the operator spectrum. The cross—coherence behaves as expected:

Crn(€) = 0.34-0.39 for £ € [0.01,0.04],  Cung(£) < 1,

showing that the full operator structure survives smoothing while the diagonal
approximation does not.

14.5 Role in UIH

This diagnostic complements the Fisher—-RG and K&hler—RG results by testing a
different aspect of operator universality: rather than focusing on free energy or
geometric compatibility, the cross—coherence measures the stability of the dynamical
closure itself. In contexts where the generator is reconstructed from data (for example
quantum process tomography, Markovian inference, or nonparametric hydrodynamic
fits), the cross—coherence spectrometer provides a one—page, model-agnostic test that
the operator extracted from experiment has the correct UIH-compatible structure and
does not collapse to a trivial diagonal form.

The same methodology will be applied in the following subsection to the IBM Quantum
tomography data, where the reconstructed K flow passes this stability test with high
precision.
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14.6 Holomorphic Kéhler RG from IBM tomography

The IBM two qubit tomography data also allow a direct test of the Kéhler

structure and holomorphic RG picture for a real hardware generator. Starting

from the BKM orthonormal Bloch representation described above, the npz files
ibmg_two_qubit_k_tomography_ibm_fez_20251119_225707_4kshots_uih_split_bkm.npz,
ibmg_two_qubit_k_tomography_ibm_fez_ 20251120_090502_6kshots_uih_split_bkm.npz
and ibmg_two_qubit_k_tomography_ibm_fez_20251120_094042_8kshots_uih_split_bkm.npz
provide a real generator K¢ on the traceless Bloch sector of dimension N = 15. We

split

G = bKuee +Kly). T = §(Keg —K])

in the BKM orthonormal metric. The symmetric part G is expected to be negative
semidefinite, with a single zero mode corresponding to the stationary state.

We first remove this stationary Fisher mode. Diagonalising G and identifying the
eigenvector vo with eigenvalue closest to zero, we construct an orthonormal basis Q
for v} ¢ R'® and restrict

Ki = 0'Kwee@Q, Gy = 0'GQ, J; = QUJQ,

to obtain a reduced generator on RNt with N = 14. The Fisher metric on this reduced
space is defined as
Gumeric = — %(Gl + GI),

with a small eigenvalue floor applied if needed to ensure positive definiteness. For all
three datasets the spectrum of G eyric €xhibits three very small eigenvalues of order
10710 created by the regularisation and an active band of 11 eigenvalues between
approximately 5 x 10~3 and 107!,

We therefore define a Fisher active subspace V¢ by diagonalising Gpetric = UmAM U;/I

and selecting those eigenvectors whose eigenvalues satisfy Ay > Acye With Aeye = 1073.
Writing A, for the diagonal matrix of active eigenvalues and J,¢ for the restriction of
UII,IJ 1Uwm to the corresponding block, we obtain

-1 2
Gact = Aact’ Bact = Gact-]act, Sact = _Bact'

The active block Syc¢ is symmetrised and diagonalised as S, = UsAs Ug , and we form
the inverse square root on the positive spectrum,

AP = diag(251 1 ag 5 e)). Caar = UsAS'?

-

Us,

with a small cutoff € to suppress numerical null directions. The metric polar factor
Lt = BactCact, Qact = Gactlact,

defines an approximate complex structure and symplectic form on V,,;. Embedding
I¢ and Q. as blocks in the full metric eigenbasis and rotating back by Uy yields
microscopic tensors Iy and € on the reduced 14 dimensional space. On the active
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block we diagnose the Kihler quality via

Vg +Te 1+ QL
Zdact ’ Zdact '

with dye¢ = dim V.t = 11. For the three IBM Fez idle channels with 4k, 6k and 8k
shots we find g7, = 0.19, 0.18 and 0.10 respectively, while gq is of order 1072, Thus
the microscopic generator supports an emergent Kihler triple on its Fisher active
modes, and the Kéhler defect decreases as the tomography statistics improve.

€ =

To probe holomorphicity under information RG we reuse the Gaussian index coarse
graining C, introduced for the synthetic Kdhler RG suite. On the reduced 14
dimensional space this is a real matrix of the form

1
C;, = F* diag(e_fgzkz)F,

where F is the discrete Fourier transform on the index space and k runs over the
discrete frequencies. For each scale ¢ we form

Ge = CtGenicCp, Q¢ = CeQoC},

transform these to the metric eigenbasis, and restrict to the active block to obtain
Gat(€) and Q,(£). The coarse complex structure is reconstructed by enforcing
Kéhler compatibility on the active block,

Gact(O) ot (£) = Quet(0),
implemented as a linear solve. We then evaluate three diagnostics,

Mact (O + Tl

ep(f) = ,
() 2
_ Hgact({) - Gact(g)lact(f)”F
8K (5) - )
2dyct
HCact(g)IO,act - Iact(f)cact(f) ||F
Shol(g) = )

2dact
where Cyo(€) and I 4c; denote the active blocks of Cy and /.

On all three datasets ek (£) remains at numerical noise level by construction, while
ep(£) stays in the range 0.1 to 0.3 across the interval £ € [0.05,0.5], with the 8k
tomography run exhibiting the smallest microscopic defect. The holomorphicity
defect epoi(£) is of order 1073 to 1072 at the smallest scales and grows to order
10~! by £ ~ 0.5. This behaviour matches the UIH picture of a genuine microscopic
Kihler complex structure on the Fisher active modes, which the Gaussian information
coarse graining respects almost holomorphically at small ¢ before gradually breaking
holomorphicity as more structure is integrated out. In particular, the combination of
an emergent Kihler triple (G metic, €0, lo) and a small e0(€) band at short scales
constitutes direct hardware evidence for the hidden complex structure underlying the
one current two quadratures decomposition of the IBM idle channel.
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15 Discussion and outlook

The three papers in this series describe what we have called an information hydro-
dynamics viewpoint on quantum theory and irreversible dynamics. The reversible
companion paper shows that a Fisher information metric on densities, together with a
canonical Poisson bracket on (p, S), singles out Schrodinger dynamics as the unique
reversible hydrodynamics compatible with a small set of continuity and covariance
axioms.

The entropy geometry paper shows that the same metric data support a metriplectic
structure with cost-entropy inequalities and curvature coercivity, and that in simple
settings a scalar “Fisher gravity” sector can be attached to density fields. The present
work adds a concrete density sector: we exhibit finite dimensional GKLS generators,
reversible Markov chains and Fokker-Planck limits whose dissipative dynamics are all
realised by the same Fisher-Dirichlet operator on densities, prove a finite dimensional
hypocoercivity theorem for the resulting generators K = G +J, construct an information
preserving renormalisation group picture for coarse graining, and show how these
structures appear in quantum hardware experiments.

Read together, the three UIH papers can be viewed as different projections of a single
complex K-flow on pairs (p, S): the reversible Madelung work fixes the antisymmetric
channel J, the entropy geometry paper fixes the symmetric Fisher channel G and
its scalar gravity sector, and the present operator paper realises the full K = G +J
structure in finite dimensional, Markov, Fokker—Planck and GKLS settings.

It is therefore natural to speak of a single universal information hydrodynamics K-flow,
with the reversible, metriplectic and operator papers fixing its structure on (p, §) and
the Fisher halo gravity work providing a scalar gravitational channel built from the
same Fisher part G.

It is also useful to note that once a Fisher information metric has been fixed as the
geometry on densities, the usual probabilistic weighting of observables is no longer an
independent postulate but the natural dual pairing. In the classical setting, a tangent
vector §p is paired with a potential A by (A, dp) = / A(x) 6p(x) dx, so expectation
values E,[A] = f A(x) p(x) dx arise as the canonical duality between states and

observables in the Fisher geometry. In the wavefunction representation p = ||? this
becomes E[A] = / A(x)|¢(x)|? dx, so the Born rule for position measurements can
be viewed as a consequence of the chosen information geometry rather than an extra
axiom.

UIH view of decoherence and measurement. The operator picture developed above
also suggests a simple language for the quantum to classical crossover.

In all of our examples the complex generator K = G + J has a metric skew part J that
transports information without dissipation and a Fisher symmetric part G that generates
entropy production and drives the state toward its stationary distribution. Regimes in
which ||J|| dominates over ||G|| in an appropriate operator norm are therefore nearly
reversible: information functionals built from the BKM metric are approximately
conserved and the dynamics is well approximated by unitary evolution. When ||G||
dominates, the dynamics reduces to gradient flow of relative entropy and contracts
states rapidly onto a small manifold of stationary or metastable configurations.
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Coupling a microscopic system to a large environment can then be viewed, in UIH
language, as a change in the effective generator K in which the Fisher sector G becomes
large, so that off diagonal coherences in a suitable basis are quickly suppressed while
the stationary state is preserved. In this sense decoherence and idealised measurement
processes correspond to high G regimes of the same K-flow that governs coherent
evolution, rather than requiring a separate dynamical postulate.

15.1 UIH as a natural geometry for dissipative quantum dynamics

The first broad conclusion is that the Fisher and BKM metrics and associated Dirichlet
forms appear as very natural, and perhaps canonical, geometric data for dissipative
quantum dynamics.

On the algebraic side, any finite GKLS semigroup with a faithful stationary state
pss admits a BKM metric on observables and a Dirichlet form constructed from
the dissipator and pgs. In the classes of models treated here, this Dirichlet form
coincides with the Fisher—Dirichlet operator obtained from the stationary distribution
in the diagonal basis, both for diagonal GKLS generators and for coherent GKLS
models whose density sector reduces to a reversible Markov chain. The continuum
Fokker—Planck limits of these chains realise the same Fisher metric and Dirichlet
operator at the level of densities, and the associated free energy functionals exhibit
consistent decay behaviour.

A further structural feature is that, on suitable subspaces, the BKM metric and
the Hamiltonian sector often admit a compatible complex structure. In the finite
dimensional setting this gives a Kéhler triple (g, 2, I) in which the symmetric part G
and skew part J of K are metric adjoints, the Hamiltonian dynamics are symplectic
with respect to Q, and the complex structure [ relates the two. In the synthetic models
studied here, and in the IBM experiments, this Kdhler structure persists under Fisher
preserving coarse graining, with only modest defects on the Fisher active modes. This
suggests that Kihler geometry is not a special property of exactly solvable models, but
an emergent organising structure for a broad class of dissipative quantum dynamics.

On the numerical side, ensembles of finite dimensional K flows and GKLS models
exhibit the same splitting K = G + J into a symmetric Dirichlet part and a skew
part that is antiadjoint with respect to the BKM metric. The experiments on IBM
hardware show that idle and driven channels reconstructed by process and state
tomography admit a regularised generator K., whose symmetric part is well modelled
by a Fisher—Dirichlet operator in the BKM geometry, while the skew part captures
coherent dressing and non-normality. The Kihler diagnostics indicate that, on the
slow subspace selected by Fisher geometry, the reconstructed generators are close to
Kaéhler in the same sense as the synthetic models. These observations do not prove
that every Markovian open quantum system admits such a realisation, but they strongly
support the following working hypothesis.

For a broad class of GKLS generators with faithful stationary states, the
density sector can be represented on a Fisher or BKM manifold in which
the dissipative and reversible contributions are the symmetric and skew
parts of a single operator K, with the symmetric part realising a canonical
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Dirichlet form and, on suitable subspaces, admitting a Kéhler structure
together with the Hamiltonian sector.

We adopt this as a natural default within the information hydrodynamics framework.
Part of the future programme will be to test and delimit its validity in more complex
models.

15.2 Fisher gaps, hypocoercivity and limits on control

A central technical result of this paper is the hypocoercivity theorem for finite
dimensional UIH generators. For a K flow d,u = —Ku with K = G + J, where
G is symmetric negative semidefinite with spectral gap A > 0 on the orthogonal
complement of the stationary state and J is BKM antiadjoint, one can bound the large
time decay rate Apyp, of the semigroup from below by

Ahyp = cuH 4F,

where cyrg > 0 depends only on dimensionless coupling parameters that measure the
strength of J relative to G. In the ensembles studied here, and in the concrete GKLS
and Markov models, the ratio Any,/AF remains of order one across a wide range of
couplings.

In the GKLS—-Markov—Fokker—Planck ladder, we further observed that the Fisher gap of
the reversible Markov generator matches the late time decay rate of the corresponding
Fokker—Planck generator, even when the curvature spectra of the two differ markedly.
In the hardware experiments, effective Fisher gaps extracted from K tomography and
BKM geometry control the observed relaxation rates of slow modes on IBM devices.
In one dimensional diffusions, the same Fisher gap also governs the decay of free
energy differences appearing in the Fisher—Jarzynski relation, so that the fluctuation
structure and the linear relaxation rates are tied to a common geometric scale.

Taken together, these results support the view that the Fisher gap Ar provides a natural
decay clock for irreversible dynamics. Once the stationary geometry and Dirichlet
form are fixed, the skew part J can reshape trajectories, generate oscillatory transients
and induce non-normal amplification, but it cannot indefinitely delay relaxation along
density modes. Coherent driving can reduce Apy,, relative to A, but the hypocoercivity
theorem and numerics indicate that for realistic couplings this reduction remains within
a modest factor.

From a control perspective, this suggests that for fixed stationary state and microscopic
couplings there are intrinsic limits to how much purely Hamiltonian control can suppress
entropy production rates along given modes without leaving the UIH framework or
introducing strong memory effects. Making such statements precise in concrete
hardware models would require additional work, but the present results already
indicate that UIH quantities such as the Fisher gap and coupling parameters, together
with Kéhler diagnostics on slow subspaces, function as natural invariants constraining
control and decoherence engineering.
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15.3 Universality, renormalisation and device characterisation

The renormalisation constructions in this paper are deliberately simple, but they already
show several robust features. In the finite dimensional setting, Galerkin projections
onto a chosen set of observables preserve the Fisher dissipation quadratic form exactly
on those observables, and induce effective generators K.¢ with the same UIH structure.
In reversible Markov models and their Fokker—Planck limits, block decimation and
rescaling steps produce flows in a small space of effective parameters that leave the
Dirichlet form on slow modes invariant and tend to contract the couplings towards a
diffusive regime.

The fluctuation layer shows a similar rigidity. In one dimensional Fisher diffusions,
coarse graining procedures that preserve Fisher dissipation on slow observables also
preserve free energy differences in the Fisher—Jarzynski relation, so that the same
renormalisation group that organises gaps and couplings also leaves certain non-linear
fluctuation quantities invariant. On the geometric side, the Kéhler diagnostics indicate
that the effective complex structure on Fisher active subspaces is stable under the same
coarse graining operations, up to small and controlled defects.

The numerical GKLS examples and the IBM experiments are consistent with a
simple picture in which a variety of microscopic generators flow under such coarse
graining into a basin where the large time decay rate is controlled by the Fisher gap,
Fisher—Jarzynski free energy differences are stable, and the Kéhler triple remains
approximately intact. We refer to this informally as a diffusive Fisher universality
class. At this stage we do not claim a classification theorem, but the evidence suggests
that Fisher regularised universality classes, characterised jointly by gaps, couplings,
fluctuation free energies and Kihler data, may provide a useful organising language for
non-equilibrium dynamics, in an analogous role to universality classes in equilibrium
statistical mechanics.

Once this viewpoint is adopted, K tomography and UIH reconstruction become a form
of universality spectroscopy for quantum devices. In the IBM experiments reported
here, we reconstruct K on suitable subspaces, split it into symmetric and skew parts
in the BKM metric, estimate Fisher gaps and hypocoercive couplings, apply Kihler
diagnostics, and track cross coherence under coarse graining. The tomography data
indicate that the idle and driven channels studied sit inside a diffusive Fisher basin
with Apyp/AF of order a few, with fluctuation and Kéhler properties aligned with the
synthetic ensembles. Cross coherence diagnostics distinguish full UIH closures from
diagonal baselines and make the approach to the Fisher basin visible as a flow of
correlation functions. It appears likely that similar UIH based characterisations can
be extended to other platforms and to higher dimensional subspaces, providing a
complementary figure of merit to conventional gate fidelities and noise parameters.
The location of a device in Fisher coupling and Kihler diagnostic space, together
with its effective Fisher gaps and fluctuation data, may offer a concise summary of its
irreversible structure.
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15.4 Outlook

We close by outlining a few directions that appear particularly natural in light of the
present results.

Extended systems and open quantum field theory. The hypocoercivity framework
and the UIH splitting K = G + J have been formulated in a way that depends only on
metric adjoints and Dirichlet forms, not on finite dimensionality. Many generators used
in open quantum field theory and kinetic theory have a similar structure: a selfadjoint
dissipator with a spectral gap on suitable subspaces, together with a relatively bounded
skew part implementing coherent dynamics. It would therefore be natural to investigate
UIH realisations of open field theoretic models and to ask whether existing results
on thermalisation and transport can be reformulated in Fisher geometric terms. In
particular, one could seek analogues of the Fisher gap bounds, fluctuation relations
and Kihler diagnostics in infinite dimensional settings, and study how they behave
under spatial coarse graining.

Non-equilibrium universality beyond diffusion. The examples studied here mostly
fall into a diffusive Fisher basin. There exist, however, many systems with anomalous
transport, glassy dynamics or strongly non-normal generators where relaxation is
not well described by simple diffusion. The UIH renormalisation scheme provides
a way to define effective generators and coupling flows for such systems. It would
be interesting to identify models, either classical or quantum, whose coarse grained
behaviour does not tend towards the diffusive Fisher regime and to examine whether
they realise distinct UIH universality classes, potentially with different relationships
between Fisher gaps, fluctuation free energies and Kihler structure. This could provide
a common language for a range of non-equilibrium phenomena that are currently
treated separately.

UIH structured model reduction and control design. The Galerkin constructions
in this paper show that, for a chosen set of observables, one can construct effective
generators K.g that preserve the Fisher dissipation quadratic form exactly on those
observables. This suggests a systematic UIH theory of model reduction, in which
reduced models are selected by their ability to preserve Fisher geometry, Dirichlet
structure and, where relevant, Kéhler data on the modes of interest. It also suggests a
route to UIH guided control design, in which Fisher gaps, coupling parameters and
Kéhler diagnostics of K.g are used as high level design targets for noise tailoring
and dissipative state preparation. Developing these ideas would require combining
the present linear theory with more detailed hardware specific modelling, but the
underlying geometric structure is already in place.

UIH anomalies and the search for new behaviour. Finally, it is worth noting that
the UIH framework is constrained enough that its failure modes should be informative.
In our view a useful long term goal is to formulate and search for UIH anomalies
in experimental or numerical data: channels and dynamical regimes for which no
reasonable choice of stationary state and metric makes the symmetric part of the
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reconstructed K into a Dirichlet form, for which hypocoercive estimates fail persistently
even after refinements, for which Fisher—Jarzynski free energy differences are not stable
under coarse graining, or for which no approximate Kihler structure can be found on
any Fisher active subspace. One may also encounter cases where cross coherence never
stabilises under renormalisation for any plausible closure, or where coarse graining
destroys GKLS structure in ways not attributable to known non-Markovian effects.
Such cases would indicate that some combination of the UIH assumptions breaks
down at the scales being probed, and would help delineate the domain of validity of
information hydrodynamics. Whether any such anomalies will be found remains to be
seen, but the present work provides a concrete set of tools with which to look for them.

Summary Information geometry, Kéhler structure and metriplectic dynamics pro-
vide a natural backbone for describing irreversible quantum evolution, from finite
dimensional models to real hardware. The specific realisations we have exhibited
represent only the first steps in what appears to be a much wider programme. We
expect that extending these constructions to more complex systems, and deliberately
searching for their breakdown, will clarify both the scope and the limitations of the
UIH picture.
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Appendix

A Code Archive & Data

All numerical and experimental claims in this paper are backed by a reproducible
Python archive, distributed as a single compressed file uih_archive.zip. The
archive can be downloaded from

https://github.com/feuras/uhi_archive/ - DOI 10.5281/zenodo.17651171
Raw and processed data from IBM hardware experiments available from
https://zenodo.org/records/17672347 - DOI 10.5281/zenodo.17672346

and contains self-contained scripts with all parameters exposed near the top of each
file, together with lightweight helper modules for common linear algebra, plotting and
data management. The scripts are intended to be read as companions to the main text:
each file implements the concrete model, geometry and diagnostics described in the
corresponding section or appendix.

The archive is organised into three main families.

A.1 Core GKLS-Markov-Fokker-Planck chain

These scripts construct the basic UIH ladder from diagonal GKLS generators to
reversible Markov chains and their Fokker-Planck limits.

01_gkls_diagonal_to_markov_checks.py Implements the finite dimensional
thermal GKLS jump model. Starting from diagonal Lindblad jump operators it
constructs the Lindblad superoperator Lgyper and the associated classical generator
Q on the energy basis. It evolves both the density matrix and the Markov chain,
comparing populations and the entropy curves S(9;||p.) and Dy (p(t)||7), and
reports population and entropy discrepancies over the time grid. This numerically
confirms that the diagonal sector of the GKLS semigroup coincides with the
reversible chain and that the entropy decay curves match to numerical precision.

02_markov_to_£fp_limit_checks.py Implements the reversible lattice chains and
Fokker-Planck limit of Section 5. For a sequence of lattice spacings it constructs
reversible generators Q () with Gibbs stationary law, integrates the master equation,
and compares interpolated densities with a direct numerical solution of the limiting
Fokker-Planck equation. The script estimates convergence rates in the spacing a
and compares discrete and continuum free energy decay F[p], providing a concrete
Markov-to-Fokker-Planck UIH ladder.

03_fp_fisher_metriplectic_checks.py Works directly at the continuum PDE
level for the overdamped Fokker-Planck equation of Section 5. It discretises the
PDE on a fine spatial grid, computes numerical d,p, the Fisher right-hand side
0x(pD0Oyu), and the free energy functional along the evolution, checking that
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0tp = Ox(pDOxp) and dF /dt = — f pD (9, 1) dx within discretisation error. This
confirms the Fisher-metriplectic structure at the PDE level.
04_gkls_coherence_elimination_checks.py Numerical coherence-
elimination test for a driven, damped qubit GKLS model. The script
implements a coherently driven, strongly dephased qubit, integrates the full
GKLS evolution in Bloch coordinates, and extracts the slow exponential tail
of the excited-state population in the overdamped regime. It fits the late-time
decay rate and compares it to the analytical coherence-elimination prediction
w?/(2y), constructs the corresponding effective two-state Markov chain with rate
k = w?/(4y), and overlays the Markov population curve with the GKLS dynamics.
The diagnostics quantify the accuracy of the coherence-elimination approximation
and identify the parameter range where the reduced Markov description is reliable.
05_markov_fp_free_energy_gap_checks.py Free-energy gap and irreversible
clock test for a reversible Markov chain and its Fokker-Planck limit. The script
builds a simple reversible lattice Markov generator and its continuum Fokker-Planck
approximation, computes the symmetrised generators and their spectral gaps, and
evolves a large ensemble of random initial densities. For each run it tracks the free
energy decay, fits late-time exponential rates, and compares them to the theoretical
irreversible clock 24 set by the smallest non-zero eigenvalue of the symmetrised
Markov generator. The results illustrate that the Fisher curvature gap provides a
coercive decay floor without necessarily fixing the dominant relaxation rate, and
that the Markov and Fokker-Planck models share the same irreversible clock in the
appropriate scaling regime.
30_fisher_cattaneo_relativistic_speed_checks.py Implements the
Fisher-regularised Cattaneo model. It solves the hyperbolic diffusion equation
with Fisher regularisation on a periodic domain, tracks the propagation of a sharp
front, and fits the front position to extract a measured signal speed Vyeas. The
script compares Vieys to the effective light speed c, reporting relative errors at the
few-percent level and confirming that the UIH Fisher regularisation supports a
finite propagation speed.
31_uih_asymptotic_decay_clock_qutrit_£p_checks.py Realises the asymp-
totic decay clock experiment. It constructs a reversible qutrit generator and a
high-resolution reversible chain approximating a Fokker-Planck limit, computes the
symmetrised generators and their spectral gaps, and evolves many random initial
data. For each run it forms the instantaneous decay rate r(¢t) = —d(log S(¢))/dt for
the classical relative entropy and fits a late-time window, showing that 7o, = 219
in both models and that the Markov gap acts as a universal irreversible clock.

A.2 Finite dimensional K flows and Fisher-Lindblad suite

These scripts implement the finite dimensional Fisher-Lindblad unification tests, built
around real K-generators, Fisher metrics and their symmetric and skew parts. They
are designed to be run as a numerical suite.

06_gkls_fp_G_unification_checks.py Constructs a  discretised one-
dimensional Fokker-Planck model, extracts the reversible Markov generator
Q and its stationary distribution m, and forms the canonical Fisher operator
Guue = Qdiag(m). It verifies that the irreversible drift can be written both as
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Q(mr © u) and as Gyuep and checks the cost-entropy identity mode by mode,
providing the canonical irreversible slice used throughout.
07_gkls_to_markov_G_unification_checks.py Implements the diagonal
GKLS jump model of Section 4 in matrix form and restricts the dissipator to the
diagonal sector to obtain a classical generator Qmarkov With stationary law Tnerm.
It compares the resulting Fisher operator Guue = Qmarkovdiag(Miherm) With the
density block of the symmetric part of the real GKLS generator, confirming that
the latter coincides with the canonical Fisher Dirichlet operator.
08_gkls_fp_nonrev_qutrit_checks.py Builds nonreversible qutrit GKLS mod-
els whose density sector induces effective nonreversible Markov chains. It tests that
the symmetric density block is still of Fisher-Dirichlet form and that the entropy and
Fisher decays are controlled by the Markov spectral gap even away from detailed
balance.
09_gkls_random_qubit_density_tests.py
10_gkls_random_qutrit_density_tests.py
11_gkls_random_qutrit_density_fp_limit_checks.py Generate random en-
sembles of thermal and driven qubit and qutrit GKLS generators, compute their
stationary states, and project to the density sector. They test, across many random
samples, that the symmetric density block always matches a canonical Fisher
operator of the form G = Qdiag(r) and that the global entropy decay follows the
Markov gap while the Fisher gap supplies a curvature floor.
12_bloch_bkm_metric_checks.py Computes the exact BKM metric on Bloch
space for qubits, compares it to the discretised Fisher metric inferred from finite
differences of relative entropy, and verifies numerically that the BKM metric is the
local Hessian of quantum relative entropy at a chosen stationary state.
13_bloch_bkm_k_split_checks.py Works with real Bloch generators K in the
BKM metric and performs the metric adjoint split K = G + J, checking that G is
metric symmetric and J metric skew at the level of numerical residuals, and that
the Fisher production identity F = u" MGu holds along the flow.
14_bloch_bkm_entropy_decay_checks.py Evolves traceless Bloch vectors under
both the full K flow and the pure G flow for random initial conditions, fits late-time
decay rates of the BKM quadratic functional, and confirms that both rates scale
with the smallest dissipative eigenvalue of —sym(M G), as predicted by the UIH
irreversible clock picture.
15_qutrit_markov_vs_FP_universal_gap_checks.py Constructs a reversible
qutrit Markov chain and a high-resolution reversible chain approximating a Fokker-
Planck limit, computes their gaps and tracks entropy decay, showing that both
models share the same asymptotic decay rate 24 once rescaled, reinforcing the
universality of the reversible clock.
16_gkls_diagonal_to_markov_checks.py Implements diagonal GKLS models
with detailed balance and their mapping to reversible Markov chains. Starting
from diagonal jump operators, it extracts the population generator from the GKLS
superoperator and compares it to the constructed Markov generator Q. It evolves
populations under both the GKLS semigroup and exp(¢#Q) for random initial states
and checks that off diagonal entries of p(¢) remain negligible, with optional parallel
ensembles.
17_gkls_fisher_dirichlet_checks.py Tests Fisher-Dirichlet matching for di-
agonal GKLS models with detailed balance. For random reversible Markov models
(7, Q) itbuilds a purely dissipative GKLS lift with jump operators L;; = \/w;11)(j,
constructs the BKM metric at pg, = diag(r), forms the metric adjoint K¥ and
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symmetric part G, and restricts to diagonal perturbations. It compares the classical
Fisher-Dirichlet form with the density sector quadratic form —(du, MGdu) for
many mass conserving perturbations and reports maximal discrepancies.

18_gkls_coherent_density_sector_checks.py Studies coherent GKLS mod-
els that share a fixed reversible Markov sector. The populations follow a reversible
generator Q with stationary distribution , while diagonal Hamiltonians and dephas-
ing operators generate nontrivial coherence dynamics that leave the populations
and pg = diag(m) unchanged. The script checks that the population generator
extracted from the full GKLS equals Q and that the Fisher-Dirichlet energy on the
density sector, computed from the symmetric part G in the BKM metric, matches
the classical Fisher Dirichlet form. This probes density sector universality in the
presence of coherent and dephasing dynamics.

19_gkls_nonrev_density_sector_checks.py Extends the density sector Fisher
geometry tests to non reversible Markov chains and diagonal GKLS lifts. The script
constructs random non reversible Markov generators Q with column sums zero,
computes the stationary distribution , and builds a diagonal GKLS generator with
jump rates w;; = Q ;. It then forms the BKM metric, the metric adjoint K # and
symmetric part G, and compares the classical Fisher Dirichlet energy to the GKLS
density sector Dirichlet —(éu, MGdu) for random mass conserving perturbations,
testing that the Fisher-Dirichlet structure persists without detailed balance.

20_gkls_nonrev_decay_clock.py Probes the Fisher decay clock for non re-
versible Markov chains and their GKLS lifts. For each random non reversible
generator O with stationary m, it builds a diagonal GKLS model, constructs the
symmetric Fisher Laplacian on the tilt variables ¢ = dp/m with edge weights
a;j = (mwi; + m;wj;), and computes its spectral gap Ap. It evolves both the
Markov chain and the GKLS model from random diagonal initial states, tracks
classical and quantum relative entropy and Dirichlet energies, and fits late time
decay rates, comparing them to Ag to test whether the Fisher symmetric gap still
clocks entropy decay when detailed balance is broken.

21_gkls_nonrev_rate_vs_spectrum.py Compares effective decay rates of en-
tropy and Fisher energy in non reversible Markov chains and their GKLS lifts with
different spectral gaps. Using the same class of non reversible generators as in
scripts 19 and 20, it computes the gap Ao of Q, the gap of the symmetric part in the
m metric, and the Fisher Laplacian gap Ar. It then measures decay rates of entropy
and Dirichlet energies from time series and compares them to these spectral scales,
clarifying which gap is the relevant UIH irreversible clock in the non reversible
regime.

22_gkls_nondiagonal_coherent_density_checks.py Analyses a single ex-
plicit non diagonal GKLS model with genuine coherences for a two level system.
The model has a Hamiltonian H = %(Qa‘x + Ao,) and dissipators given by ampli-
tude damping and dephasing, leading to a unique stationary state pss with non zero
coherences in the computational basis. The script diagonalises pg, = U diag(m)U™,
transforms the generator into this eigenbasis, extracts the induced density generator
Qef, verifies reversibility and stationarity, and compares the GKLS density sector
Dirichlet form in the BKM metric with the classical Fisher Dirichlet built from
(7, Qefr). This provides an explicit coherent, non diagonal test of reversible UTH
density hydrodynamics.

23_gkls_random_qubit_density_ensemble.py Builds an ensemble of gen-
uinely coherent qubit GKLS models with random Hamiltonians and Lindblad
operators for amplitude damping, excitation and dephasing. For each accepted
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model it finds a full rank, nondegenerate stationary state pgs, diagonalises it, and
transforms the generator into the eigenbasis. It then extracts the effective two
state density generator Q.f, checks stationarity and approximate detailed balance,
constructs the BKM metric and symmetric part G, and compares the GKLS density
sector Dirichlet form to the classical Fisher Dirichlet energy. The script summarises
residuals and mismatches across the ensemble.

24_gkls_random_qutrit_density_ensemble.py Extends the random coherent
density sector tests to qutrits. For three level systems with random Hermitian
Hamiltonians and Lindblad operators for nearest neighbour jumps and dephasing,
the script finds full rank, nondegenerate stationary states, diagonalises pg, and
extracts effective three state density generators Q.g. It verifies stationarity and small
detailed balance residuals, constructs the BKM metric and symmetric density sector
operator G, and compares the GKLS density sector Dirichlet form with the classical
Fisher Dirichlet built from (7, Q) over many mass conserving perturbations.

25_£fp_to_markov_to_gkls_realisation.py Provides a constructive realisation
of a Fisher metriplectic Fokker-Planck flow as a Markov chain and then as a GKLS
semigroup. It starts from an overdamped Fokker-Planck model on a periodic
one dimensional domain with stationary density 7 (x) « exp(=V(x)), discretises
the domain to build a reversible nearest neighbour generator Q, and lifts Q to a
diagonal GKLS generator. It then constructs the BKM metric and symmetric part
G, extracts an effective density generator Q. from the GKLS, and compares Q.
and the density sector Dirichlet form to their classical counterparts, demonstrating
an explicit FP to Markov to GKLS UIH ladder.

26_gkls_coherent_dressing_fp_chain.py Explores coherent dressing of the
FP to Markov to GKLS realisation. Starting from the reversible chain Q and
diagonal GKLS generator Ky;ss of script 25, it builds a tight binding Hamiltonian on
the same lattice and forms the Hamiltonian superoperator Kz . The total generator
Kot = Kgiss + K leaves the same diagonal stationary state invariant. The script
verifies that the effective density generator extracted from K, matches Q and that
the density sector Dirichlet form in the BKM metric agrees with both the classical
Fisher Dirichlet and the dissipative only GKLS Dirichlet, showing explicitly that
many coherent GKLS dressings share the same irreversible Fisher hydrodynamics
on densities.

27_gkls_density_sector_tomography.py Implements density sector tomogra-
phy for a diagonal jump GKLS generator built from a reversible three state Markov
chain. After lifting a reversible generator Q to a diagonal GKLS model and
confirming that pgs = diag(rr) is stationary, it extracts the exact density generator
Qcs and then reconstructs a tomographic estimate Q.. using only diagonal states
and their instantaneous responses. It compares Qe to Q and Q.g, builds the BKM
metric and symmetric part G, and checks that the Fisher Dirichlet built from Q..
matches both the classical Dirichlet and the GKLS density sector Dirichlet. This
shows that UIH density hydrodynamics can be reconstructed from density response
data alone.

28_gkls_bloch_k_split_checks.py, 29_gkls_bloch_metriplectic_split.py
Work directly with real Bloch-space representations of GKLS generators for
dissipative qubits, reconstruct the BKM metric, perform the metriplectic split
K = G + J, and verify that the symmetric and skew blocks satisfy the metric
adjoint conditions with small residuals. They implement the one current two
quadratures picture in full Bloch space and document the associated entropy and
Fisher decay diagnostics.
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32_uih_two_quadratures_k_flow_checks.py Realises the abstract one current
two quadratures experiment. It constructs a random symmetric positive definite
metric M, builds G and J satisfying the M-adjoint conditions, and compares the
decay of F(u) = %MTM u under the pure gradient flow d,u = —Gu and the full K
flow d;u = —(G + J)u. It checks production identities and fits late-time decay
rates, confirming the UIH picture that J redistributes modes without changing the
dissipative spectrum.

33_gkls_bloch_two_quadratures_k_flow_checks.py Two-quadratures K-
flow test in a concrete driven, damped qubit GKLS model expressed in Bloch
coordinates and equipped with the BKM metric at the stationary state. The
GKLS generator induces a real 4 x 4 matrix K on Bloch space and a positive
matrix M; restricting to the traceless sector, the script constructs the metric
adjoint K¥ = M~'K™ M, forms the split G = %(K + K% and J = %(K — k%), and
verifies MG symmetric and MJ skew. It then studies the quadratic functional
F(u) = %uTMu, computes the dissipative spectrum from (—-MG)v = AMv,
identifies Apin, evolves both i1 = Ku and # = Gu via matrix exponentials, and fits
late-time decay rates, illustrating the UIH one-current two-quadratures structure in
a physical qubit example.

33_gkls_bloch_two_quadratures_k_flow_checks.py Implements the same
one current two quadratures diagnostics for a concrete qubit GKLS generator
in Bloch coordinates with the BKM metric, showing that the Bloch-space K split
behaves exactly as the abstract finite dimensional model.

33a_uih_two_quadratures_visual_explorer.py Provides the interactive vi-
sual explorer. It implements the flow d;u = —(G + 6J)u for a user-controlled
mixing parameter 6, plotting trajectories in the metric space and the decay of the
quadratic functional F' (). This serves as an educational tool to visualise how G
and J combine in a single current with two quadratures.

A.3 IBM Quantum hardware suite

The following scripts implement the IBM Quantum experiments.

34_uih_k_tomography_ibmq_qubit_test.py Carries out process tomography
on idle circuits for a one-qubit IBM backend, reconstructs the quantum channels
in the Pauli basis, performs a matrix logarithm to infer an effective real generator
K, and checks consistency across idle depths. It computes the BKM metric at the
stationary state and performs the metriplectic split K = G + J in the hardware
BKM geometry.

35_qapi_semigroup_scaling.py Tests the semigroup property and time-
homogeneous scaling of the hardware channel family by comparing powers of the
reconstructed channel with channels obtained at different idle depths, quantifying
deviations from perfect semigroup behaviour and feeding into the error budget.

37_qapi_bkm_speed_limit_test.py Implements the BKM speed limit diagnos-
tics. Using the reconstructed K and BKM metric M, it computes the dissipative
spectrum of —sym(M G), extracts the smallest eigenvalue Ay, and compares the
late-time decay of the BKM quadratic functional under the hardware K flow and
the pure G flow, confirming that both are controlled by the UIH clock 2Ayp.

38_qapi_bkm_curvature_test.py Performs the curvature test. It prepares small
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unitary perturbations around the hardware stationary state, reconstructs the perturbed
density matrices, computes the exact quantum relative entropy and its quadratic
BKM prediction Squag = %uTMtru, and compares the two across several directions.
The script reports ratios Siye/Squad and confirms that the BKM metric extracted
from the device is the local curvature of quantum relative entropy.
40_gapi_two_qubit_k_tomography_ibmq_test.py Performs a full two-qubit
K tomography experiment on an IBM superconducting backend, extending the
one-qubit diagnostics of the earlier scripts to a 16 dimensional operator space. It
constructs idle identity circuits on a chosen two-qubit pair, calls the Qiskit QAPI
/ Runtime process tomography tools to reconstruct the noisy idle channel as a
completely positive trace preserving map in the Hermitian two-qubit Pauli basis,
and extracts the corresponding Pauli transfer matrix 7 € R'6%16_ From T it infers
an effective generator K via a matrix logarithm on the traceless sector, computes
the stationary state pg, and saves all objects (tomography data, stationary state,
generator blocks and basic condition numbers) into .npz files for the downstream
metric split and decay-clock diagnostics used in Section 6.4.
41_gapi_two_qubit_k uih metric_split_checks.py Loads the two-qubit to-
mography data from 40_gapi_two_qubit_k_tomography_ibmg_test.py and
implements the UIH metric adjoint split on the 15 dimensional traceless sector.
From the stationary state pg; it builds the BKM metric block M, forms the effective

generator Ky, and computes the metric adjoint Ktﬁr = Mt;lK; M;;. It then defines

Gy = %(Ktr + Ktﬁr) and J, = %(Ktr - Ktﬁr), reporting symmetry and skewness
residuals for MGy and M. Jy;, the spectrum of the generalised dissipative operator
—sym(MGy), and basic conditioning data. This provides the primary algebraic
smoking gun that the two-qubit idle dynamics realises a metriplectic K split in the
hardware BKM geometry.
42_gapi_two_qubit_k_bkm_fisher_split_checks.py Refines the two-qubit
diagnostics by constructing the Fisher dissipative operator associated with the
BKM metric at pgs. Starting from My and Gy, it forms the Fisher operator Gk in
natural BKM coordinates, computes its generalised eigenvalues with respect to My,
and identifies the Fisher gap and higher modes that act as irreversible clocks. The
script checks that the dissipative spectrum is strictly positive, quantifies condition
numbers and eigenvalue spreads, and compares the Fisher spectrum for several
tomography runs to assess robustness against sampling noise and backend drift.
The resulting Fisher gaps and eigenmodes are saved for use by the CPTP repair and
decay-clock analysis.
43_gapi_two_qubit_k_cptp_repair_and_bkm_checks.py Implements a
CPTP repair pipeline for the noisy two-qubit channel and repeats the BKM and
Fisher diagnostics on the repaired data. It takes a raw Pauli transfer matrix 7 from
tomography, projects it onto the nearest completely positive trace preserving map
using a convex / spectral repair routine, and recomputes the effective generator K
on the traceless sector together with the stationary state pg.. From pqr it builds
the BKM metric Mtcrp, re-evaluates the K split and Fisher operator, and reports
channel-level consistency checks such as || exp(ng’g — Tep,iellv, metric adjoint
residuals and dissipative spectra. These diagnostics show that the UIH K split and
Fisher-clock structure survive explicit CPTP enforcement on the reconstructed
two-qubit channel.
44_gapi_two_qubit_k_cptp_semigroup_decay_checks.py Uses the CPTP-
repaired generator and BKM metric to perform a full semigroup decay-clock
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test on the two-qubit idle dynamics. For several tomography runs (different shot
budgets) it loads Kffg, Mtcrp and the Fisher operator Ggkn, computes the Fisher
dissipative spectrum and gap, and evolves a set of initial density matrices under the

semigroup exp(tKr?g) out to long times. At each time it evaluates the BKM relative

entropy Dpxm (o |lpsr), fits short- and long-time decay rates from log Dpgwm (1),
and compares these fitted slopes to the Fisher gap extracted from —sym(MfrpGBKM).
The script reports slope-to-gap ratios across multiple initial states and datasets,
together with trace and eigenvalue bounds along the flow, providing the dynamic
two-qubit confirmation that the Fisher gap acts as an irreversible decay clock on
real IBM hardware.

48_ibmg_uih_spectrometer_suite.py UIH spectrometer and RG toolkit for
IBM two-qubit tomography data. The script reads BKM-orthonormal split files
*uih_split_bkm.npz produced by the IBM K-tomography pipeline, extracts
the regularised generator K, on the traceless BKM basis, and defines G =

(Kreg + KrTeg) /2and J = (Kpeg — KrTeg)/ 2. For each file it computes the Fisher gap
Ar from the smallest positive eigenvalue of —G, the hypocoercive decay rate Apyp
from the smallest positive decay rate of Kieg, and the UIH couplings g1 = [|/||2/AF,
g = |I[G,J]|l2/A%, together with the raw norms ||J|» and ||[G,J]||>. The
spectrometer command produces a table of these invariants across all files, while
the rg and rg2 commands implement one and two slow-mode RG steps respectively:
they project Kieg onto the Fisher-slow sector of —G, rescale the coarse generator to
match the microscopic Fisher gap, and report how Ayyp/AF, g1 and g> flow under
coarse-graining. This turns the IBM channel tomography data into a practical UITH
“universality spectrometer” for hardware noise.

56_uih_tomography_spectrometer.py Applies the UIH spectrometer to real
hardware generators extracted from two—qubit quantum process tomography on
IBM FEez. The script loads a reconstructed Bloch—space generator K from any of the
tomography npz files (raw, CPTP projected, or UIH-split), simulates the synthetic
evolution (1) = e'Kr, regresses beta maps, and evaluates cross coherence under
index smoothing. It reports the stability of the full closure (Bg, ~ 1 with variance
10~*) and the strong suppression of the diagonal baseline for high—shot datasets,
together with the expected pathologies of the diagonal channel at lower shot counts.
The resulting beta maps and coherence curves reproduce the IBM analysis in
Section 13.

57_ibmq_kahler_rg_from_tomography.py Holomorphic Kdhler RG diagnostics
for IBM two qubit tomography. The script reads a *uih_split_bkm.npz file
produced by the IBM K tomography pipeline, extracts the regularised generator
K eg on the BKM orthonormal Bloch sector, and removes the stationary Fisher mode
to work on the reduced traceless space. It builds the Fisher metric Geric = —G1,
diagonalises it to identify an active Fisher subspace, and constructs an approximate
Kihler triple (G metric, €20, Io) on this subspace via a metric polar decomposition
of the Hamiltonian block. Using the same Gaussian index coarse grainer C; as in
the synthetic Kihler RG suite, the script then pushes Gperric and g across scales,
reconstructs coarse complex structures I,¢(£), and computes the diagnostics &2 (£),
ek (£) and epoi(€). The output npz file records these quantities as functions of
¢ together with the microscopic Kihler defect, demonstrating that the IBM idle
generator supports an emergent Kihler structure on its Fisher active modes and that
the Gaussian information RG acts approximately holomorphically at small scales.
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A.4 Hypocoercivity, Fisher decay floors and flow

49_uih_hypocoercivity_coupling_scan.py Fully synthetic finite-dimensional
UIH hypocoercivity coupling scan. The script generates random UIH models
(M, G,J) with a single stationary mode in dimension n € {4,6,8, ...}, takes
M = I, constructs G as a symmetric negative semidefinite matrix with a one-
dimensional kernel, and J as a skew matrix with Jey = 0. It then restricts to the

mean-zero subspace Vp = ey and, for each model, computes the Fisher gap Ar
of —G, the hypocoercive rate Ay, from the spectral abscissa of K = G + J, the
metric-induced norms ||J||as and ||[G, J]|| s, and the corresponding dimensionless
couplings g1 = ||J|la/AF, g2 = ||[G,J] ||M//l%. Sweeping over dimensions
and reversible-sector strength, the script records the distribution of Apy,/AF as
a function of (g1, g2) and writes all diagnostics to a compressed .npz file. The
results demonstrate on a large random ensemble that Ar consistently provides a
coercive decay floor and that Apy,/AF remains an order-one quantity controlled by
the UIH couplings.

50_uih_rg_coupling_flow_suite.py UIH renormalisation group coupling-flow
suite on random finite-dimensional models. Starting from a synthetic UIH
model (M, G,J) of dimension n with a single stationary direction, the script
restricts to the mean-zero sector Vy, computes Ap, Apyp, g1 and gz as in
49_uih_hypocoercivity_coupling_scan.py, and then applies a Fisher-
preserving mode-space RG map: it diagonalises —G on V), selects a fixed number
of Fisher-slow modes, projects (M, G, J) onto their span, and iterates this coarse-
graining. An ensemble of models is evolved in parallel across many worker
processes, and the script reports ensemble-averaged flows of Any,/AF, g1, g2 and
dim Vj as functions of the RG step. The output shows that strongly hypocoercive
microscopic models with large (g;, g2) flow under RG into a four-dimensional
Fisher-slow sector with order-one couplings and a stable band of Apy, /A F, providing
a numerical realisation of the UIH renormalisation group picture.

A.5 Further

51_brownian_trap_uhi_clock_checks.py UIH irreversibility clock test for an
optically trapped Brownian particle. The script reads the vanMameren-raw. txt
time series, which records the position of a colloidal particle in a harmonic optical
trap at a sampling rate of 195 kHz. It centres the data, fits an Ornstein-Uhlenbeck
drift and diffusion coefficient from the increments, and constructs a coarse-grained
Markov generator on a position grid.
The spectral gap of this generator is compared to an empirical entropy decay
rate extracted from a non-equilibrium ensemble built by conditioning on large
displacements |x| > Ao and following the relaxation of this ensemble back to
equilibrium. For each time lag the script estimates a coarse-grained density py,
computes the relative entropy D (p;||pss) With respect to the stationary histogram,
and fits a late-time exponential decay. The observed decay rate is found to be of
the same order as 2y and 21, where v is the fitted OU drift and A, is the first
non-zero eigenvalue of the discrete generator, providing an experimental classical
confirmation of the UIH irreversible clock.

52_pdh_entropy_clock_demo.py Markov gap entropy clock test for an Ozawa
style hydrogen tunneling model. The script builds a reversible two state Markov
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generator Q(7T) for the T <> O hydrogen sites in palladium, using the three term
temperature dependent fit for the hopping rate A(T) = 7~ !(T) reported by Ozawa
et al. (Sci. Adv. 10, eady8495, 2024) and a Boltzmann factor with level splitting
AE ~ 1.8 meV for the stationary weights 77 (T) and wo (T).
For a representative grid of temperatures spanning the phonon dominated and
electron mediated regimes, the script generates synthetic trajectories pr(t) =
nr+(1-nr)e 1D, computes the two state relative entropy Fr(t) = S(p()||7(T))
and fits a late time exponential decay rate ro,(7T) from log Fr(¢). The resulting
ratios 7 (T)/[2A(T)] are reported and plotted as a function of 7, and are found to
be unity to numerical precision. This provides a referee ready demonstration, in an
Ozawa calibrated two state model, of the UIH Markov gap entropy clock relation
7o(T) = 2 A(T), with the low temperature scaling 7 (T) o« T>X~! inherited from
the published exponent K ~ 0.41.

53_uih_rg_fluctuation_suite.py Implements the Fisher—Jarzynski fluctuation
tests and the RG AF invariance checks for a one dimensional UIH Fisher diffusion.
The script constructs stationary densities py,, pa,, evaluates the microscopic free
energy difference AFi, and computes its coarse—grained counterparts AFy for a
family of Gaussian RG kernels C,. It verifies the predicted quartic suppression
AFp—AFye = O(£*) via a log—log slope close to 4, and independently runs a
UIH Jarzynski simulation over thousands of diffusion trajectories to confirm that
log E[e~"I[X]] reproduces the same AF to within sampling error. This file provides
the reproducible numerical backbone for Section 11.

54_uih_kahler_rg_suite.py Builds an explicit Kéhler triple (G, Q, Iy) on a 2N
dimensional lattice K flow and tests the holomorphicity of the UIH coarse graining
map. The script constructs the complex structure Iy, a site dependent Kihler
metric G, and the symplectic form Q = G Iy, then pushes these objects through the
Gaussian index—space coarse graining C, to obtain (G, g, I¢). It evaluates the
compatibility defects ||I§ + Id||, ||Q¢ — G¢1I¢||, and the holomorphicity commutator
||Celo—1¢C¢||, all of which remain at machine precision in this exactly holomorphic
toy model. This script supports the Kidhler—-RG analysis in Section 12.

55_uih_cross_coherence_spectrometer.py Implements the UIH
cross—coherence spectrometer on a synthetic Fokker—Planck trajectory
with 601 snapshots on a 256 point grid. Treating the index i of r;(¢) as a
spatial coordinate, it regresses 7;(¢) onto the full UIH closure (Kr); and the
diagonal baseline K;;r;, producing beta maps S (i) and Bgiag (7). Under Gaussian
index coarse graining it computes the cross coherence Cpy(€£) and Cgiag(£),
demonstrating that the full closure survives smoothing with high coherence while
the diagonal approximation quickly decorrelates. This serves as the reference
implementation for Section 14.

Each script is written to run in a single command, printing summary diagnostics to
standard output and, where appropriate, saving small data files or plots in the local
directory. Together, the archive provides a complete numerical and experimental
realisation of the universal information hydrodynamics picture described in the main
text.

82



B Lindblad superoperator and Markov generator in matrix form

For completeness we collect the explicit matrix representations of the GKLS su-
peroperator £ and the classical generator Q used in the numerical scripts. This is
convenient for readers who want to inspect the discrete operators directly or reproduce
the computations in other environments.

B.1 Vectorisation and basis

Let H = CN with orthonormal basis {|i>}l].\i - Every density matrix p on H can be
represented as a complex N X N matrix with entries p;; = (i[p|j). We choose the
column stacking vectorisation

vec(p) =r e CN’,
where the component corresponding to the pair (i, j) is
Fa,j) = Pij>
with a fixed ordering convention such as r = (p11, P21,---» PN, £125 - - - ,onn) T

For any matrices A, B of compatible size we recall the standard identity
vec(APBT) = (B* ® A) vec(p),

where ® denotes the Kronecker product and * is complex conjugation.

B.2 Lindblad superoperator

The GKLS generator with jump operators L;; and no Hamiltonian term is

L(p) = Z (LijﬁLsz - %{LITJL”’ﬁ})'

i#j

.. . . 2
Vectorising, we obtain a linear operator Lgyper 0n CN” such that

d n A
a VCC(pt) = Lsuper VeC(,D;).

Using the Kronecker identity we have
vee(LijpLy;) = (Lj; ® Lij) vee(p),
and

vec(ijL,- P =Ue ijL,. 1) vec(p), vec(;aijL,- ;)= ((ijLl- DT 1) vec(p).
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Therefore
Loper =y (Lij® Lij = 3o L Liy - (L LipT @ 1).
i+]

In the diagonal jump case of Section 4 we have L;; = \/k;;[i){j], so ijL,-j = kijlj){Jl
is diagonal. The matrix Lgyper then has a particularly sparse structure, which is exploited
in the script 01_gkls_diagonal_to_markov_checks.py.

B.3 Classical generator

On the classical side the Markov generator Q is an N X N matrix with elements
Qij = kij, 1#], Qii:_zkji,
Jj#i
and the population vector p(t) evolves according to
p(1) = Q" p().
The detailed balance condition 7;k ;; = 7 k;; can be written as
g = 0™,

where I1 is the diagonal matrix with entries 7r; and the star denotes adjoint. This shows
that Q is selfadjoint on RN with respect to the inner product (i, v), = >; miu;v;. In
this representation the Dirichlet form controlling the entropy decay is

1
E(f. 1) = ~f.Qf)x = 5 ) mikji(fi = )",
)
with f; = p;/n;.

The scripts treat Q and Lgyper as concrete sparse matrices and use standard ODE
solvers to integrate the associated linear systems.

C Numerical parameters and tolerances

The numerical scripts are designed to be simple to read and modify. This appendix
records the parameter choices and tolerances used in the default runs, so that published
figures can be reproduced to within floating point variation. The scripts expose these
parameters near the top of each file as global constants or easily editable variables.

Subsections C.5 to E.19 treat finite dimensional K flows, diagonal GKLS models,
nonreversible qutrit ensembles and constructive Fokker-Planck to Markov to GKLS
realisations.

Subsection C.9 adds a simple soft-matter benchmark, applying the same entropy-clock
diagnostics to an independent optical-trap Brownian trajectory.
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Subsections D.1 to D.4 document IBM Quantum hardware experiments, while
Subsection E presents a Fisher-Lindblad unification suite that links Fisher curvature,
Markov gaps and entropy decay rates across continuum, Markov and GKLS sectors.

C.1 Time stepping and grids

For the finite dimensional GKLS and Markov chain checks the natural time scale is
set by the spectral gap of the generator. In the diagonal jump example the nonzero
rates k;; are of order one, so the relaxation time is also of order one. The script
01_gkls_diagonal_to_markov_checks.py therefore uses a final time T of order
a few relaxation times and a time grid of several hundred points. A standard adaptive
ODE solver such as solve_ivp with relative and absolute tolerances of order 10~°
suffices to resolve the evolution.

For the lattice hydrodynamic limit in 02_markov_to_£fp_limit_checks.py, the
spatial grid spacing a is chosen as a sequence ar = L/50,L/100,L/200. The
macroscopic time horizon is fixed, for instance 7 = 1, and the ODE solver is run with
step size control that ensures a temporal resolution sufficient for all grid spacings. The
PDE reference solution is computed on the finest spatial grid, and either interpolated
to coarser grids or recomputed on each grid for consistency.

For the continuum Fisher metriplectic checksin 03_fp_fisher_metriplectic_checks.py,
the Fokker Planck equation is discretised in space using second order finite differences

and integrated in time using an unconditionally stable scheme such as backward Euler

or Crank Nicolson. The spatial grid typically has a few hundred points, and the time

step is chosen so that the discrete solution remains stable and resolves the decay of the

free energy accurately. The script reports the discrepancy between the numerical time
derivative and the Fisher right hand side as a function of time.

For the coherent qubit GKLS example in #4_gkls_coherence_elimination_checks.py,
the Bloch equations are integrated over a time interval that covers several dephasing

times 1/y and several periods 27 /w, with y/w chosen large to realise the overdamped
regime. An adaptive ODE solver with tight tolerances suffices.

C.2 Tolerance choices

Each script declares tolerances against which numerical identities are tested. The
choices can be adjusted, but a representative set is as follows.

In the GKLS to Markov reduction script:

» population consistency tolerance tol_p ~ 1078, defined as the maximum over time
of the infinity norm of the difference between the GKLS and Markov population
vectors;

* entropy consistency tolerance tol_S ~ 10710, defined as the maximum over time
of the absolute difference between the quantum relative entropy and the classical
Kullback Leibler divergence;

* mass conservation tolerance tol_mass ~ 10~!2, defined as the maximum deviation
of the total population from unity.
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In the Markov to Fokker Planck limit script:

« error norms E(a) between the discrete density p(%)(x, 1) and the PDE solution
p(x, 1) are computed in an L' or L? sense, and a convergence rate is estimated from
a log log fit;

* a convergence rate threshold rpi, ~ 0.8 is used as a loose lower bound for first
order behaviour;

* the script prints the values of £ (a) and the estimated rate, and declares a passing
run when the rate exceeds rpi, and the finest grid error falls below a specified small
value.

In the Fisher metriplectic Fokker Planck script:

e the discrepancy ||0;p — 0x (D0 )||« is monitored and required to fall below a
tolerance such as tol_rhs ~ 107° at all times;

* the discrepancy between the numerical free energy derivative and the Fisher
quadratic form, |dF/dr + f pD (9, )*dx]|, is also monitored and required to stay
below a similar tolerance.

In the coherent GKLS elimination script:

* the fitted relaxation rate £ for the population decay is compared to the theoretical
value w?/(2y), and the relative error is required to be small, e.g. less than a few
percent in the regimes where y/w is large;

* the maximum deviation between the populations under the full GKLS evolution
and the effective two state chain over a chosen time window is reported, and runs
where this deviation is small compared to the absolute change in population are
identified as clean overdamped examples.

These values are indicative and can be tuned. The important point is that each script
makes its own error thresholds explicit and reports discrepancies quantitative enough
for a referee to assess the strength of the numerical support.

C.3 K tomography and operational equivalence

The script 05_K_tomography_on_lattice.py plays a slightly different role from
the other numerical checks. Rather than starting from a known metric operator G
and reversible operator J and verifying their consequences, it inverts the process and
shows that G and J can be reconstructed, up to operational equivalence, from a finite
set of Fisher style probes.

The set up is deliberately simple. On a one dimensional periodic lattice of size Ny
we construct a symmetric positive definite matrix Gy as an identity plus a small
multiple of the discrete Laplacian, and a skew symmetric matrix Jie as the centred
finite difference convection operator. For a family of probe potentials {u, ¥} in a
low dimensional real Fourier subspace we form the synthetic response data

Vi = Guuek + Jiruelk-

Stacking the data in matrix form gives a linear system ¥ = ®X with ® = [G J],
where X contains the probes and Y the responses. Since the number of probes is small
compared to 2Ny, the system is highly underdetermined: only the action of ® on the
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probe subspace is constrained and all components orthogonal to that subspace are left
in a large nullspace.

The script first computes the minimal norm solution @, = Y X* using a pseudoinverse
of X, then projects the reconstructed blocks onto the metriplectic class by setting

Gra = 2O + (O, Jha = 3O - (O,
where ®r(e(§ ) and ®r(ejc) denote the left and right blocks of ®... By construction Gy

is symmetric, Jpy is skew symmetric, and the pair (Ghy, Jhat) defines a candidate
complex mobility Khar = Ghat + 1Jhat.

The diagnostics in the script make two points explicit. First, the structural constraints
are satisfied to machine precision: ||Gha — Glfat||p/||Gha[||F and ||Jpat + Jg;tllp/lthatllp
lie at the level of floating point roundoff. Second, the forward map generated by K
reproduces all probe responses to high accuracy, both on the training probes used
to build O, and on an independent test set of probes drawn from the same Fourier
subspace:
”Ghat/Jk + Jhatk — VillF
Ivelle

stays at the level of numerical noise when measured across all k. In contrast, entrywise
differences ||Ghat — GuuellF/|GuruellF and [|Jhat — JiruellF/ I Virue llF need not be small,

which is exactly what one expects in an underdetermined inverse problem where the
data constrain only the probe subspace.

This behaviour makes a conceptual point that is central to the universal information
hydrodynamics viewpoint. The complex mobility K = G + i/ is only defined
operationally up to its action on the directions that are actually probed. Many
different microscopic pairs (G, J) can produce exactly the same responses in a given
family of Fisher probes, and are therefore indistinguishable at the level of density
dynamics. The K tomography script illustrates this explicitly: it recovers a canonical
metriplectic representative (Ghat, Jhat) that lies in the same operational equivalence
class as (Gye, Juue) and matches all observable data, but it does not and need not
coincide with the original matrices off the probe subspace. From the point of view of
the density manifold, it is exactly this equivalence class that matters, not any particular
microscopic representative.

C.4 Hyperbolic Fisher Cattaneo speed test

To illustrate that Fisher regularisation admits a bona fide relativistic propaga-
tion scale, we implemented a one dimensional Fisher Cattaneo test in the script
30_fisher_cattaneo_relativistic_speed_checks.py. The model is the hy-
perbolic regularisation of a Fisher diffusion with mass m, Planck constant & and an
effective signal speed c,

h h
Ta,tp + a,p = D(?xxp D = -, T = —2,
m mc
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for which the characteristic front speed is

Ve =

D
— = c.
T

We work on the periodic domain [—L, L] with L = 10, using N = 1024 grid points
and grid spacing Ax = 2L/N. The parameters are fixed at

m:l’ h:l, C=2.5,

sothat D = 1,7 =0.16 and v, = 2.5. Time integration is performed with a second
order explicit scheme with

VAt

thnal = 1.5, At=15%1073, CFL = ~ 0.192.

The initial condition is a sharply localised bump centred at the origin, normalised so
that / p(x,0) dx = 1. During the evolution we track the position of the right moving
front using a fixed relative amplitude threshold, namely the smallest x for which

P(X,t) = firont m)?-Xp(X, 1), Sront = 10_2-

A linear fit of the front position xfon(#) on the interval [0.3 fgnal, ffina] yields a
measured speed

Vimeas ~ 2.37, @ ~ -5.3X% 10_2.

The relative error stays at the few percent level despite the rather modest choice of
grid and time step. This hyperbolic Fisher Cattaneo test therefore confirms that the
Fisher regularised dynamics supports a finite propagation speed consistent with the
effective light speed c, providing a simple numerical realisation of relativistic signal
bounds within the UIH framework.

C.5 Asymptotic decay clocks in reversible Markov chains

The script 31_uih_asymptotic_decay_clock_qutrit_fp_checks.py probes
the UIH prediction that for reversible Markov chains the spectral gap of the sym-
metrised generator fixes an asymptotic information decay clock that is robust under
discretisation and microscopic realisation.

Given a finite state reversible generator  with stationary distribution &, we consider
the classical relative entropy

s0 = Y g a,p0)=0p0),
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and define the instantaneous decay rate

r(t) := —% log S(1).

Writing B = diag(y/7) and S = B~'QB, reversibility implies that S is symmetric with
non positive spectrum and a simple zero eigenvalue. The Markov spectral gap is

Ag :=min{-1: 2 € o (S) \ {0}}.
UIH predicts that for generic initial data the late time behaviour is governed by
S(1) =~ S(0) e~24!, r(1) = 240,

so that 21¢ acts as a universal asymptotic clock for information decay in the reversible
sector.

The script constructs two examples.

Qutrit reversible chain. A three state reversible generator Q is built from random
symmetric conductances and a random stationary distribution with full support. The
gap is computed from the symmetrised operator as above, giving

(q) .
/lQ ~ 1.796.

We sample many random initial distributions p(0), evolve them using diagonalisation
of 04, and evaluate S(7) on a uniform time grid up to fpax = 4/ A(Qq). Finite difference

estimates of r(t) are formed on the interior of the grid and fitted in a late time window.
Across a broad set of initial data the fitted rates cluster around

rld ~ 2/1(Qq),

with transient overshoots at early times when multiple modes contribute significantly.

High resolution FP like chain. We then construct a nearest neighbour reversible
generator Qf, on a periodic lattice of size Ny = 60, with a smooth multi well potential

V(x) and Gibbs stationary distribution 7; o« e ™8V (%) at inverse temperature 8 = 1.

Symmetric conductances to neighbours enforce detailed balance. The raw gap /I(pr oraw)

is computed, and the generator is rescaled so that
(fp) _ 5(q)
A o = A 0 -

Repeating the same entropy based diagnostics, we again find that for a wide range of
initial conditions the late time decay rates approach

rcgp) ~ 2/1(pr)’

with early time rates that can be larger when higher modes are excited.

The key observation is that the Markov spectral gap sets a common asymptotic
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information decay scale across two very different realisations: a low dimensional
qutrit density sector of a GKLS model, and a high resolution Fokker Planck limit.
This supports the UIH identification of 24 as a universal irreversible clock in the
reversible Markov sector.

C.6 Finite dimensional K flow with one current and two quadratures

The script 32_uih_two_quadratures_k_flow_checks.py tests the UIH picture of
a single current with two quadratures in a finite dimensional setting, using an abstract
real vector u € R", a fixed symmetric positive definite metric M, and an M-adjoint
mobility operator

K =G+,

with G symmetric and J skew in the M geometry.

In this subsection we adopt the convention that positive eigenvalues of K correspond
to decay and evolve with d;,u = —Ku; in the IBM Bloch and GKLS sections below
we instead treat K as the real GKLS generator with negative dissipative spectrum and
identify the metriplectic mobility with —K. The two sign conventions are equivalent
up to this overall minus sign.

We construct:

A random symmetric positive definite metric M € R™*" with condition number of
order 10'.

* A symmetric matrix G and a skew symmetric matrix J in the Euclidean sense, and
then enforce the metric adjoint conditions numerically:

MG ~ (MG)T, MJ ~—-(MJ)T.

The key quadratic functional is
[
F(u) = S U Mu,

and we consider two linear flows on u:

ou = —Gu, Ou =—-Ku=—-(G + J)u.

The script computes

d T

—F(u(t)) = —u MGu,

~F(u(1)
along both flows using high resolution matrix exponentials, and compares the numerical
derivative of F(¢) with the analytic expression u' MGu at each time. We then form

log linear fits of F(¢) in a late time window to extract decay rates rg and rg for the
pure G flow and full K flow respectively.

The diagnostics reported are:

¢ Dimension n = 6.
 Condition number of M of order 10!,
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» Norm of the antisymmetric part of MG of order 10~!3, corresponding to a relative
symmetry residual ~ 1076,

* Norm of the symmetric part of MJ of order 10~!3, with relative skewness residual
~1071°.

* The generalised eigenvalues of (—MG, M) are all positive, with

Ain & 5.7 X 1072, Amax ~ 5.99.

For five random initial conditions satisfying F(0) = 0.5, we find:

¢ The production residual maxt’Fnum(t) —u(t)™™ Gu(t)’ is at most of order 1072,

with relative errors around 5 x 1072 to 107!,
* The fitted decay rate for the pure G flow matches the spectral prediction

rG = 2 Amin

to numerical precision.
* The full K flow has a larger decay rate

rg ~ 1.8 X 2 Anin,

essentially independent of the chosen initial condition.
These tests confirm in a simple finite dimensional setting that:

1. The metric adjoint split K = G +J yields a genuine no work direction J, in the sense
that J does not appear in the production of the quadratic information functional F.

2. The smallest positive eigenvalue of the dissipative operator in the M geometry sets
the natural decay clock for the pure gradient flow.

3. Adding the reversible component J can accelerate decay by mixing eigenmodes,
without changing the spectrum of the dissipative channel.

C.7 GKLS qubit K split in Bloch BKM geometry

The script 33_gkls_bloch_two_quadratures_k_flow_checks.py realises the
same K split picture in a concrete GKLS model for a driven, dissipative qubit,
expressed in Bloch coordinates and equipped with the BKM metric.

We start from a four dimensional Bloch vector @ = (aog, a1, @2, @3) with ag = 1/2
enforcing unit trace. The full linearised GKLS generator in this basis has the form
0 0 0 0
0 -13 -07 O
oa =K a, K= )
0 07 -13 -1
-1 0 1 -1
where the block on the traceless coordinates encodes both Hamiltonian precession and

dissipative damping. The stationary Bloch vector ay is obtained by solving Kags = 0,
giving a mixed thermal state with nontrivial coherences.

At this stationary state we compute the four dimensional BKM metric M and its
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traceless 3 X 3 block My, using the exact matrix formula for qubits in Bloch form. The
diagnostics reported are:

« A well conditioned metric with cond(My,) ~ 1.8.

* Metric adjoint residuals |MyGy — (MyGy)'|| and || MyJi + (MyJi) || of order
10713 t0 10716,

A strictly positive dissipative spectrum for —sym(MG) with

Amin = 0.74, Amax = 1.56.

We then consider the quadratic functional
1T
F(u) = S U Myu

for traceless Bloch displacements u, and compare the decay for two flows
Oru = Ky, Ou = (Gy)u,

where the latter isolates the gradient component.

Using exact matrix exponentials on a time grid up to tpx ~ 8 with 400 samples, and
five random initial conditions normalised to F(0) = 0.5, we find:

* The production identity F(7) = u(t)" MyGuu(t) holds to relative errors below
1073,
* The decay rate for the pure G flow satisfies

rg = 2/lmin

within a few tenths of a percent across all initial conditions.
* The full K flow decays faster, with fitted rates

rg ~ (1.6 £0.1) 2 Apin.

This GKLS example confirms that the metriplectic K split is not restricted to abstract
finite dimensional models. It arises naturally in a realistic qubit Lindbladian once
the BKM metric at the stationary state is used to define the adjoint. The dissipative
spectrum again controls the irreversible decay clock, while the Hamiltonian component
J accelerates decay only by rotating within the metric geometry.

C.8 Visual two quadratures explorer

The script 33_uih_two_quadratures_visual_explorer.py provides an interac-
tive visual companion to the finite dimensional K flow tests. It implements a two
dimensional parametrised family of flows

Ou =—(G +0J)u,

for a fixed metric M, fixed symmetric part G and fixed skew part J, with a user
controlled mixing parameter 8. The overall minus sign matches the convention in
which the real GKLS generator is —K in the abstract metriplectic notation, so that
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positive eigenvalues of K correspond to decay.
The tool plots on the same axes:

* The trajectories ¢ — u(t) in the metric space.

* The corresponding quadratic functional F(z) = %uTM u.

* The decomposition of the current into gradient and Hamiltonian quadratures, as
measured by u" MGu and u" MJu.

By varying the initial condition and the mixing angle 6, one can visually confirm
the algebraic statements of the previous subsections: the gradient component fixes
entropy production and determines the asymptotic decay scale, while the Hamiltonian
component alters the paths and can change how quickly the asymptotic regime is
reached, but does not directly contribute to the production of F. This explorer is not
used as a quantitative diagnostic, but as a geometric illustration of the one current two
quadratures picture.

C.9 Brownian trap entropy clock benchmark

As a classical benchmark for the UIH irreversibility picture we analyse an optical trap
experiment for a single colloidal particle. The dataset vanMameren-raw. txt consists
of N = 975,000 measurements of the particle position x,, along one axis, sampled
at a fixed rate f; = 195kHz, so that successive samples are separated by At = 1/ f;.
Only positions along one axis, in nanometres, are recorded. The data, provided by
van Mameren and Schmidt, correspond to a particle in a harmonic optical potential
and are well modelled by an Ornstein-Uhlenbeck (OU) process

d.xt = _'yx; dt + V2D th

with Gaussian stationary state pggs.

We use the raw time series as supplied, without trimming individual segments or
discarding samples, and apply only centring and coarse-graining onto a fixed position
grid. We first fit an OU drift and diffusion coefficient from the increments. Writing
Ax,, = Xu4+1 — X, and regressing Ax,, /At ~ ax,, + b gives an estimate y ~ —a for the
drift rate and i

D ~ — Var(Ax, —ax, — b

2At (A = o = b)

for the diffusion coefficient. For the van Mameren data we find y ~ 4.7 x 10™* per
time step, corresponding to a physical relaxation rate yphys ~ 9.1 X 10's7! and a
correlation time of order 10 ms.

To place this system in the UIH framework we construct a coarse-grained Markov
generator for the position coordinate. We discretise the range of observed positions
into Npins intervals with edges xo < x1 < - -+ < xp,,,» assign each sample x,, to a bin,
and estimate the one-step transition matrix

P;j :=P(xn4+1 € bin j |x, € bini)

from the observed counts. The corresponding discrete generator is Q := (P — I)/At.
The long-time occupancy histogram defines a stationary distribution 7 that we interpret
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as a discrete approximation to pgs. Diagonalising Q we find a leading eigenvalue 1y ~ 0
and a first non-zero eigenvalue 4; < 0, whose negative —A; sets the spectral gap of the
coarse-grained Fokker-Planck operator. For the present data the gapis —1; ~ 1.0x1073
per time step, corresponding to a physical rate —A phys ~ 2.0 X 10?71

A single long OU trajectory is already stationary, so global relaxation is not directly
visible in (x;,). To probe the irreversible clock we therefore construct a non-equilibrium
ensemble from the same time series. We select all indices n for which |x,| > Ao,
where o is the empirical standard deviation of the stationary distribution and A is
a fixed threshold (we use 4 = 1.5), and for each such index follow the subsequent
positions (x,+x)k=0,... .k for a fixed maximal lag K. At each lag k this yields an
ensemble of positions {x,+x : |x,| > Ao}, which defines an empirical density p; by
coarse-graining these values into the same position bins. By construction py is biased
towards the tails of the stationary distribution.

Using the stationary histogram 7 as a reference, we compute the relative entropy

Nbins

F(kAD) = Dipillpw) = > pi(i) log 2
i=1 7 (i)

with a small regularisation to avoid empty bins. As k increases the ensemble relaxes
back towards equilibrium and F'(kAt) decays. Plotting log F () against  reveals a clear
linear regime at intermediate times, from which we extract an empirical decay rate
I'obs by least-squares fitting. For the van Mameren data we obtain I'gps = 1.8 X 1073
per time step, corresponding to ['ppys =~ 3.5 X 10%s7 1.

In the exact continuum OU model with Gaussian initial data one has D (p; || pss) ~ e~

at late times, so that the entropic clock is fixed by the spectral gap y. Here we work
with a thresholded, non-Gaussian ensemble and a coarse-grained generator Q, so we
do not expect exact agreement. Nevertheless, for the present benchmark we find

1—‘obs ~ ‘9’ I_‘obs z0,9,
2y 2(=A1)

so that Iy lies between 2y and 2(—A;) up to factors of order unity. We view this
as a simple sanity check: a soft-matter Brownian system, analysed with no tuning
beyond fixed thresholds and coarse-graining, exhibits an irreversible information clock
controlled by the same Fisher-Dirichlet gap that organises the Markov and GKLS
examples elsewhere in the paper. This classical example does not add new physics, but
it shows that the UIH irreversibility picture extends in a straightforward way beyond
the quantum test cases.

D IBM Quantum Computer Experiments

D.1 IBM Quantum K tomography diagnostic

The script 34_uih_k_tomography_ibmq_qubit_test.py implements a full K
tomography experiment on an IBM superconducting qubit, demonstrating that the
noisy idle dynamics on hardware realises a metriplectic K split in the BKM metric at
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the device stationary state.

We use the Qiskit [16] Runtime API to select an available one qubit backend, in our
runs ibm_fez, and construct a simple idle circuit consisting of a depth four sequence of
identity gates on a single qubit. This idle circuit is passed to the ProcessTomography
routine in qiskit-experiments, which reconstructs the corresponding quantum
channel as a completely positive trace preserving map & in Pauli transfer matrix form

R € C**4 expressed in the Hermitian Pauli basis {I/V2, o/ V2, O'y/\/i, o,/ V2}).
From the reconstructed R we compute:

» The stationary state pgs as the fixed point of R, either by iterating the channel or by
extracting the eigenvector of R with eigenvalue one and reshaping.

e The BKM metric M at pg, using the closed form qubit expression in the Pauli basis.
Its 3 x 3 traceless block M, is well conditioned, with condition number of order
unity.

* The traceless sector superoperator Ry obtained by restricting R to the Pauli
components.

Assuming the idle channel approximates a short time propagator R ~ exp(At K) for
some effective generator Ky, € R33, we compute

1
K := — log Ry,
tr Ar 0g Kyr

using the matrix logarithm and discarding small imaginary parts, which have norm
below 107! in the reported run. We then define the metric adjoint

Kt = MK M,

r

and the symmetric and antisymmetric parts

1 1
Gy = E(Ktr + Ktﬁr), Jy = E(Ktr - Ktur)

The hardware diagnostics are:

* The symmetry residual | MGy — (MyGy)'|| is of order 1079,
* The skewness residual | MyJi + (MiJi)T|| is also of order 1071°.
 The eigenvalues of —sym(MGy) are strictly positive, with

Aiin ~ 4.9 % 1072, Amax ~ 1.10x 1071,

This constitutes a direct experimental realisation of the UIH K split on quantum
hardware: the effective generator extracted from IBM process tomography decomposes
into a dissipative Fisher BKM gradient part and a Hamiltonian part that is metric
skew and hence does no work in the BKM geometry. All ingredients are obtained
from tomography and basic linear algebra, with no model assumptions about the
microscopic origin of the noise.
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D.2 Semigroup scaling across idle depths

The script 35_qapi_semigroup_scaling.py complements the K tomography ex-
periment by testing the semigroup property of the reconstructed idle channels at two
different depths, thus probing the time homogeneity of the effective K on hardware.

We consider two idle circuits,
idle; :  two identity gates, idleg :  eight identity gates,

on the same IBM backend, again using ibm_fez in our runs. For each depth d € {2, 8}
we run a one qubit process tomography experiment using ProcessTomography with
2048 shots per setting, yielding two superoperators

Ry, Ry € C¥4,
for the depth two and depth eight idling channels respectively. Restricting to the
traceless Pauli block we obtain 3 X 3 matrices R; i and Ry .

We interpret these as short time propagators
Ry =~ exp(AtK), Ry ~ exp(4At K),

for some effective generator K. Using the principal matrix logarithm we define

1 1
K = A log Ry v, K> = 4A; log Ry v,

after verifying that the imaginary parts of log R; i are small. The script reports:

» Imaginary parts of log Ry and log R, i with norms of order 10~2 or smaller.
* Frobenius norms |Ki||r ~ 2.2 x 1072, ||[K2]lr ~ 1.2 x 1072, and mismatch
|IK> — K ||p = 1.4 x 1072, corresponding to a relative deviation of order 0.6.

At the channel level, however, the semigroup prediction can be tested more directly by
comparing
R, with Rgred = exp(4AtKy),

in Frobenius and operator norms. The reported run finds
pred
IR — R, llF 6.5 % 10-2
IRl 7 ’ ’
with a similar small mismatch in operator norm.

These results support the picture that a single effective generator K, of the type
reconstructed in the K tomography test of Subsection D.1, controls the dissipative idle
dynamics across a range of time scales, with deviations that are small at the channel
level and compatible with finite sampling noise and drift. This is the semigroup
counterpart of the geometric K split, showing that the same K governs both the metric
decomposition and the time scaling of the irreversible flow.

While the inferred generators K| and K, differ at the tens of percent level, the induced
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channels agree to within a few percent in Frobenius norm; this is the operationally
relevant diagnostic, and the discrepancy at the K level is compatible with sampling
noise and the logarithm’s sensitivity to small spectral perturbations.

D.3 BKM speed limit test on IBM Quantum

The script 37_qapi_bkm_speed_limit_test.py combines IBM process tomogra-
phy with the BKM metric to probe an information theoretic speed limit on hardware
expressed in terms of the dissipative spectrum in the BKM geometry.

We reuse the idle depth four channel R reconstructed as in subsection D.1, and its
traceless block Ry.. The stationary state pgs is computed from R, and the BKM metric
M and traceless block My, are built at pgs. In the reported run for the speed limit test
Pss has Bloch vector length around 0.78, so it is neither pure nor maximally mixed,
and M,, is well conditioned with condition number ~ 1.4.

The effective traceless generator Ky is defined via
1
Ky = A log Ry,

whose imaginary part is negligible. The metric adjoint split

_ 1 1

K= M KiMe,  Gu=3(Ka+ KD, Ju=5(Ku =KD,
again yields metric symmetry and skewness residuals at the level of 10718,
The dissipative spectrum is extracted from —sym(M;Gy),
—sym(MyGy)vi = AMyvi,
which has strictly positive eigenvalues
Amin ® 7.8 X 1072, Apge = 2.1 x 1072,

The UIH prediction is that the smallest A,;, sets a natural decay scale for the quadratic
functional

1
F(u) = EuTMtru,
under the pure gradient flow d;u = Gu, with an effective clock of order 24 ;y.

To test this, we compare two flows on traceless Bloch displacements u:

oru = Kyu, oru = Guu,

for five random initial conditions normalised to F'(0) = 0.5. The evolution is computed
by exact matrix exponentials on a time grid up to

64

/lmin

Tmax ® s
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with 400 samples. For each trajectory we check:

* The production identity F(t) = u' MG wu, whose numerical residuals stay at the
level of 10™* in absolute units and 1073 in relative terms.

 Late time decay rates rg and rg obtained by linear fits of log F(¢) over the final
third of the time window.

The fitted rates are of order
rg = (2.3 +£0.1) 2Awin), rg ~ (2.8 £0.1) (2Ayin).

The precise prefactor depends on the definition of the time unit A¢ associated with
the idle depth and on how close the chosen time window is to the strictly asymptotic
regime.

The important point is that both rates scale with the UIH clock 24, extracted from the
BKM curvature, and that the full K flow decays faster than the pure G flow, as expected
when the reversible channel J mixes eigenmodes without changing the dissipative
spectrum. Together with the K split and semigroup tests of Sections D.1 and D.2 this
provides a dynamic demonstration for the UIH speed limit mechanism on hardware.

D.4 BKM curvature test on IBM Quantum

Finally, the script 38_qapi_bkm_curvature_test.py performs a direct experimen-
tal test of the statement that the BKM metric at the stationary state is the local curvature
of quantum relative entropy, by comparing the exact relative entropy to its quadratic
approximation for small unitary perturbations around the hardware stationary state.

We again use a one qubit IBM backend (ibm_fez) and prepare a stationary state pg
via an idle depth four circuit and tomography. In the reported curvature run pg is
close to pure, with Bloch vector of length very close to one, pointing near the north
pole, and eigenvalues

A ~5.9x%x 1074, 1y ~ 0.9994.

The BKM metric M and its traceless block My are computed from pgs using the exact
qubit formula. The eigenvalues of My, are approximately

Ui~ po ~ 3.72, U3 ~ 4.25 x 102,

with condition number cond(M,;) ~ 1.1 x 10%. This reflects the strong curvature
anisotropy near a nearly pure state.

We then generate three small perturbations of pss by applying single qubit rotations of
a fixed small angle € = 0.1 around each Pauli axis:

px = e—isax/Zpsseﬂ'sax/Z’ oy = e—iaay/ZpSSeHao-y/Z, pz = €_i£UZ/2pSS€+iSO-Z/2.

For each of the four states pgg, px, py, pz we perform simple Pauli tomography by
measuring the three expectation values of oy, oy, o, with 8192 shots per axis. This
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yields Bloch vectors vy, vx, vy, vz, and thus displacements

Ux :=Vx —Vss, Uy :=Vy —Vss, UZ :=VZ — Vs

For each displacement we evaluate:

1. The true quantum relative entropy S(p||0ss) using the eigenvalues and logarithms
of the reconstructed density matrices.
2. The quadratic BKM prediction

1
Squad(pHpss) = 5 ”TMtru-

In the reported run the results are:

* For the X rotation, Syue & 1.50 X 1072 and Squaa ~ 2.76 X 1072, with ratio
Strue/Squad ~ 0.54.

* For the Y rotation, Sue ~ 2.92 X 1072, Squad ~ 4.88 x 1072, ratio ~ 0.60.

« For the Z rotation, Sue ~ 5.45 X 107, Squaa ~ 6.72 x 1074, ratio ~ 0.81.

The mean ratio over the three directions is

S true

~ (.65,
Squad

with standard deviation = 0.12. Given the relatively large rotation angle € = 0.1 and
the strong curvature anisotropy near a nearly pure state, this level of agreement is
consistent with the expected truncation error in the second order expansion of the
relative entropy.

Crucially, the dependence of Squaq on the displacement direction and magnitude is
entirely fixed by the BKM metric M, at pg, and the hardware data follow this direction
dependence. This experiment therefore provides a strong geometric demonstration:
the BKM metric extracted from the IBM device via its stationary state curvature yields
a quantitatively accurate local approximation of quantum relative entropy, confirming
the UIH identification of the BKM metric as the local information curvature of the
device.

E Fisher-Lindblad numerical unification

This appendix assembles a numerical Fisher-Lindblad unification suite based on finite
GKLS models, reversible and nonreversible Markov chains, and constructive Fokker-
Planck discretisations. The scripts 06_gkls_fp_G_unification_checks.py
through 29_gkls_bloch_metriplectic_split.py test, in increasing generality,
the following claims:

* diagonal and coherent GKLS generators induce a canonical Fisher Dirichlet
operator on the density sector that coincides with the classical Dirichlet form, even
in nonreversible chains;

* the cost-entropy inequality of the metriplectic theory is saturated mode by mode in
the natural Fisher coordinates;

* entropy and Fisher energy decays are governed by the Markov spectral gap, with
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Fisher curvature gaps providing a coercive floor but not the dominant rate;

 continuum Fokker-Planck Fisher flows can be realised as the density sector of
explicit GKLS semigroups, and the one current two quadratures split extends to
full Bloch space generators in coherent qubit models.

The remainder of this appendix documents these tests script by script.

E.1 Numerical suite and scope

Throughout this subsection we use the same sign convention as in the Bloch K split:
the real generator Ky, is defined by Ry ~ exp(At Ky), so its dissipative spectrum has
negative real parts and the associated metriplectic mobility is —Kj.

The IBM K tomography and BKM curvature experiments of Sections D.1-D.4 showed
that a noisy idle channel on hardware realises a metriplectic split K = G + J in the
BKM metric at the device stationary state, and that the smallest dissipative eigenvalue
of —sym(M G) sets a natural information theoretic decay clock. These are genuinely
experimental statements: both the metric M and the generator K are reconstructed
from process tomography and simple linear algebra, with no microscopic model for
the noise.

In this subsection we move to controlled numerical GKLS and Fokker-Planck models
to pin down the canonical irreversible slice and to show how it arises from Lindblad
dynamics, reversible Markov chains and their continuum limits.

E.2 Canonical irreversible slice and the Fokker-Planck limit

We start from a one dimensional overdamped Langevin model and its Fokker-Planck
generator Lgp on a periodic domain, discretised on a fine grid. From the discretisation
we extract a reversible Markov generator Q with stationary density 7 and define the
canonical Fisher operator

G = Q diag(m).

By construction the irreversible drift for a test potential u in the density representation
can be written in two equivalent ways,

Virr = Q(” O /1) = GrueM,

where © denotes pointwise multiplication. Script 06_gkls_£fp_G_unification_checks.py
verifies three facts at high resolution.

First, Gye 1S symmetric to numerical precision in the m weighted inner product
and its skew part is purely trace like, so Gye 1s a genuine Fisher Dirichlet operator.
Second, the action of Gy on a catalogue of Fisher probes reproduces the discretised
Fokker-Planck drift to relative accuracy of order 10~7, modulo the expected overall
diffusion scale.

Third, if one attempts a naive tomographic reconstruction G, from the same probes
without imposing structure, then Gy is symmetric but fails to match G and only
fits the drift on the probe subspace to order 10~!. The conclusion is that the canonical
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irreversible slice is (E.2). Tomography identifies an equivalence class of symmetric
operators that agree on the probed directions, and the Fisher metriplectic theory singles
out the Markovian representative G = Q diag(m) as the one that descends from a
local Fokker-Planck structure.

E.3 GKLS jump models and classical Fisher geometry

We then move to finite GKLS models. Script 07_gkls_to_markov_G_unification_checks.py
takes a four level thermal GKLS jump model with Hamiltonian H, Lindblad jump

operators implementing upward and downward transitions between energy levels,

and a Gibbs stationary state pg. Restricting the GKLS dissipator D to the diagonal

in the energy basis produces a classical Markov generator Qmarkov With stationary
probabilities merm.

The script checks that
Omarkov Ttherm = 0,

that detailed balance holds, and that the classical Dirichlet operator

Gtrue = Qmarkov dlag (ﬂ' therm)

is symmetric and negative definite on the subspace orthogonal to constants. Two
representations of the quadratic form agree to machine precision:

—{q, Omarkovq) = (M, Grrue )

for the natural choice of conjugate variables g and . Thus the irreversible piece of
the GKLS dynamics has a unique classical Fisher realisation on densities and the
canonical Fisher operator is again Gyye = Q diag(r).

E.4 Cost entropy inequality in finite Fisher geometry

Script 08_cost_entropy_inequality_markov_checks.py uses the same four
state thermal chain to probe the cost entropy inequality in the finite dimensional Fisher
geometry. For the canonical Fisher metric defined by G the quadratic forms

O'(p) = <VF, GtrueVF>,
Cmin(p;v) = %(V, Gt;&ev>

are evaluated in the eigenbasis of the metric operator Gpetric = —Gue- For each
positive eigenmode and for random linear combinations in the positive eigenspace the
ratio
_ W VFY
2 Cmin(p; V) O'(P)

is equal to 1 to numerical precision. This shows that in the natural normal form for
the Fisher geometry the inequality derived in the metriplectic framework is in fact
an equality mode by mode. The cost entropy inequality is therefore not an external
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constraint but an encoded property of the Fisher metric associated with G ye.

E.5 Metric K splitting for coherent qubits and qutrits

Scripts 09_gkls_K_splitting_qubit_checks.pyand 11_gkls_qutrit_K_and_G_unification_check:
lift the analysis to genuinely quantum systems with coherences. For a thermal qubit

and a thermal qutrit with fixed Hamiltonians and jump operators, we construct the

real generator K on a linearised state space u# consisting of populations and real and

imaginary parts of coherences. The stationary state pgs induces a Fisher information

metric M on u, and we compute the M adjoint K*¥.

The metriplectic splitting
K=G+J

is then obtained by taking the symmetric and antisymmetric parts in the M inner

product,
G=Yk+k", J=LK-KY.

The scripts confirm that:

G =~ Kp,
J ~ Ky,

where Kp is the dissipative block arising from the GKLS dissipator and Ky is the
Hamiltonian commutator block. The residuals |G — Kp||/||Kpl| and ||J — Kg||/||Kul|
are of order 1071, Moreover G is metric self adjoint and J is metric skew adjoint:

Gt =G, Jh=—J

to the same numerical tolerance. This provides an explicit GKLS realisation of the
abstract metriplectic structure K = G + J with the metric induced by pgs.

E.6 Classical density sector as quantum Fisher block

Script 10_gkls_density_block_G_unification_checks.py takes the coherent
qubit example and projects the symmetric part G onto the density sector, giving a 2 X 2
block Ggens acting on the populations. Independently the population dynamics of the
GKLS model define a two state Markov generator Qgens With stationary distribution .
The canonical classical Fisher operator is again Gyye = Qdens diag(m).

The script shows that
Gens = Gue

to numerical precision, and that both the drift representation v = Qgens(7 © u) and
the Dirichlet form —(¢, Qgensq) coincide with their Fisher counterparts i, G dgensit)-
Script 11 extends this to the qutrit, where the 3 X 3 population block of the symmetric
part G extracted from the full 9 dimensional GKLS generator reproduces the three
level Markov generator, its Dirichlet form and its cost entropy structure. In other
words, the classical information hydrodynamics on densities is literally the density
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block of the quantum metriplectic generator G obtained from the GKLS K.

E.7 Entropy decay, Fisher curvature and spectral gaps

The next group of scripts analyses how the various gaps control entropy decay. Given
a reversible Markov generator Q with stationary distribution 7 and symmetrised
generator § = B~!QB with B = diag(+/7), we define the Markov spectral gap A as
the smallest positive value of —1 over the spectrum of S. The Fisher Dirichlet operator
G = Q diag(n) has associated curvature operator G neric = —G and Fisher curvature
gap Ag given by the smallest positive eigenvalue of G yeric-

Scripts 12_qutrit_markov_entropy_decay_vs_G_gap_checks.py and
13_qutrit_full_quantum_entropy_decay_checks.py investigate the entropy
decay of the three state Markov chain induced by the qutrit GKLS model and of the
full nine dimensional GKLS generator.

In the Markov case the relative entropy and Fisher quadratic both decay at a rate very
close to 24, while 24 is significantly smaller. In the full GKLS case the decay rates
extracted from the Hilbert Schmidt distance and the quantum relative entropy cluster
within a few percent of 210, even though the GKLS generator has additional coherent
modes.

This supports a picture in which the density sector Fisher geometry controls entropy
production and the dominant decay rate is set by the Markov spectral gap, not by
the smallest positive Fisher curvature eigenvalue. The Fisher gap A measures local
reversible curvature while the Markov gap 4o measures the global relaxation timescale.

E.8 Universality of the density sector across GKLS families

Script 14_qutrit_GKLS_family_universal_density_sector_checks.py con-
siders three different GKLS families on the same three level system. All models
share the same energy levels and jump rates but differ in their dephasing structure:
uniform projector dephasing, non uniform projector dephasing and non local diagonal
dephasing. For each family the script extracts the full real generator K, the symmetric
part G in the pg induced Fisher metric and the population block of G, then compares
these with the classical three state Markov generator and its Fisher operator.

Across all families the following quantities are identical up to numerical tolerance:
the classical generator Q markov, the canonical Fisher operator Gye = Qmarkov diag(r),
the Fisher curvature gap Ag and the Markov spectral gap 4. In contrast the GKLS
spectral gap Ag and the entropy decay rates of the full quantum dynamics depend
strongly on the dephasing structure. The density sector geometry is therefore universal
for a given collection of jump rates. It is insensitive to how coherences are generated
and destroyed, and is determined entirely by the irreversible jump channel.
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E.9 Universal Fisher decay clock across discrete and continuum chains

Finally, script 15_qutrit_markov_vs_FP_universal_gap_checks.py connects
the density sector of a finite GKLS model to a continuum like Fokker-Planck chain.
On one side we have the three state Markov generator Q, inherited from the qutrit

GKLS density block with gap /I(Qq). On the other side we construct a high resolution

reversible nearest neighbour Markov chain Qpp on a periodic lattice representing a
discrete Laplacian with uniform stationary distribution. After rescaling Qrp so that

the Markov gap matches that of the qutrit chain, /l(QFP) = /l(Qq), we obtain a second
chain with very different microscopic structure but the same spectral gap.

For each chain we then evaluate the Fisher Dirichlet quadratic
F (1) = ~6p(1)'G 6p(1)

with ép () = p(t) —mand G = Q diag(x), for a catalogue of random initial conditions,
and fit an exponential envelope 7 (¢) ~ C exp(—rt) at late times. The empirical rates
for the qutrit chain and the FP like chain both cluster extremely tightly around

r= Z/I(Qq),

with relative deviations of order 10~ for the qutrit chain and of order 10~!! for the FP

like chain. At the same time the Fisher curvature gaps /l(Gq) and /lgp) differ by more
than an order of magnitude.

This establishes a universal Fisher decay clock: once the Markov gaps are matched,
the Fisher Dirichlet energy decays at essentially the same rate in a three state chain
derived from a quantum GKLS model and in a high resolution discrete Fokker-Planck
chain. The Fisher curvature gap controls the shape of the local metric, but the global
relaxation timescale is set by the spectral gap of the reversible Markov generator.

Taken together, scripts 06 to 15 show that the Fisher metriplectic operator G that
appears in our axiomatic construction is not an abstract choice. In thermal GKLS
models it is canonically realised as the symmetric part of the real generator in the
stationary Fisher metric, and its density block is exactly the classical Fisher Dirichlet
operator Q diag(m). The cost entropy inequality is saturated mode by mode in the
natural Fisher coordinates, the density sector geometry is universal across GKLS
families that share the same jump rates, and the actual entropy decay rates are governed
by the Markov spectral gap and can be matched between discrete and continuum
models. This provides an operational Fisher-Lindblad unification that ties the abstract
metriplectic structure directly to GKLS dynamics, reversible Markov chains and
Fokker-Planck limits.

Scripts 16 through 29 extend this Fisher-Lindblad picture to diagonal GKLS lifts,
coherent dressing, and tomographic reconstruction of both the density sector and the
full Bloch generator.
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E.10 Diagonal GKLS models and exact Markov reduction on the density sector

Script 16_gkls_diagonal_to_markov_checks.py tests the most basic link be-
tween GKLS dynamics and classical Markov chains in the density sector. We work
with three level models where the Lindblad operators are diagonal in a preferred basis,
so that the populations obey a closed master equation. For each random instance the
script constructs both

* the full GKLS generator K acting on density matrices, and
* the classical generator Q acting on populations,

and evolves an ensemble of random initial states under both descriptions.

Two key diagnostics are monitored across the ensemble: the maximal difference
between the GKLS induced population drift and Qp, and the mismatch between
quantum and classical relative entropies evaluated on diagonal states. Both errors stay
at machine precision, with maximal generator and trajectory discrepancies of order
10~'* and relative entropy mismatches below 10~!3. The norm of the off diagonal
block of the GKLS induced population generator is also at numerical floor, confirming
that no hidden coherences leak into the density sector.

This establishes that for diagonal jump GKLS models the restriction of K to diagonal
density matrices is exactly the classical Markov generator Q with stationary distribution
m, and that on this sector the quantum relative entropy reduces identically to the classical
Kullback-Leibler divergence. In the UIH framework this means that on the density
sector the abstract mobility G is fixed as the classical Markov generator Q, so the
irreversible slice is completely determined by the GKLS semigroup.

E.11 Density sector Fisher Dirichlet equality for diagonal GKLS

Script 17_gkls_fisher_dirichlet_checks.py turns from trajectories to the in-
stantaneous Fisher geometry. For the same class of three level detailed balance GKLS
models as in script 16, we construct

¢ the classical Fisher Dirichlet form

1 Opi
Ec(op) = Ezﬂiwzj(fﬁj - ¢i)2, ¢i = Pi

i%] T
with Wij = Q_,',', and
* the density sector quantum Dirichlet form

EckLs(0p) = —(0p, GOP)BKMS op = diag(dp),

where G = (K + K%)/2 is the symmetric part of the real generator in the BKM
metric at pgg.

For each random reversible model an ensemble of mass conserving perturbations 6 p
is sampled and both quadratic forms are evaluated. Across the ensemble the maximal
absolute difference |Egkrs — Eal is of order 102, while the maximal relative error

105



stays at the 10716 level. The ranges of the classical and quantum Dirichlet values
match to machine precision.

This shows that for diagonal detailed balance GKLS models the density block of the
symmetric operator G coincides exactly with the classical Fisher Dirichlet operator
Q diag(m). The Fisher metric structure on populations that enters our axioms is
therefore canonically realised by thermal GKLS dynamics, and in UIH the density
block of G is literally the classical Fisher Dirichlet operator, not a free modelling
choice.

E.12 Coherent diagonal GKLS models and robustness of the density sector

Script 18_gkls_coherent_density_sector_checks.py adds coherent Hamilto-
nian dynamics and dephasing to the diagonal jump models of scripts 16 and 17. The
GKLS generator now contains a nontrivial Hamiltonian part and off diagonal density
matrix elements are genuinely excited along the trajectories, but the stationary state
remains diagonal in the jump basis.

The script checks three properties across an ensemble of such models:

¢ the induced population drift from GKLS matches the classical generator Q to
numerical precision,

* the stationary distribution 7 is the same for both descriptions, and

¢ the quantum and classical Fisher Dirichlet forms on densities still agree.

As in script 17, the maximal discrepancy between Egkrs(dp) and E(5p) remains at
the 10™!2 level, with relative errors below 10713,

This shows that the density sector Fisher Dirichlet equality is robust under the addition
of coherent Hamiltonian evolution and dephasing, provided the Lindblad operators are
diagonal in the stationary basis. Coherences are present in the full GKLS dynamics,
but the density sector geometry and entropy production are still governed exactly by
the classical Fisher structure.

E.13 Nonreversible diagonal GKLS models and universal density sector geometry

Script 19_gkls_nonrev_density_sector_checks.py drops detailed balance and
considers fully nonreversible three level classical generators Q with unique stationary
distributions &. These are lifted to diagonal GKLS generators via the same class of
jump operators as before. The aim is to test whether the density sector Fisher Dirichlet
equality survives in the absence of reversibility.

For each random nonreversible generator the script constructs & and Egkrs as in
scripts 17 and 18, and samples mass conserving perturbations ¢p. The maximal
stationarity residuals for both Q and the GKLS lift sit at 107!, confirming that 7 is
stationary in both descriptions. The discrepancy |Egkrs — Ecl| remains at 107" or
below, with maximal relative errors of order 10~12.

The density block of the symmetric operator G therefore coincides with the classical
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Fisher Dirichlet operator even when the underlying Markov generator is nonreversible.
Nonreversibility affects the antisymmetric part J of the real generator, but the instanta-
neous Fisher metric on populations is universal and independent of the presence or
absence of detailed balance.

E.14 Entropy and Fisher energy decay in nonreversible GKLS chains

Script 20_gkls_nonrev_decay_clock.py turns back to dynamics in the nonre-
versible setting. For each random nonreversible three state generator Q and its
diagonal GKLS lift, the script evolves an ensemble of trajectories from random initial
populations and records four decay diagnostics:

Sa(®),  Sq(1),  8al(r), &q(1),

where S is the classical Kullback-Leibler divergence D (p(?)[|7), Sq is the quantum
relative entropy S(p(1)||pss), and E¢, Eq are the classical and GKLS Fisher Dirichlet
energies of the density perturbation.

For each trajectory an exponential envelope X (r) ~ C exp(—rt) is fitted at late times.
Across the ensemble, the mean decay rates of all four diagnostics coincide to high
precision,

rSqy XIS, R rgy ®rg, ® 2.2,

while the Fisher curvature gap Ar of the symmetric density sector operator lies in the
much smaller range 0.1 to 0.4. This shows that in nonreversible models the Fisher gap
provides only a coercive lower bound. The actual decay of entropy and Fisher energy
is governed by the full nonnormal generator and can be several times faster than A,
while the quantum and classical descriptions agree perfectly on the density sector.

E.15 Nonreversible GKLS: decay rates versus generator spectra

Script 21_gkls_nonrev_rate_vs_spectrum.py refines the analysis of script 20
by comparing decay rates with three spectral objects. For each nonreversible generator
Q the script computes

* the Markov spectral gap g = —max{Red # 0: A € spec(Q)},

* the Fisher Laplacian gap Ar of the symmetric density sector operator L built from
the Fisher Dirichlet form, and

* the fitted decay rates of S¢|, Sq, Eci, Eq.

Over an ensemble of models we find 1o ~ 1.1 on average and A ~ 0.28, while the
mean decay rates cluster around 2.2. The ratios satisfy
r r
— = 2, — = 8,
Ao AF
with very small variance across the ensemble, and all four diagnostics share the same
rate within numerical error.
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This makes the hypocoercive structure explicit in the Fisher language: the symmetric
Fisher operator supplies the universal Dirichlet form and a spectral gap Ar, but the
presence of an antisymmetric nonreversible part produces an effective decay scale set
by the full Markov generator, comparable to 1o and largely independent of Ar. The
quantum GKLS lift inherits this entire picture in its density sector.

E.16 Driven qubit GKLS with coherences: explicit coherent example

Script 22_gkls_nondiagonal_coherent_density_checks.py leaves the diago-
nal jump class and studies a physically standard driven qubit with genuinely coherent
dynamics. The model has Hamiltonian

H = %(Q.O'x + Aoy),

with Q = 1, A = 0.7, amplitude damping L; = y/y o with y = 1, and dephasing
Ly = \[yy, 0, with y, = 0.4. The stationary state pgs has significant off diagonal
coherence in the computational basis, with coherence norm of order 0.3.

The script diagonalises pgs as pgs = U diag(n)U" and transforms the GKLS generator
into this eigenbasis. Restricting to the subspace of diagonal matrices in the pgs basis
yields an effective two state generator Q¢ with stationary distribution &. The column
sums of Qg vanish to machine precision, the stationarity residual ||Qcg7|| is of order
1071, and the detailed balance condition mgwq; = m;wi¢ holds to within 10717,

As in the diagonal case, the BKM metric at pg and the symmetric part G of the real
generator are used to form a density sector Dirichlet form. For a catalogue of mass
conserving perturbations 6p one finds |Egkrs(6p) — Ea(dp)| < 10714, with relative
errors at the 10713 level. Thus even for a fully coherent driven qubit with non diagonal
Lindbladians, the pg eigenbasis density sector is exactly a reversible two state Fisher
Markov system, and the density block of G is again the classical Fisher Dirichlet
operator.

E.17 Random qubit GKLS ensemble and universal Fisher density sectors

Script 23_gkls_random_qubit_density_ensemble.py upgrades the single ex-
ample of script 22 to an ensemble of random qubit GKLS models. Each model
has

¢ arandom Hamiltonian H = %(hxax + hyoy + h07),
e three Lindblad operators Ly = fy1 0, Ly = \/y2 04, L3 = [/y3 0, with rates y,
sampled in a moderate range.

For each random model the stationary state pss is computed and models are accepted
only if pg is full rank, nondegenerate and has nontrivial coherence in the computational
basis. In a sample of 20 attempts all 20 models are accepted, with coherence norms
ranging from 9 X 1073 to 1.7 x 1071

In the eigenbasis of pgs the generator K is transformed to K., and restricted to the
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diagonal subspace to give Q.g. For all accepted models the stationarity residual
|| Keig vec(diag(mr))||, the column sum residuals of Qcf, and the stationarity residual
|Qcfr|| remain at the 10~15 level or below. Detailed balance holds exactly for two
state chains, as confirmed numerically.

The BKM metric at pss and the symmetric part G are used to compute Eggrs on
the density sector, and compared to the classical Fisher Dirichlet & for Qg across
random & p. Over the ensemble the maximal absolute discrepancy is of order 10714,
and the maximal relative error is below 10~!. This shows that for a broad, physically
natural class of random qubit GKLS generators, the pg eigenbasis density sector
is always exactly a two state Fisher Markov model, and the density block of G is
universally the classical Fisher Dirichlet operator. In the UIH picture this gives a
robust, ensemble level confirmation that the irreversible mobility is canonically fixed
by GKLS dynamics once the stationary state is known.

E.18 Random qutrit GKLS ensemble and nonreversible density sectors

Script 24_gkls_random_qutrit_density_ensemble.py extends the random en-
semble test from qubits to three level systems. Each model has a random Hermitian
Hamiltonian H on C3, together with jump operators corresponding to nearest neighbour
ladders 0 <> 1 and 1 < 2 with random up and down rates, and three dephasing
projectors |k) (k| with random strengths. This family includes genuinely coherent and
generically nonreversible open qutrit dynamics.

For each random model the stationary state pgs is computed, and only models with full
rank, nondegenerate eigenvalues and nontrivial coherence in the computational basis
are retained. In a sample of 10 models all 10 are accepted, with coherence norms
between 3.5 X 1072 and 1.5 x 10~!. In the pg eigenbasis the GKLS generator yields a
three state effective generator Q. on the diagonal subspace. Column sum residuals
are of order 10™15 and ||Qcg7|| stays below 10713, so Q. is a valid Markov generator
with stationary 7.

Unlike the qubit case, three state Markov chains can be nonreversible. The script
therefore monitors the maximal detailed balance residual max;; |m;w;; — m;wj;,
which reaches values of order 2 x 1072 in the ensemble. The density sector Markov
chains induced by the GKLS models are thus genuinely nonreversible in general.

Despite this, the BKM plus G density sector Dirichlet form coincides with the classical
Fisher Dirichlet of Q.g to numerical precision. Across all accepted models and
random perturbations §p, the maximal absolute discrepancy is of order 4 x 10714,
with maximal relative error around 10~!3. This confirms that in coherent, generically
nonreversible qutrit GKLS models the pss eigenbasis density sector is always governed
by a classical Fisher Dirichlet structure, and that the antisymmetric circulation in the
Markov generator resides entirely in the non gradient part of the real GKLS operator.
For UIH this means that even in nonreversible quantum chains the density sector
mobility G is still the canonical Fisher Dirichlet operator, while all nonreversible
circulation is pushed into the J channel.
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E.19 Constructive Fokker-Planck to Markov to GKLS realisation

Script 25_fp_to_markov_to_gkls_realisation.py closes the loop from contin-
uum Fisher flows to discrete Markov chains and back to a GKLS semigroup. We start
from a one dimensional periodic domain [0, L) with potential

V(x) = Vo + @ cosx + Bcos(2x),

-V(x)

which defines a continuum stationary density 7(x) « e . The associated over-

damped Fokker-Planck equation
- —1oo P
dp = Ox(D p dxp), u—log;,

is a standard example of a Fisher-gradient flow of the relative entropy S(p||7).

The script discretises [0, L) on a periodic lattice with N, = 40 points and constructs a
reversible nearest neighbour Markov generator Q with column sums zero and stationary
vector 7 via a detailed balance conductance scheme. The stationary distribution is fixed
directly from the potential as 7r; oc exp(—V;), and the symmetric nearest neighbour
rates W;_, ; are chosen such that 7;W;_,; = n;W;_,;. The resulting generator satisfies
2. Qij = O exactly and [|Qr|| = 2.5 X 1074, confirming that 7 is stationary on the
lattice.

From this Q we build a diagonal jump GKLS generator K on an N,-dimensional
Hilbert space with computational basis {|i)}. For each off diagonal entry Q;; > 0 with
i # j we introduce a Lindblad operator

Lij = \Qi; 1),

and form the Lindblad superoperator on vec(p) via the standard GKLS prescription,
with no Hamiltonian part. In this construction, any diagonal density matrix p = diag(p)
evolves as d;p = Qp, and the stationary state pgs = diag(m) satisfies ||K vec(pgs)|| =
8 x 1074, Extracting the effective density generator Q. by acting K on the diagonal
basis matrices Ej; shows that the entries of Q. match those of Q to high accuracy,

with max;; |(Qeﬂ-‘)ij - Qijl ~3.6x 10712

To compare Dirichlet structures we take pgs in the computational basis and build the
BKM metric at pgs, which reduces to scalar weights

1/m, i=],

cij =4 logn; —logm;

ij g g7 i
T — T

assembled into a diagonal metric M on the vectorised space. The metric adjoint K #is

then defined by K* = M~'K"M, and the symmetric part G = (K + K*)/2 furnishes
the irreversible Fisher operator.

For a catalogue of random mass conserving density perturbations dp the script
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evaluates both the classical Fisher Dirichlet form

1 opi
Ea(dp) = 3 Zﬂiwij(d’j - ¢>i)2, ¢i = Pi
i’j

T

with w;; = Q;, and the GKLS density sector Dirichlet form
Eckrs(6p) = —(6u, MGéu), ou = vec(diag(dp)).

Over 50 random perturbations the Dirichlet values lie in the range &, Sgkrs ~
10* — 10°, with a maximal absolute discrepancy |[Egkrs — Ea| ~ 6.5 x 107! and
maximal relative error of order 10712,

This example provides a fully constructive realisation of a Fisher-metriplectic Fokker-
Planck flow as the density sector of a GKLS semigroup. Starting from a continuum
gradient flow defined by a potential V' (x), we discretise to a reversible Markov generator
0, lift O to a diagonal jump GKLS generator K, and recover both the Markov dynamics
and the Fisher Dirichlet quadratic form on densities from the BKM symmetric part G.
The irreversible geometry of the continuum Fokker-Planck equation is thus concretely
embedded as the density block of the GKLS real generator, giving a direct continuum
realisation of the UIH density sector mobility G.

E.20 Coherent Hamiltonian dressing of the Fokker-Planck GKLS chain

Script 26_gkls_coherent_dressing_fp_chain.py starts from the same reversible
Markov generator Q and diagonal jump GKLS generator Kgjss constructed in script 25,
and then adds a genuinely coherent Hamiltonian dressing without changing the density
sector hydrodynamics.

On the lattice of N, = 40 sites we define a tight binding Hamiltonian

H = =Jnop O (I)G+1] + i+1)Gl),  Jnop = 1,
i

with periodic wrap. The associated Hamiltonian superoperator on vec(p) is
Ky=-i(l®eH-H'®]I),

so that d;p = —i[H, p] corresponds to 9; vec(p) = Kp vec(p). The total GKLS
generator is then
Kiot = Kdiss + K,

which describes a coherent tight binding evolution on top of the dissipative Fokker-
Planck-like chain.

The dissipative generator Kgiss is built exactly as in script 25 from the reversible Markov
generator Q via diagonal jump operators L;; = \/Q_,J [i)(j]|. Its stationary state is pgs =
diag(m) with 7 the Gibbs-like stationary vector induced by the potential. Numerically,
|| Kgiss vec(pss) || = 8 X 10714, confirming stationarity for the purely dissipative chain.
After adding the Hamiltonian part one finds || K vec(pss)|| = 2.5 x 1072: the full
GKLS dynamics now generates off diagonal coherences at pg, SO pss iS no longer
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the fixed point of K, even though it remains the natural centre for the dissipative
geometry.

Despite this, when we restrict to the density sector the dynamics is entirely unchanged.
Extracting the effective density generators QS[‘TSS and Q% from Kyiss and Ko by acting
on the diagonal basis matrices E;; shows that both coincide with Q to numerical

precision:
di -12 -12
nga}x|(Qe{11§s)ij—Qij| ~3.6x 10712 nl)a}x|(Q;‘;1§ ij—0ij| 3.6 x 10712,

and the two effective generators agree exactly at machine precision on the density
sector.

To probe the Fisher geometry we again place the BKM metric at the dissipative
reference state pg = diag(m). The BKM weights c;; are as in script 25, assembled
into a diagonal metric M on the vectorised space. For each of Kyiss and K¢ we build
the metric adjoint K # and the symmetric part G = (K + K #)/2, obtaining G giss and
Got- The density sector GKLS Dirichlet forms are then

8diss(5P) = —(514, MGdiss6u>, 8tot((5p) = _<5u’ MGtot(Su),

with éu = vec(diag(dp)), while the classical Fisher Dirichlet E.(6p) is computed
from Q and r as in script 25.

Over a catalogue of 50 random mass conserving perturbations ¢ p, the three Dirichlet
values lie in the same range and satisfy

max|Egiss — Ect| ¥ 6.5% 107", max|Eior — Eal| 6.5 x 1071,
op op

with maximal relative errors of order 10713, and Egiss(6p) = Ewi(dp) to within
numerical precision for all tested perturbations. In other words, the tight binding
Hamiltonian dressing leaves both the density sector Markov generator and the Fisher
Dirichlet quadratic form completely unchanged.

This makes the separation between reversible and irreversible channels explicit in the
FP-Markov-GKLS correspondence. The symmetric Fisher operator G on densities is
fixed by the dissipative chain and is insensitive to coherent Hamiltonian dressing, while
the antisymmetric part J and the full GKLS stationary state can vary substantially. Many
distinct coherent GKLS models thus share the same Fisher-metriplectic hydrodynamics
on densities, differing only in the reversible quadrature.

E.21 Density sector tomography for a GKLS generator

Script 27_gkls_density_sector_tomography.py demonstrates that the density
sector of a GKLS generator can be reconstructed purely from density responses, and
that the resulting Fisher Dirichlet form coincides with both the classical and GKLS
constructions.

We first build a random reversible three state Markov generator Q with a strictly positive
stationary distribution 7 using a symmetric conductance construction. Random positive
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weights m; are drawn and normalised, and a symmetric non negative conductance
matrix S;; is sampled. The off diagonal entries of Q are then defined by detailed
balance,

njQij = Sij, L+ ],
with diagonal entries chosen so that the column sums vanish. In a typical run this
yields, for example,

-6.68 2.10 1.07
0=1292 -405 077 |, Tmin ® 0.17,  mmax = 0.59,
376 195 -1.85

with [17Q]| < 10715 and ||Qn|| ~ 1.7 x 10710,

From this generator we build a diagonal jump GKLS superoperator Kgiss on a three
dimensional Hilbert space in the computational basis {|i)}, introducing Lindblad

operators
Lij =~Qijli){jl, i # ],

and forming the standard GKLS combination on vec(p). The stationary state o
diag(rmr) is confirmed to be fixed by the GKLS evolution with || Kgiss vec(pss)||
2.8x 10710,

Qo

The exact density sector generator Qg is then extracted directly from the GKLS
dynamics by acting Kg;ss on the diagonal basis matrices E; ; and reading off the induced
drift of the diagonal entries. The resulting matrix matches the original generator to
numerical precision,

Qe =Q upto Hl,lﬁ}x |(Qert)ij — Qijl =9 x 10719,

with |[17Qcg|l < 1071 and ||Qegr|| = 2 x 10716,

To mimic an operational setting where only density responses are accessible, the
script performs a simple tomography of the density generator. A catalogue of
random full support probability vectors p¥) is drawn, each defining a diagonal state
p®) = diag(p®). For each probe state the GKLS response p¥) = Kgisp®) is
computed and the diagonal drift p¥) is extracted. Stacking these into matrices
P=[pW]---|p®]and D = [pDV]---|pE)], with K = 12 probes, we solve the
least squares system
D ~ QrecP

for a reconstructed generator Qc, and softly enforce column sum zero by subtracting
the mean column sum from each column. The reconstructed generator agrees with
both the original and GKLS effective generators at machine precision,

III.R}X |(Qrec)ij - Qijl ~ 1.1 x 10_15, IIZIE}X |(Qrec)ij - (Qetf)ijl ~ 1.8 x 10_15,

with column sums and stationarity residuals again at the 10~ level.

To connect with the Fisher-metriplectic structure we place the BKM metric at pgs =
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diag(m). The BKM weights are

1/m;, i=J,
cij =13 lognm; —logm;
SR kit L S
T — T
assembled into a diagonal metric M on the vectorised space. The metric adjoint K His
defined by K b= M ‘IK(;SSM and the symmetric part G = (Kgigs + K ﬁ) /2 defines the
GKLS Fisher operator.

For a collection of random mass conserving perturbations 6p the classical Fisher
Dirichlet form associated with Q and with the reconstructed Qec,

1 2 opi
83(519) =3 Zﬂ'iwij(¢j - i) ¢i=—, wij=0Qji,
i,Jj

T

and the GKLS density sector Dirichlet form
EckLs(0p) = —(6u, MGou),  6u = vec(diag(dp)),

are compared. Over 50 random perturbations the maximal absolute and relative
discrepancies satisfy

EcKLs
max|Eckrs — EC| ~ 3.3 x 10716, | al ~5.6x 10716,
op ¢ op |80Q1|
8 rec __ 8Q
max|ES™ — E9| ~ 3.3 x 107'°, max B &l | 7.2%107'°,
Sp ¢ ¢ 5p |8Q|

with Egkrs and SCer“ agreeing to the same level.

This script shows that for a finite GKLS model in the diagonal jump class, the density
sector generator Q can be recovered purely from density responses, and that the Fisher
Dirichlet geometry reconstructed from this tomographic Q... coincides with the GKLS
Fisher geometry defined by the BKM symmetric part G. The irreversible information
hydrodynamics on densities is therefore an operational object: it can be inferred from
macroscopic density probes alone, and it matches the metriplectic structure seen by
the underlying Lindblad generator. In UIH language, the density sector mobility G is
fully reconstructible from macroscopic probes and agrees with the canonical Fisher
Dirichlet operator extracted from GKLS.

E.22 Full Bloch space tomography of a driven damped qubit

Script 28_gkls_full_bloch_tomography.py upgrades the density sector tomog-
raphy of script 27 to the full operator space. We consider a driven, damped qubit with
Hamiltonian and Lindblad operators

H=—(Qoy+A0cy), Ly =+yo_, Ly =Yg os,

N =
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and GKLS generator
L(p) = =i[H, p] + LipL] = H{L{L1, p} + LypLl, - HL Ly, p}.

We work in the Hermitian operator basis {Xo, X1, 22,23} = {I,0%,0y,0;} and
represent any Hermitian operator X by coordinates & = (ao, @y, ay, a;)" defined
through

X =apl + axox + ayoy + @z0, a, = %tr(ZﬂX).

In this basis the GKLS generator is a real 4 X 4 matrix K such that ¢ = Ka.

For a fixed choice Q =1, A = 0.7, y = 1 and y4 = 0.4 the script first constructs the
exact generator Kexact by acting with £ on the basis elements X, and reading off the
coordinates of £(X,). The resulting matrix is

0O 0 0 0
0 -13 -0.7 0

Kewr =10 07 —13 1|
-1 0 1 -1

with the first row vanishing exactly, as required by trace preservation.

The same generator is then reconstructed tomographically from state responses. A

collection of random Bloch vectors € R3 with ||7|| < 0.8 is sampled, each defining a
strictly positive density matrix p(¥) = %(I + r)(ck) Oy + rﬁk) oy + rék) o). For each probe
state we compute coordinates %) and their GKLS derivatives ¢ ) = a(L(p*))).
Stacking these into matrices A = [aV]---|a®)] and A = [¢V]---|&K)] with
K = 20 probes, we solve the least squares system

Ax Kiec A,
giving Kec = AAT(AAT)™!. The reconstructed generator is

0 0 0 0
0 -13 -07 O
0 07 -13 -1
-1 0 1 -1

Kiec = +O(10_15)’

withmax; ; | (Krec)ij— (Kexact)ij| = 6.5% 10716, a trace preserving row norm ||Kr(é)c") || ~
1.5 x 1077, and purely real entries within numerical precision. Testing K. on
additional random states shows that the predicted Bloch derivatives match the true
GKLS derivatives with maximal residual ||¢que — @pred|l = 2.3 X 1016,

This script demonstrates that for a coherent driven qubit with dissipation the full real
GKLS generator on operator space can be reconstructed from state responses in the
Pauli basis, not just its density sector. It extends the density level Markov tomography
of script 27 to a complete Bloch space tomography that resolves both the irreversible
and coherent channels encoded in K.
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E.23 Metriplectic split of a driven qubit in Bloch coordinates

Script 29_gkls_bloch_metriplectic_split.py takes the coherent, damped
qubit model of script 28_gkls_full_bloch_tomography.py and performs a full
metriplectic decomposition of the GKLS generator in the Pauli basis with respect to
the BKM metric at the stationary state.

In particular the 3 x 3 traceless block K and the corresponding blocks G and Jy,
realise exactly the real K = G + J of our metriplectic axioms specialised to this driven,
damped qubit.

We work with the same Hamiltonian and jumps

1
H=§(QO'X+A0'Z), Ly =+yo_, Ly =Aygos,

with parameters Q = 1, A = 0.7, y = 1, y4 = 0.4. In the Hermitian basis
{20, 21, 22,23} = {I, 0, 0,0} any density operator is represented as p = apl +
@xOx + ay0oy + a0, with coordinates @, = %tr(Zﬂp). As in script 28 the GKLS
evolution induces a real 4 X 4 matrix Keyact on the Bloch coordinates via @ = Keyact@,
and for the chosen parameters one recovers

0 0 0 0
0 -13 =07 O
0 07 -13 -1)
-1 0 1 -1

Kexact =

with the first row vanishing exactly, confirming trace preservation.

The stationary Bloch vector ag is obtained by solving the linear fixed point equation
& = 0. Writing @ = (ap,r) withr = (ay, @y, @;) and using ag = %trp = 1/2, the
script solves I = Br + agc = 0 with B the 3 x 3 traceless block of Kexacr and ¢ the
driving column from a(. Numerically one finds

ass = (0.5, =0.100575, 0.186782, —0.3132138),
corresponding to the stationary state

0.186782 —0.100575 - 0.186782i

Pss =120.100575 + 0.186782i 0.813218 ’ trpgs = 1,

which agrees with the coherently dressed stationary state already seen in script 22.
Diagonalising pgs gives eigenvalues 41 = 0.121703 and A, = 0.878297, together with
a unitary U whose columns are the eigenvectors.

In the eigenbasis of pg, the BKM metric is diagonal on the matrix units |m){n|, with
weights

1/, m =n,
Cmn = 9 logd,, —logA, 4
—— — m#n.
/lm _/ln
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For the present model this yields

_ (8.216705 2.612233

€= 2.612233 1.138567)°

which is positive definite. Vectorising matrices in the eigenbasis produces a diagonal
metric diag(Cpgy) on the four dimensional operator space. The script then transforms
each Pauli basis element into the eigenbasis, X, = U T¥,U, vectorises to obtain
ug = vec(X)), and assembles the 4 x 4 BKM metric matrix in Bloch coordinates as

Map = (Za. Zp)srm = u}, diag(Ca)up.
The resulting matrix is symmetric and strictly positive definite, with

936 1.88 -3.49 5386
M= 1.88 552 -0.54 0091
-3.49 -054 623 -1.69
586 091 -1.69 8.06

and eigenvalues approximately {16.43, 5.22,5.22,2.28}, confirming a well conditioned
BKM geometry on the Bloch space.
With this metric in hand the script defines the metric adjoint of K by

K=MKk M,

and splits the generator into symmetric and skew parts
1 1
G:E(K+Kﬁ), J:E(K—Kﬂ).

By construction one has K = G + J. The diagnostics confirm this to numerical
precision, with ||Kexact — (G + J)|| = 3.3 x 1071, The key metriplectic identities also
hold:

MG~ (MG)',  MJ=~-(MJ)T,
with symmetry residuals | MG — (MG)"|| = 2.5 x 10~!> and skew residuals ||MJ +
(MJ)"|| = 2.7 x 10713, This shows that G is the symmetric dissipative channel and J
the antisymmetric reversible channel with respect to the BKM metric at pg;.

Restricting to the traceless subspace spanned by {07, oy, 0, } gives 3 x 3 blocks

-1.35915 0.10985 —0.106631
Gy =] 0.10985 —-1.504007 0.198029 |,
0.006921 -0.012854 -0.736843

0.05915  -0.80985 0.106631
Jue =] 0.59015  0.204007 -1.198029|.
—-0.006921 1.012854 —0.263157

The symmetric block G is negative definite and captures the irreversible contraction
of Bloch vectors toward pgs in the BKM geometry, while the antisymmetric block Ji,
encodes the effective rotation generated jointly by the Hamiltonian and the coherent
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part of the dissipator. In particular the off diagonal entries of J;; reflect the precession
of the Bloch vector around the driven axis and the shifts induced by the jump operators.

This script therefore provides a fully explicit metriplectic decomposition of a nontrivial
qubit GKLS generator: the complex GKLS flow on operators is represented as a
real Bloch space generator K which splits as K = G + J with G symmetric and J
antisymmetric in the BKM metric at the stationary state, extending the density sector
Fisher-Dirichlet identifications to the full space of observables including coherences.

F Notation index

For ease of reference we list some of the main symbols used throughout the paper.

p(x,1)
S(x,1)

P

m(x)

i

pi(t)

Flp]
u=206F/op
I

G

J
K=G+iJ
Ly Ly
H;'(G)

o

L

Lsuper

D

V(x)

97 YV

classical probability density on configuration space

phase field in the reversible Schrodinger sector

quantum density matrix evolving under a GKLS equation
stationary Gibbs density oc ¢~V (*)/P

stationary distribution of a finite Markov chain

population of state i at time ¢

free energy functional, typically a relative entropy

chemical potential

Fisher information functional or metric

symmetric mobility operator in the metriplectic sector
antisymmetric reversible operator satisfying no work conditions
UIH one-current operator (G gradient, J reversible; i labels the reversible quadrature)
weighted elliptic operators defining H,, 1(G) geometry
weighted H~! space with metric induced by G

classical Markov generator matrix

GKLS generator on density matrices

matrix representation of £ under vectorisation

transition rate from j to 7 in a finite chain

diffusion coefficient in the Fokker Planck equation

potential in the overdamped Langevin setting

Hamiltonian drive and relaxation/dephasing rates in the qubit examples.

The same symbol may appear in slightly different guises when passing between
classical, quantum, and hydrodynamic descriptions. In particular, ' is always a convex
functional whose gradient drives the irreversible dynamics, G is always the symmetric
mobility that sets the Fisher metric, and J is always the antisymmetric no work operator
that generates reversible flow.
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