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Abstract

We construct a Fisher-Kähler information geometry on coadjoint orbits of the
unitary group and show how it controls both reversible and irreversible quantum
dynamics. Starting from the Bogoliubov-Kubo-Mori information metric on
density operators and the Kirillov-Kostant-Souriau symplectic form on fixed-
spectrum orbits, we define the Fisher structure 𝐵 = 𝑔−1𝜔, show that −𝐵2 is
negative definite with an explicit spectral decomposition, and obtain a canonical
untwisting to a Kähler triple (ℎ, 𝜔, 𝐼). We derive formulas for Fisher-Kähler
gradients and Hamiltonian vector fields, with particular emphasis on the linear
energy functional 𝐸 (𝜌) = Tr(𝐻𝜌) and on the unified generator 𝐾 = 𝐺 + 𝐽 that
realises hypocoercive, metriplectic dynamics of a single information current
seen in two quadratures. We phrase this as a universal principle for Universal
Information Hydrodynamics (UIH): a wide class of reversible and irreversible
evolutions in physics are generated by a single information current on a Fisher-
Kähler state space. Within this framework we reinterpret Frieden’s Extreme
Physical Information (EPI): the functionals 𝐼 and 𝐽𝐹 are two quadratures of
the same current. For one-dimensional translation families we prove an exact
EPI-to-UIH Fisher identity equating parametric and spatial Fisher informations,
𝐼param = 𝐼𝑥 , and verify it numerically for Gaussian, Laplace, and Cauchy laws.
The symmetric part 𝐺 of 𝐾 defines Fisher spectral channels whose rate-density
tails control early-time information reception; power-law tails generate universal
growth exponents, including a golden exponent channel from a simple two-
channel renormalisation map. To anchor the construction in experiment we build
Fisher channels from two data sets: strange metal magnetotransport, where we
treat 𝜌𝑧𝑧 (𝜃) as a circular density to extract angular Fisher information 𝐼𝜃 and
its spectral fingerprints, and optically trapped microspheres, where an Ornstein-
Uhlenbeck fit to centre-of-mass trajectories confirms that the analytic Fisher
information 1/𝜎2 agrees with both parametric and grid-based estimates. As a
worked EPI-style sector we outline a bounded Fisher entropy functional for a
scalar vacuum field whose free energy admits a Bogomolny-type completion;
in the zero-temperature limit this becomes a pure Fisher BPS functional whose
minimisers are Fisher halos, providing a rigid template for later applications and
a geometric realisation of Fisher-based relaxation.
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1 Universal geometric principle

Universal Information Hydrodynamics is the statement that a wide class of reversible
and irreversible evolutions in physics are generated by a single underlying information
current, seen in two quadratures, on a Fisher-Kähler state space.

The aim of this section is to collect the geometric ingredients, the dynamical form, and
the variational and spectral consequences into a single unified principle. The concrete
coadjoint orbit geometry will be developed in Section 2 and can be viewed as the main
finite dimensional realisation of the abstract structures introduced here.

1.1 State space and Fisher-Kähler structure

Let 𝑀 denote a state space of interest.

• In the classical setting, 𝑀 is a suitable space of probability densities 𝜌 on a
configuration manifold 𝑋 .

• In the quantum setting, 𝑀 is a coadjoint orbit of density matrices of fixed spectrum
acting on a Hilbert spaceH . We will primarily consider the finite dimensional case,
whereH � C𝑑 and the orbit lives inside the manifold of faithful density operators
D×.

In both cases we assume that 𝑀 carries the following structures.

(i) A monotone information metric 𝑔. Classically this is the Fisher information
metric on densities [5]. Quantum mechanically it is the Bogoliubov-Kubo-Mori
(BKM) metric on faithful density operators [8]. The metric 𝑔measures statistical
distinguishability of nearby states and is monotone under coarse graining and
completely positive trace preserving (CPTP) maps.

(ii) A symplectic form 𝜔 on 𝑀 capturing the reversible, Hamiltonian aspect of the
dynamics. Classically this is the usual symplectic form on phase space or its
pushforward to density space. Quantum mechanically it is the KKS form on
coadjoint orbits of the unitary group.

(iii) A compatibility condition tying 𝑔 and 𝜔 together via the information structure
tensor

𝐵𝜌 := 𝑔−1
𝜌 𝜔𝜌 : 𝑇𝜌𝑀 −→ 𝑇𝜌𝑀,

defined pointwise for 𝜌 ∈ 𝑀. Here 𝑔−1
𝜌 : 𝑇∗𝜌𝑀 → 𝑇𝜌𝑀 is the musical isomor-

phism associated to the metric, and 𝜔𝜌 is viewed as a map 𝑇𝜌𝑀 → 𝑇∗𝜌𝑀 via
𝑋 ↦→ 𝜔𝜌 (𝑋, ·).

We make the following structural assumption.
Definition 1.1 (Fisher structure). A Fisher structure on (𝑀, 𝑔, 𝜔) is an endomorphism
𝐵 of the tangent bundle 𝑇𝑀 such that

𝐵𝜌 = 𝑔−1
𝜌 𝜔𝜌,

and for each 𝜌 ∈ 𝑀 the operator −𝐵2
𝜌 is positive definite on 𝑇𝜌𝑀 .

The positivity of −𝐵2
𝜌 means that 𝐵𝜌 has purely imaginary eigenvalues and no real
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kernel. In the finite dimensional quantum orbit case this will be shown explicitly in
Section 2 by diagonalising 𝐵𝜌 on root planes. At the abstract level this allows us to
define a positive intertwiner

𝑆𝜌 :=
√︃
−𝐵2

𝜌,

and from this a twisted complex structure

𝐼𝜌 := 𝑆−1
𝜌 𝐵𝜌.

By construction 𝐼2
𝜌 = −1𝑇𝜌𝑀 , so 𝐼 defines an almost complex structure on 𝑀 . Using

𝑆𝜌 we can also define a new Riemannian metric

ℎ𝜌 (𝑋,𝑌 ) := 𝑔𝜌 (𝑆𝜌𝑋,𝑌 ), 𝑋,𝑌 ∈ 𝑇𝜌𝑀.

Definition 1.2 (Fisher-Kähler structure). A Fisher-Kähler structure on 𝑀 is a triple
(ℎ, 𝜔, 𝐼) obtained from a Fisher structure 𝐵 as above such that

(a) (𝑀, ℎ, 𝐼) is a Kähler manifold, that is 𝐼 is integrable, ℎ(𝐼𝑋, 𝐼𝑌 ) = ℎ(𝑋,𝑌 ), and
the fundamental two form Ω(𝑋,𝑌 ) := ℎ(𝑋, 𝐼𝑌 ) is closed;

(b) 𝜔 = Ω, so the original symplectic form coincides with the Kähler form derived
from ℎ and 𝐼.

In this situation we say that the pair (𝑔, 𝜔) admits a canonical Fisher-Kähler untwisting
and that 𝐵 encodes the two quadratures of a single underlying information current,
seen through the symmetric metric ℎ and the antisymmetric form 𝜔.

At this level of generality we will not attempt to prove integrability of 𝐼 for all possible
choices of (𝑀, 𝑔, 𝜔). Instead we will show in Section 2 that for finite dimensional
quantum state orbits the construction above does produce a genuine Kähler structure
(ℎ, 𝜔, 𝐼), and we will regard this as the main motivating example for the universal
principle.

1.2 Gradient and Hamiltonian flows

Once a Fisher-Kähler structure (ℎ, 𝜔, 𝐼) is given, any sufficiently regular functional
Φ : 𝑀 → R generates two canonical vector fields:

• the Fisher-Kähler gradient

∇ℎΦ(𝜌) ∈ 𝑇𝜌𝑀, ℎ𝜌
(
∇ℎΦ(𝜌), 𝑋

)
= dΦ𝜌 (𝑋) ∀ 𝑋 ∈ 𝑇𝜌𝑀,

which generates dissipative, entropy increasing flow;
• the Hamiltonian vector field

𝑋Φ(𝜌) ∈ 𝑇𝜌𝑀, 𝜔𝜌
(
𝑋Φ(𝜌), 𝑋

)
= dΦ𝜌 (𝑋) ∀ 𝑋 ∈ 𝑇𝜌𝑀,

which generates reversible, symplectic evolution.

Equivalently, at the operator level one can encode these in a unified generator 𝐾 acting
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on functionals 𝐹 : 𝑀 → R via

d
d𝑡
𝐹 (𝜌𝑡 ) = {𝐹,Φ}𝜔 (𝜌𝑡 ) −

〈
∇ℎ𝐹 (𝜌𝑡 ), ∇ℎΦ(𝜌𝑡 )

〉
ℎ𝜌𝑡
,

where { · , · }𝜔 is the Poisson bracket induced by 𝜔. In terms of a linear operator 𝐾
acting on (co)vectors one can write, very schematically,

𝐾 = 𝐺 + 𝐽, 𝐺 = 𝐺⊤ ≤ 0, 𝐽 = −𝐽⊤,

with the symmetric part 𝐺 determined by the Fisher-Kähler metric and the antisym-
metric part 𝐽 determined by the symplectic form. The induced flow on states can be
written as

¤𝜌𝑡 = −∇ℎΦ(𝜌𝑡 ) + 𝑋Φ(𝜌𝑡 ),
with entropy production governed by the Dirichlet form associated to 𝐺 and reversible
motion governed by 𝐽.

In concrete quantum and classical settings the operator 𝐾 can be realised as a Fokker-
Planck, Lindblad, or more general Markov generator on the underlying state space,
and the Fisher-Kähler metric ℎ appears as the metric that makes these generators
hypocoercive and metriplectic [16]. We will see in Section 2 how this works explicitly
on finite dimensional quantum orbits.

1.3 Variational and spectral consequences

The unified form (1.2) and the Fisher-Kähler geometry admit two complementary
viewpoints that will be important later.

Variational viewpoint. Given a functional Φ on 𝑀 we can consider the pure gradient
flow

¤𝜌𝑡 = −∇ℎΦ(𝜌𝑡 ).
Stationary points satisfy ∇ℎΦ(𝜌∗) = 0 and are critical points of Φ. Under suitable
convexity conditions on Φ the flow converges to minimisers, and the Fisher-Kähler
structure provides a canonical metric for this optimisation.

In Frieden’s Extreme Physical Information (EPI) framework one introduces two
functionals 𝐼 [𝜌] and 𝐽𝐹 [𝜌], interpreted as data information and source information,
and obtains physical field equations by extremising

𝐾EPI [𝜌] = 𝐼 [𝜌] − 𝐽𝐹 [𝜌]

under appropriate constraints, 𝛿(𝐼 − 𝐽𝐹) = 0. In the UIH setting this EPI principle can
be reinterpreted geometrically as a special choice of potential Φ. To avoid a clash with
the antisymmetric part 𝐽 of the unified generator 𝐾 = 𝐺 + 𝐽, we reserve the notation
𝐽𝐹 for Frieden’s source information functional throughout.

The Fisher functional 𝐼 generates a pure gradient flow via−∇ℎ 𝐼, and its second variation
at a stationary point 𝜌∗ defines the Dirichlet form associated with the symmetric part
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𝐺,
𝛿2𝐼 [𝜌∗] (𝛿𝜌, 𝛿𝜌) = ⟨𝛿𝜌, 𝐺 𝛿𝜌⟩ℎ𝜌∗ ,

so that 𝐼 is precisely the Fisher quadratic form of the dissipative channel. Structural
functionals such as 𝐽𝐹 often admit a Hamiltonian representation via 𝑋𝐽𝐹 . Choosing

Φ = 𝐼 − 𝐽𝐹

in (1.2) leads to

¤𝜌𝑡 = −∇ℎ 𝐼 (𝜌𝑡 ) + ∇ℎ𝐽𝐹 (𝜌𝑡 ) + 𝑋𝐼−𝐽𝐹 (𝜌𝑡 ),

and stationary points of the flow coincide with solutions of the EPI variational problem.
The Fisher-Kähler geometry thus supplies the metric and symplectic structure behind
the EPI functionals.

Spectral viewpoint. The symmetric part 𝐺 of the generator 𝐾 defines a nonpositive
selfadjoint operator on an appropriate Hilbert space of fluctuations around equilibrium.
Its spectrum encodes a distribution of relaxation rates, and the Fisher-Kähler metric
ℎ controls the associated Dirichlet form. If we isolate a particular slow channel, for
example by projecting onto a subspace spanned by some observable or mode family,
the restriction of 𝐺 defines an effective rate density 𝜌eff (𝜆) for that channel.

Given a nonnegative test function 𝑓 of time we consider quantities of the form

𝐼 (𝑡) =

∫ ∞

0

(
1 − 𝑒−𝜆𝑡

)
𝜌eff (𝜆) d𝜆,

which model information reception over time in the slow channel. If the rate density
has a power law tail

𝜌eff (𝜆) ∼ 𝐶 𝜆−1−𝛿 for large 𝜆,

then Tauberian arguments imply an early time asymptotic

𝐼 (𝑡) ∝ 𝑡 𝛿 as 𝑡 ↓ 0.

In this way the Fisher spectral tail of a slow sector is directly reflected in a growth
exponent for information reception, and particular exponents (such as the golden ratio
case) correspond to specific spectral fingerprints of 𝐺. We will return to this spectral
story in more detail in Section 5.

1.4 Preview of the scalar Fisher sector

In later work on UIH gravity the abstract structures above are instantiated in a scalar
Fisher sector modelling a coarse grained “vacuum” degree of freedom. The relevant
state variable is a scalar field 𝜎(𝑥) whose gradient energy is measured by a Fisher
functional and whose local occupation statistics are encoded by a bounded entropy
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functional. The associated free energy can be written in a Bogomolny type form

𝐹 [𝜎] =
1
2
∥∇𝜎 − 𝑞∥2𝑤 − 𝑇𝐹 𝑆bnd [𝜎],

where 𝑞 is a baryonic source, 𝑤 is a Fisher weight, and 𝑆bnd is a bounded entropy built
from a sigmoid map of 𝜎. In the zero temperature limit 𝑇𝐹 → 0 one recovers a pure
Fisher BPS functional whose minimisers are Fisher halos; for 𝑇𝐹 > 0 the bounded
entropy deforms and truncates these halos.

From the present point of view this scalar sector is simply a particularly rigid example
of an EPI style functional on a Fisher-Kähler state space, with the Fisher part and
the source part geometrically anchored by the structures above. The details of this
construction will be developed later in Section 6.

2 Fisher-Kähler geometry on quantum state orbits

We now turn to the main finite dimensional realisation of the abstract structures
introduced above: the manifold of quantum states of fixed spectrum, viewed as a
coadjoint orbit of the unitary group, equipped with the Bogoliubov-Kubo-Mori metric
and the KKS symplectic form. On this manifold the Fisher structure 𝐵 = 𝑔−1𝜔 can be
diagonalised explicitly, and the Fisher-Kähler untwisting (𝑔, 𝜔, 𝐵) ↦→ (ℎ, 𝜔, 𝐼) can be
carried out in closed form.

2.1 Quantum state space and coadjoint orbits

LetH be a complex Hilbert space of dimension 𝑑 and let

D× :=
{
𝜌 ∈ B(H)

�� 𝜌† = 𝜌, 𝜌 > 0, Tr 𝜌 = 1
}

denote the manifold of faithful density operators on H . This is an open subset of
the affine hyperplane of Hermitian trace one operators in the space of all bounded
operators onH and carries a natural smooth manifold structure.

Fix a list of eigenvalues

𝜆 = (𝜆1, . . . , 𝜆𝑑), 𝜆𝑖 > 0,
𝑑∑︁
𝑖=1

𝜆𝑖 = 1,

and assume for simplicity that the spectrum is nondegenerate, so 𝜆𝑖 ≠ 𝜆 𝑗 for 𝑖 ≠ 𝑗 . Let

𝜌𝜆 := diag(𝜆1, . . . , 𝜆𝑑)

in some fixed orthonormal basis of H . The unitary group 𝑈 (H) acts on D× by
conjugation,

𝑈 · 𝜌 := 𝑈𝜌𝑈†, 𝑈 ∈ 𝑈 (H),
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and the orbit of 𝜌𝜆 under this action is

O𝜆 :=
{
𝑈𝜌𝜆𝑈

† ��𝑈 ∈ 𝑈 (H)} ⊂ D× .
This orbit consists of all density operators on H with spectrum equal to 𝜆, and is a
smooth compact homogeneous manifold of real dimension 𝑑2 − 𝑑.

The tangent space at a point 𝜌 ∈ O𝜆 can be identified with commutators.

Proposition 2.1 . For 𝜌 ∈ O𝜆 the tangent space is

𝑇𝜌O𝜆 =
{
𝑖[𝐻0, 𝜌]

��𝐻†0 = 𝐻0
}
.

Proof. The orbit map𝑈 ↦→ 𝑈𝜌𝑈† has derivative at the identity given by

d
d𝑡

���
𝑡=0
𝑒𝑖𝑡𝐻0 𝜌 𝑒−𝑖𝑡𝐻0 = 𝑖[𝐻0, 𝜌]

for any Hermitian 𝐻0. This spans the tangent space at 𝜌. Surjectivity follows from the
general theory of homogeneous spaces [11] or by dimension counting.

In what follows we will frequently work in the eigenbasis of 𝜌. Writing

𝜌 = 𝑈𝜌𝜆𝑈
† = 𝑈 diag(𝜆1, . . . , 𝜆𝑑)𝑈†,

we denote by
𝑋̃ := 𝑈†𝑋𝑈

the matrix of an operator 𝑋 in this eigenbasis and write 𝑋̃𝑖 𝑗 for its entries. On the orbit
O𝜆 the tangent vectors 𝑋 ∈ 𝑇𝜌O𝜆 are represented in the eigenbasis of 𝜌 by Hermitian
matrices with vanishing diagonal:

𝑋̃𝑖𝑖 = 0, 𝑋̃𝑖 𝑗 = 𝑋̃ 𝑗𝑖 (𝑖 ≠ 𝑗).

2.2 The BKM information metric

The Bogoliubov-Kubo-Mori information metric on D× can be defined in several
equivalent ways. For our purposes a convenient expression is

𝑔𝜌 (𝑋,𝑌 ) =

∫ 1

0
Tr
(
𝜌𝑡𝑋 𝜌1−𝑡𝑌

)
d𝑡, 𝑋,𝑌 ∈ 𝑇𝜌D×,

which is known to be the unique monotone Riemannian metric on D× [7] that yields
the quantum relative entropy as a Bregman divergence in the affine structure of density
operators. Restricted to the orbit O𝜆 it is strictly positive definite on 𝑇𝜌O𝜆.

Working in the eigenbasis of 𝜌 we can express 𝑔𝜌 in terms of the entries of 𝑋̃ and 𝑌 .
One finds

𝑔𝜌 (𝑋,𝑌 ) =
∑︁
𝑖< 𝑗

𝑐𝑖 𝑗
(
𝑋̃𝑖 𝑗 𝑌𝑖 𝑗 + 𝑋̃𝑖 𝑗 𝑌𝑖 𝑗

)
,
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where the coefficients

𝑐𝑖 𝑗 = 𝑐(𝜆𝑖 , 𝜆 𝑗) :=
log𝜆𝑖 − log𝜆 𝑗

𝜆𝑖 − 𝜆 𝑗

are the logarithmic means of the eigenvalues. In particular 𝑐𝑖 𝑗 > 0 and 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖 . It is
natural to organise the summation over root planes, two dimensional real subspaces
of 𝑇𝜌O𝜆 associated with each unordered pair (𝑖, 𝑗), as we will do below when we
introduce the KKS form and the Fisher structure.

The expression (2.2) makes it clear that 𝑔𝜌 is block diagonal in the decomposition of
𝑇𝜌O𝜆 into real two dimensional subspaces associated with each unordered pair (𝑖, 𝑗).
This root plane decomposition will be used heavily in what follows.

2.3 The KKS symplectic form

The coadjoint orbit O𝜆 carries a natural symplectic structure, the Kirillov-Kostant-
Souriau (KKS) form. At a point 𝜌 ∈ O𝜆 it is defined on tangent vectors of the form
𝑋 = 𝑖[𝐴, 𝜌] and 𝑌 = 𝑖[𝐵, 𝜌] by

𝜔𝜌 (𝑋,𝑌 ) := 𝑖 Tr
(
𝜌[𝐴, 𝐵]

)
= 𝑖 Tr

(
[𝜌, 𝐴] 𝐵

)
,

with 𝐴 and 𝐵 Hermitian. This form is well defined on 𝑇𝜌O𝜆, skew symmetric,
nondegenerate, and closed, making (O𝜆, 𝜔) into a compact symplectic manifold.

To express 𝜔𝜌 in the eigenbasis of 𝜌 we again write 𝜌 in diagonal form and denote by
𝑋̃ and 𝑌 the matrices of 𝑋 and 𝑌 in this basis. A short computation shows that

𝜔𝜌 (𝑋,𝑌 ) = 2
∑︁
𝑖< 𝑗

(𝜆𝑖 − 𝜆 𝑗) ℑ
(
𝑋̃𝑖 𝑗 𝑌𝑖 𝑗

)
,

where ℑ(𝑧) denotes the imaginary part of a complex number 𝑧. Thus the KKS form is
also block diagonal in the root plane decomposition of 𝑇𝜌O𝜆.

2.4 Root plane decomposition

The expressions (2.2) and (2.3) show that both 𝑔𝜌 and 𝜔𝜌 decompose into a direct sum
of two dimensional real blocks labelled by unordered pairs (𝑖, 𝑗) of distinct indices. It
is convenient to fix a real basis on each such block.

For each pair (𝑖, 𝑗) with 𝑖 < 𝑗 define real tangent vectors 𝐸𝑖 𝑗 and 𝐹𝑖 𝑗 at 𝜌 via their
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matrices in the eigenbasis of 𝜌:

𝐸̃𝑖 𝑗 :=

©­­­­­­­­­«

0 · · · 0 1 0 · · · 0
...

...

0 · · · 0 0 0 · · · 0
1 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...

ª®®®®®®®®®¬
, 𝐹̃𝑖 𝑗 :=

©­­­­­­­­­«

0 · · · 0 𝑖 0 · · · 0
...

...

0 · · · 0 0 0 · · · 0
−𝑖 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...

ª®®®®®®®®®¬
,

with all entries zero except at the (𝑖, 𝑗) and ( 𝑗 , 𝑖) positions as shown. In terms of these
basis vectors the restrictions of 𝑔𝜌 and 𝜔𝜌 to the root plane spanned by {𝐸𝑖 𝑗 , 𝐹𝑖 𝑗} take
the form

𝑔𝜌
��
𝑖 𝑗

= 2𝑐𝑖 𝑗
(
1 0
0 1

)
, 𝜔𝜌

��
𝑖 𝑗

= 2(𝜆𝑖 − 𝜆 𝑗)
(

0 1
−1 0

)
,

where 𝑐𝑖 𝑗 is the logarithmic mean defined above. This makes the subsequent analysis
of the Fisher structure 𝐵𝜌 = 𝑔−1

𝜌 𝜔𝜌 essentially algebraic.

2.5 The Fisher structure on the orbit

On the tangent space 𝑇𝜌O𝜆 we define the Fisher structure as in Definition 1.1,

𝐵𝜌 := 𝑔−1
𝜌 𝜔𝜌.

Using the root plane decomposition and the block forms (2.4) we can compute 𝐵𝜌
explicitly on each block:

𝐵𝜌
��
𝑖 𝑗

= 𝑔−1
𝜌

��
𝑖 𝑗
𝜔𝜌

��
𝑖 𝑗

=
1

2𝑐𝑖 𝑗

(
1 0
0 1

)
· 2(𝜆𝑖 − 𝜆 𝑗)

(
0 1
−1 0

)
= 𝛽𝑖 𝑗

(
0 1
−1 0

)
,

where

𝛽𝑖 𝑗 :=
𝜆𝑖 − 𝜆 𝑗
𝑐𝑖 𝑗

=
(𝜆𝑖 − 𝜆 𝑗)2

log𝜆𝑖 − log𝜆 𝑗
are the Fisher weights. The matrix

𝐽0 :=
(

0 1
−1 0

)
is the standard complex structure on R2, satisfying 𝐽2

0 = −1. Thus on each root plane
the Fisher structure has the simple form

𝐵𝜌
��
𝑖 𝑗

= 𝛽𝑖 𝑗𝐽0.

It follows immediately that
−𝐵2

𝜌

��
𝑖 𝑗

= 𝛽2
𝑖 𝑗1,
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so −𝐵2
𝜌 is positive definite on each root plane and hence on all of 𝑇𝜌O𝜆.

Proposition 2.2 . On the coadjoint orbit O𝜆 equipped with the BKM metric 𝑔 and
the KKS form 𝜔, the information structure tensor 𝐵𝜌 = 𝑔−1

𝜌 𝜔𝜌 defines a Fisher
structure in the sense of Definition 1.1. In particular, −𝐵2

𝜌 is positive definite on
𝑇𝜌O𝜆 for every 𝜌 ∈ O𝜆.

Proof. The block form (2.5) shows that on each root plane −𝐵2
𝜌

��
𝑖 𝑗
= 𝛽2

𝑖 𝑗
1 with 𝛽2

𝑖 𝑗
> 0

for 𝜆𝑖 ≠ 𝜆 𝑗 . Since tangent vectors on O𝜆 have vanishing diagonal components in the
eigenbasis, 𝑇𝜌O𝜆 is the direct sum of these two dimensional blocks and −𝐵2

𝜌 is positive
definite on each block. This proves the claim.

2.6 Fisher untwisting and the Kähler triple

Given the Fisher structure 𝐵𝜌 and the positivity of −𝐵2
𝜌 we can define the positive

intertwiner
𝑆𝜌 :=

√︃
−𝐵2

𝜌

uniquely as a positive definite operator on 𝑇𝜌O𝜆. On each root plane we have

𝑆𝜌
��
𝑖 𝑗

=

√︃
−𝐵2

𝜌

��
𝑖 𝑗

= |𝛽𝑖 𝑗 | 1.

In terms of 𝑆𝜌 we define the untwisted complex structure

𝐼𝜌 := 𝑆−1
𝜌 𝐵𝜌

and the Fisher-Kähler metric

ℎ𝜌 (𝑋,𝑌 ) := 𝑔𝜌 (𝑆𝜌𝑋,𝑌 ).

On each root plane this gives

𝐼𝜌
��
𝑖 𝑗

= sgn(𝛽𝑖 𝑗) 𝐽0,

and
ℎ𝜌
��
𝑖 𝑗

= 2𝑐𝑖 𝑗 |𝛽𝑖 𝑗 |1 = 2𝑐𝑖 𝑗
����𝜆𝑖 − 𝜆 𝑗𝑐𝑖 𝑗

���� 1 = 2|𝜆𝑖 − 𝜆 𝑗 |
(
1 0
0 1

)
.

Remarkably, the logarithmic mean 𝑐𝑖 𝑗 cancels out, leaving a Fisher-Kähler metric
determined solely by the linear spectral gaps. In particular 𝐼2

𝜌 = −1 and ℎ𝜌 is positive
definite.

Theorem 2.3 (Fisher-Kähler structure on the orbit). For the coadjoint orbit O𝜆 of
faithful density operators of fixed nondegenerate spectrum, equipped with the BKM
metric 𝑔 and the KKS symplectic form𝜔, the triple (ℎ, 𝜔, 𝐼) defined from the Fisher
structure 𝐵 = 𝑔−1𝜔 is a Kähler structure in the sense of Definition 1.2. Moreover,
the Kähler form associated to (ℎ, 𝐼) coincides with the original symplectic form 𝜔.

11



Proof. The fact that 𝐼2
𝜌 = −1 and that ℎ𝜌 is positive definite follows from the block

analysis above. Compatibility of ℎ and 𝐼, in the sense that ℎ𝜌 (𝐼𝜌𝑋, 𝐼𝜌𝑌 ) = ℎ𝜌 (𝑋,𝑌 ),
holds blockwise because 𝐼𝜌 acts as 𝐽0 or −𝐽0 and 𝐽0 is orthogonal with respect to the
Euclidean metric.

To identify the Kähler form we compute, for 𝑋,𝑌 ∈ 𝑇𝜌O𝜆,

Ω𝜌 (𝑋,𝑌 ) := ℎ𝜌 (𝑋, 𝐼𝜌𝑌 ) = 𝑔𝜌 (𝑆𝜌𝑋, 𝐼𝜌𝑌 ) = 𝑔𝜌 (𝐵𝜌𝑋,𝑌 ) = 𝜔𝜌 (𝑋,𝑌 ),

where we used 𝐼𝜌 = 𝑆−1
𝜌 𝐵𝜌 and 𝐵𝜌 = 𝑔−1

𝜌 𝜔𝜌. Thus Ω = 𝜔 and in particular Ω is
closed because 𝜔 is.

Integrability of 𝐼 can be established using standard results on homogeneous Kähler
manifolds: coadjoint orbits of compact semisimple Lie groups admit a unique invariant
complex structure compatible with the KKS symplectic form, and the Fisher untwisting
construction recovers this complex structure. We refer to the literature on coadjoint
orbits and geometric quantisation for details [12]. This proves that (O𝜆, ℎ, 𝜔, 𝐼) is
Kähler.

The theorem shows that the pair (𝑔, 𝜔) on the quantum state orbit admits a canonical
Fisher-Kähler untwisting to (ℎ, 𝜔, 𝐼), with 𝐵 encoding the two quadratures of the
information current. The metric ℎ will serve as the natural information metric for
gradient flows, while 𝜔 and 𝐼 continue to encode the Hamiltonian structure.

2.7 Fisher-Kähler gradients and Hamiltonian fields

Let Φ : O𝜆 → R be a smooth functional. The Fisher-Kähler gradient ∇ℎΦ(𝜌) is
defined by

ℎ𝜌
(
∇ℎΦ(𝜌), 𝑋

)
= dΦ𝜌 (𝑋) ∀ 𝑋 ∈ 𝑇𝜌O𝜆,

and the Hamiltonian vector field 𝑋Φ(𝜌) by

𝜔𝜌
(
𝑋Φ(𝜌), 𝑋

)
= dΦ𝜌 (𝑋) ∀ 𝑋 ∈ 𝑇𝜌O𝜆.

Using the Fisher structure 𝐵𝜌 and the intertwiner 𝑆𝜌 we can express these vector fields
more directly in terms of 𝑔𝜌.

First, note that

𝜔𝜌 (𝑋,𝑌 ) = 𝑔𝜌 (𝐵𝜌𝑋,𝑌 ) = 𝑔𝜌 (𝑆𝜌𝐼𝜌𝑋,𝑌 ) = ℎ𝜌 (𝐼𝜌𝑋,𝑌 ),

so that
𝜔𝜌

(
𝑋Φ(𝜌), 𝑋

)
= ℎ𝜌

(
𝐼𝜌𝑋Φ(𝜌), 𝑋

)
= dΦ𝜌 (𝑋).

By nondegeneracy of ℎ𝜌 this implies

𝐼𝜌𝑋Φ(𝜌) = ∇ℎΦ(𝜌), 𝑋Φ(𝜌) = −𝐼𝜌∇ℎΦ(𝜌).

Thus on a Fisher-Kähler manifold the Hamiltonian vector field associated with Φ is
obtained from the Fisher-Kähler gradient by rotation with the complex structure.
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On the orbit, and in particular for functionals of the form

𝐸 (𝜌) := Tr(𝐻𝜌),

one can write ∇ℎ𝐸 (𝜌) and 𝑋𝐸 (𝜌) in terms of commutators with 𝜌 and a suitable
effective Hamiltonian that depends on both 𝐻 and the spectrum of 𝜌. We will return
to these explicit formulas in Section 2, after discussing the classical limit.

2.8 Classical limit and the probability simplex

Before turning to dynamics it is useful to recall how the quantum construction above
reduces to the classical Fisher geometry on the probability simplex.

Let

Δ𝑛−1 :=
{
𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ (0, 1)𝑛

�� 𝑛∑︁
𝑖=1

𝑝𝑖 = 1
}

denote the open probability simplex. A tangent vector at 𝑝 is a vector 𝑣 ∈ R𝑛 with
zero sum,

∑
𝑖 𝑣𝑖 = 0. The Fisher information metric on Δ𝑛−1 is

𝑔𝑝 (𝑣, 𝑤) =

𝑛∑︁
𝑖=1

𝑣𝑖𝑤𝑖

𝑝𝑖
,

which is the classical analogue of the BKM metric. There is no intrinsic symplectic
form on Δ𝑛−1, but when the simplex is embedded into a Hamiltonian phase space the
restriction of the ambient symplectic structure induces a two form on the image, which
can be pushed forward to Δ𝑛−1.

In the commutative case the coadjoint orbit construction collapses: density matrices
are diagonal in a fixed basis, commutators vanish, and the KKS form is trivial. The
Fisher structure 𝐵 = 𝑔−1𝜔 therefore vanishes, and the untwisting procedure yields
𝑆 = 1, 𝐼 = 0, and ℎ = 𝑔. Thus the Fisher-Kähler structure degenerates to the pure
Fisher metric on Δ𝑛−1, as expected for a purely classical statistical manifold without
intrinsic Hamiltonian structure.

This degeneration illustrates a general pattern. The noncommutative degrees of
freedom in the quantum case are responsible for the nontrivial KKS form, the Fisher
structure, and the complex structure 𝐼. When these are absent the geometry simplifies
to the classical Fisher metric, and the Fisher-Kähler picture reduces to ordinary
information geometry. In the remainder of the paper we will keep both regimes in
mind, with the coadjoint orbit geometry providing the canonical finite dimensional
Fisher-Kähler benchmark.

2.9 Explicit gradients for linear observables

We now specialise the general Fisher-Kähler gradient and Hamiltonian vector field to
the linear energy functional

𝐸 (𝜌) := Tr(𝐻𝜌),
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with 𝐻 a fixed Hermitian operator on H . This case is particularly important, as it
underlies both reversible Schrödinger evolution and irreversible relaxation driven by
an energy functional.

Let 𝜌 ∈ O𝜆 with eigenbasis𝑈 and eigenvalues 𝜆𝑖. We denote 𝐻̃ = 𝑈†𝐻𝑈 and write
𝐻̃𝑖 𝑗 for its matrix elements. Tangent vectors are represented in this basis by Hermitian
matrices with zero diagonal, as before.

A standard calculation shows that the differential of 𝐸 at 𝜌 applied to a tangent vector
𝑋 ∈ 𝑇𝜌O𝜆 is

d𝐸𝜌 (𝑋) = Tr(𝐻𝑋) = 2
∑︁
𝑖< 𝑗

ℜ
(
𝐻̃𝑖 𝑗 𝑋̃𝑖 𝑗

)
,

whereℜ(𝑧) denotes the real part. Comparing this with the simplified block form of
the Fisher-Kähler metric,

ℎ𝜌
��
𝑖 𝑗

= 2|𝜆𝑖 − 𝜆 𝑗 |
(
1 0
0 1

)
,

we see that on each root plane the gradient ∇ℎ𝐸 (𝜌) has components proportional to
the off diagonal entries of 𝐻,

(∇ℎ𝐸 (𝜌))𝑖 𝑗 =
1

|𝜆𝑖 − 𝜆 𝑗 |
𝐻̃𝑖 𝑗 , 𝑖 ≠ 𝑗 .

This confirms that the dissipative flow is governed strictly by the energy differences of
the eigenstates. we see that on each root plane the gradient ∇ℎ𝐸 (𝜌) has components
proportional to the off diagonal entries of 𝐻,

(∇ℎ𝐸 (𝜌))𝑖 𝑗 =
1

𝑐𝑖 𝑗 |𝛽𝑖 𝑗 |
𝐻̃𝑖 𝑗 , 𝑖 ≠ 𝑗 .

In terms of commutators this can be written more invariantly as

∇ℎ𝐸 (𝜌) = Γ𝜌 (𝐻),

where Γ𝜌 is a positive definite linear map on Hermitian matrices with zero diagonal,
whose explicit form is determined by the weights 𝑐𝑖 𝑗 and 𝛽𝑖 𝑗 . The corresponding
Hamiltonian vector field is

𝑋𝐸 (𝜌) = −𝐼𝜌∇ℎ𝐸 (𝜌) = −𝐼𝜌Γ𝜌 (𝐻),

and generates a unitary orbit flow on O𝜆 that reduces to the usual von Neumann
equation when the full noncommutative structure is taken into account.

In more operational terms, if one introduces a suitable identification between tangent
vectors and traceless Hermitian operators, the Fisher-Kähler gradient flow of 𝐸
corresponds to a dissipative evolution that relaxes 𝜌 towards a Gibbs state compatible
with 𝐻, while the Hamiltonian flow generated by 𝐸 corresponds to coherent unitary
evolution. The Fisher-Kähler metric ℎ and the symplectic form 𝜔 ensure that these
two aspects are orthogonal quadratures of a single information current on the orbit.
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3 Classical Fisher geometry and density manifolds

The finite dimensional orbit construction can be extended, at least formally, to infinite
dimensional state spaces of probability densities and density operators. Before turning
to the universal generator and the spectral aspects it is helpful to summarise the
classical picture, which connects directly to Fokker-Planck and gradient flow structures
in statistical mechanics.

3.1 Probability densities on a configuration space

Let (𝑋,B, 𝜇) be a measure space that plays the role of configuration space. We
consider the manifold

P :=
{
𝜌 : 𝑋 → (0,∞)

�� 𝜌 smooth,
∫
𝑋

𝜌 d𝜇 = 1
}

of smooth strictly positive probability densities with respect to the reference measure
𝜇. Tangent vectors at 𝜌 are functions 𝜎 with zero mean,

𝑇𝜌P =
{
𝜎 : 𝑋 → R

�� ∫
𝑋

𝜎 d𝜇 = 0
}
.

The classical Fisher metric on P is defined by

𝑔𝜌 (𝜎1, 𝜎2) =

∫
𝑋

𝜎1(𝑥) 𝜎2(𝑥)
𝜌(𝑥) d𝜇(𝑥), 𝜎1, 𝜎2 ∈ 𝑇𝜌P,

which is the infinite dimensional analogue of the Fisher metric on the finite simplex.
This metric is monotone under Markov operators that preserve 𝜇 and arises naturally
in information geometry [6], optimal transport, and large deviation theory.

To introduce a symplectic structure one considers a phase space 𝑇∗𝑋 with its canonical
symplectic form and a Liouville measure, and lets 𝜌 be a marginal or coarse grained
density over 𝑋 . The full Hamiltonian dynamics in phase space then induces an effective
antisymmetric structure on P, whose precise form depends on the coarse graining.
In the simplest case of a Liouville flow with Hamiltonian 𝐻 (𝑥, 𝑝) = 𝑝2

2𝑚 +𝑉 (𝑥) one
recovers the classical continuity equation for 𝜌.

Formally, one can again define an information structure tensor

𝐵𝜌 = 𝑔−1
𝜌 𝜔𝜌,

where 𝜔𝜌 is the induced two form, and construct an associated Fisher-Kähler triple
(ℎ, 𝜔, 𝐼) under suitable regularity assumptions. In practice, establishing these struc-
tures rigorously in infinite dimensions requires careful functional analytic control and
is beyond the scope of this paper. We will instead treat the classical Fisher metric as a
formal guiding structure and focus on finite dimensional approximations and coarse
grained sectors where the geometry is effectively finite dimensional.
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3.2 Gradient flows and Fokker-Planck dynamics

A particularly important class of dynamics on P are Fokker-Planck equations of the
form

𝜕𝑡 𝜌𝑡 = ∇ ·
(
𝜌𝑡∇Φ + 𝐷∇𝜌𝑡

)
,

where Φ is a confining potential and 𝐷 is a diffusion coefficient. Under appropriate
boundary conditions this evolution preserves normalisation and positivity of 𝜌𝑡 and
drives the density towards a stationary state, often a Gibbs measure of the form
𝜌∗ ∝ 𝑒−Φ/𝐷 .

It is well known that many such Fokker-Planck equations can be written as gradient
flows [13, 14] of a free energy functional

F [𝜌] =

∫
𝑋

𝜌 log 𝜌 + 𝜌Φ d𝜇,

with respect to a Wasserstein or Fisher type metric on P. In this viewpoint the diffusion
term arises from the entropy gradient and the drift term from the potential. There is
also a complementary formulation in terms of a symmetric Markov generator and its
Dirichlet form, which plays the role of 𝐺 in the unified generator schematic (1.2).

The Fisher metric 𝑔 provides a natural local approximation to the Wasserstein geometry
for small fluctuations around equilibrium and appears explicitly in the second variation
of relative entropy. In the UIH framework one can therefore regard classical Fokker-
Planck dynamics as a particular realisation of gradient flow in a Fisher type metric, with
an underlying information current whose spectral properties determine hypocoercive
decay rates.

In the next section we return to the finite dimensional quantum picture and formulate
the unified generator in a setting where both the Fisher-Kähler geometry and the
spectral analysis can be made fully explicit.

4 Unified generator and metriplectic structure

We now recast the Fisher-Kähler geometry on quantum state orbits in the operator
language of generators acting on observables and states. This makes the connection to
Universal Information Hydrodynamics and the unified operator framework explicit
and prepares the ground for the spectral analysis and the link to Frieden.

4.1 Generator acting on observables

Let A denote a suitable space of observables on O𝜆, for example smooth real valued
functionals 𝐹 : O𝜆 → R or polynomial functions of expectation values. The Fisher-
Kähler metric and the symplectic form define a symmetric bracket and a Poisson
bracket on A by

(𝐹, 𝐺)ℎ (𝜌) := ℎ𝜌
(
∇ℎ𝐹 (𝜌),∇ℎ𝐺 (𝜌)

)
,
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{𝐹, 𝐺}𝜔 (𝜌) := 𝜔𝜌
(
𝑋𝐹 (𝜌), 𝑋𝐺 (𝜌)

)
,

where ∇ℎ𝐹 and 𝑋𝐹 are the Fisher-Kähler gradient and the Hamiltonian vector field
associated with 𝐹 and similarly for 𝐺. The symmetric bracket is nonnegative and
vanishes if and only if one of the gradients is zero; the Poisson bracket is antisymmetric
and satisfies the Jacobi identity.

Given a distinguished functional Φ that plays the role of a free energy, we define an
evolution of observables by

d
d𝑡
𝐹 (𝜌𝑡 ) = {𝐹,Φ}𝜔 (𝜌𝑡 ) − (𝐹,Φ)ℎ (𝜌𝑡 ).

This can be written schematically as

d
d𝑡
𝐹 = (J + G)𝐹,

where the antisymmetric part

(J𝐹) (𝜌) := {𝐹,Φ}𝜔 (𝜌)

and the symmetric part
(G𝐹) (𝜌) := −(𝐹,Φ)ℎ (𝜌)

can be regarded as the dual action of operators 𝐽 and 𝐺 on tangent or cotangent spaces.
In this language the unified generator 𝐾 = 𝐺 + 𝐽 acts on fluctuations and encodes both
reversible and irreversible evolution in a single object.

4.2 Generator acting on states

Equivalently, one can focus on the evolution of states 𝜌𝑡 on the orbit. Given Φ, the
Fisher-Kähler gradient and Hamiltonian vector fields generate the flow

¤𝜌𝑡 = −∇ℎΦ(𝜌𝑡 ) + 𝑋Φ(𝜌𝑡 ),

as in (1.2). The symmetric part of the generator 𝐺 is related to the negative of the
Hessian of Φ in the Fisher-Kähler metric, while the antisymmetric part 𝐽 is related to
the Hamiltonian vector field 𝑋Φ via the complex structure 𝐼.

Expectation values of observables evolve according to

d
d𝑡
𝐹 (𝜌𝑡 ) = ℎ𝜌𝑡

(
∇ℎ𝐹 (𝜌𝑡 ), ¤𝜌𝑡

)
= {𝐹,Φ}𝜔 (𝜌𝑡 ) − (𝐹,Φ)ℎ (𝜌𝑡 ),

which reproduces (4.1).

In the quantum case, and for functionals 𝐹 (𝜌) = Tr(𝐴𝜌) and Φ(𝜌) = Tr(𝐻𝜌) − 𝑆(𝜌)
with 𝑆 an entropy, one recovers familiar operator evolutions such as the von Neumann
equation and Lindblad type dissipative terms. The Fisher-Kähler metric determines
the gradient part and thus the structure of entropy production, while the KKS form
determines the Hamiltonian part.
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4.3 Relation to hypocoercivity and RG fingerprints

The symmetric part𝐺 of the generator𝐾 defines a nonpositive selfadjoint operator on an
appropriate Hilbert space of fluctuations, for example the tangent space at equilibrium
equipped with the Fisher-Kähler metric. Its spectrum consists of relaxation rates 𝜆 ≥ 0,
with zero corresponding to conserved quantities.

Hypocoercivity [15] refers to the situation where the symmetric part 𝐺 alone has a
large kernel, but the full generator 𝐾 = 𝐺 + 𝐽 still yields exponential convergence
to equilibrium thanks to the interplay between 𝐺 and the antisymmetric part 𝐽. The
Fisher-Kähler geometry provides a natural setting for hypocoercive estimates: the
metric ℎ and the complex structure 𝐼 determine how the dissipative and Hamiltonian
channels couple, and the operator 𝐵 = 𝑔−1𝜔 encodes their relative alignment.

As a minimal toy model one can already see a golden structure at the level of a
two-channel renormalisation step. Let (𝐺𝑛, 𝐽𝑛)⊤ denote the effective geometric and
Fisher (dissipative) contributions at a coarse-graining scale 𝑛. A simple local update
rule that allows each channel to feed the other is(

𝐺𝑛+1
𝐽𝑛+1

)
=

(
1 1
1 0

) (
𝐺𝑛
𝐽𝑛

)
.

This Fibonacci matrix has eigenvalues

𝜆± =
1 ±
√

5
2

= 𝜑, − 1
𝜑
,

so that under repeated coarse-graining the ratio 𝐺𝑛/𝐽𝑛 flows to the golden value 𝜑
for generic initial conditions. In this way an elementary two-channel RG map already
exhibits a golden fixed ratio between the reversible and dissipative quadratures of
the unified current. More elaborate RG schemes on larger mode spaces inherit the
same logic, with the golden ratio appearing as an eigenvalue or eigenvalue ratio of the
coarse-grained generator in suitable sectors.

5 Fisher spectral channels and Frieden’s EPI

We now sharpen the spectral viewpoint outlined in Section 1.3 and make the connection
to Frieden’s Extreme Physical Information (EPI) framework explicit. The central
idea is to interpret the Fisher part of the generator as defining a spectral channel for
information transfer, with the reversible part acting as a pump that feeds energy into
this channel.

5.1 Fisher spectral measures and information reception

Let 𝐺 denote the symmetric part of the generator 𝐾 acting on an appropriate Hilbert
space Hfluc of fluctuations. For concreteness one can take Hfluc to be the tangent
space at an equilibrium state equipped with the Fisher-Kähler metric ℎ, or the space of
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square integrable functions with respect to an invariant measure. Assume that 𝐺 is
selfadjoint and nonpositive:

𝐺 ≤ 0.
By the spectral theorem there exists a projection valued measure 𝐸 (𝜆) on [0,∞) such
that

−𝐺 =

∫ ∞

0
𝜆 d𝐸 (𝜆).

Given an initial fluctuation 𝑢0 ∈ Hfluc the dissipative evolution is 𝑢𝑡 = 𝑒𝑡𝐺𝑢0, with

𝑢𝑡 =

∫ ∞

0
𝑒−𝜆𝑡 d𝐸 (𝜆)𝑢0.

To probe a particular slow sector we choose a bounded observable 𝐴 on Hfluc, for
example a projection onto a low dimensional mode subspace, and define an effective
scalar relaxation signal

𝑅(𝑡) := ⟨𝐴𝑢𝑡 , 𝑢𝑡⟩ℎ .
This can be written as

𝑅(𝑡) =

∫ ∞

0
𝑒−2𝜆𝑡 d𝜈(𝜆),

where the finite measure

𝜈(𝐵) :=
〈
𝐴𝐸 (𝐵)𝑢0, 𝑢0

〉
ℎ

encodes how strongly the initial fluctuation couples to different relaxation rates in the
slow sector.

A natural notion of information reception in this channel is

𝐼 (𝑡) :=
∫ ∞

0

(
1 − 𝑒−2𝜆𝑡 ) d𝜈(𝜆),

which vanishes at 𝑡 = 0 and saturates at 𝐼 (∞) = 𝜈( [0,∞)) for large 𝑡. For small
times one can expand the exponential and express 𝐼 (𝑡) as a power series in 𝑡 whose
coefficients are moments of the rate measure 𝜈.

To extract universal information about the early time growth one is particularly
interested in the behaviour of 𝜈 at large 𝜆. If 𝜈 has a density 𝜌eff (𝜆) with respect to
Lebesgue measure and

𝜌eff (𝜆) ∼ 𝐶 𝜆−1−𝛿 as 𝜆→∞

for some 𝐶 > 0 and 𝛿 > 0, then standard Tauberian theorems imply

𝐼 (𝑡) ∝ 𝑡 𝛿+1 as 𝑡 ↓ 0.

Thus the power law tail of the Fisher spectral density in a slow sector is directly
imprinted in the early time growth exponent of information reception.
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5.2 J to I pumping and Frieden’s functionals

In Frieden’s EPI framework one introduces two functionals 𝐼 [𝜌] and 𝐽𝐹 [𝜌], interpreted
as data information and source information. The EPI principle states that physical
field equations arise from extremising

𝐾EPI [𝜌] = 𝐼 [𝜌] − 𝐽𝐹 [𝜌]

under appropriate constraints. In many examples 𝐼 is a Fisher information functional
and 𝐽𝐹 encodes constraints or prior structure, such as a potential or a coupling. To
avoid confusion with the antisymmetric part 𝐽 of the unified generator 𝐾 = 𝐺 + 𝐽, we
consistently write 𝐽𝐹 for Frieden’s source information functional.

In the Fisher-Kähler setting we can reinterpret 𝐼 and 𝐽𝐹 geometrically.

• The functional 𝐼 is associated with the dissipative channel: its second variation at
equilibrium defines the Dirichlet form associated with 𝐺 and thus the Fisher spectral
measure 𝜈 in the relevant slow sector.

• The functional 𝐽𝐹 is associated with the reversible and structural channel: it
often has a Hamiltonian representation via 𝑋𝐽𝐹 and its variation contributes to the
antisymmetric part 𝐽 of the unified generator 𝐾 .

From this viewpoint J to I mode emergence can be described as follows. Suppose that
the reversible part of the generator is rapidly pumping fluctuations into a particular
mode family, for example by parametric driving or coupling to an external source,
while the dissipative part 𝐺 governs the actual relaxation and information reception in
that channel. The rate at which the pumped fluctuations are converted into received
information is then controlled by the Fisher spectral density 𝜌eff and obeys the early
time power law (5.1). In this sense the spectral tail is a fingerprint of how efficiently
source information 𝐽𝐹 is transferred into data information 𝐼 in a given sector.

Certain exponents acquire a distinguished status. For example, if

𝛿 = 𝜑 :=
1 +
√

5
2

,

then the early time behaviour is
𝐼 (𝑡) ∝ 𝑡𝜑 ,

and the corresponding Fisher spectral tail has a golden power law. In the UIH picture
this identifies a golden information channel with a specific Fisher spectral fingerprint,
rather than an isolated numerical coincidence.

The Fisher-Kähler geometry fixes the metric and symplectic structures that enter
the definitions of 𝐺 and 𝐽, while the choice of functionals 𝐼 and 𝐽 in an EPI style
variational principle determines which physical sector one is describing. In Section 6
we will see how this plays out in a scalar sector whose free energy functional admits
a Bogomolny type completion and a bounded entropy, and which later underlies the
Fisher halo construction in UIH gravity.
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6 Bounded Fisher entropy and a scalar information sector

We now give a worked example of an information functional on a Fisher type state
space that exhibits both a Bogomolny structure and a bounded entropy. This scalar
sector will later underlie the Fisher halo construction in UIH gravity, but here we focus
purely on its information geometric and variational properties and on how it realises
an EPI style functional anchored in the Fisher spectral channel.

6.1 Scalar field, Fisher energy, and source

Let 𝑋 be a configuration space with reference measure 𝜇 and let 𝜎 : 𝑋 → R be a
smooth scalar field. We think of 𝜎 as a coarse grained logarithmic field parametrising
a family of local vacua or occupation ratios. The state space is the affine space of such
fields modulo an appropriate normalisation constraint, and tangent vectors are scalar
perturbations 𝛿𝜎.

We introduce a Fisher type quadratic form on gradients of 𝜎,

𝐼 [𝜎] :=
1
2

∫
𝑋

𝑤(𝑥)
��∇𝜎(𝑥)��2 d𝜇(𝑥),

where 𝑤(𝑥) > 0 is a given weight that encodes the local stiffness of the scalar sector.
This functional plays the role of a Fisher information in the sense that it measures the
sensitivity of a family of local densities to changes in a parameter represented by 𝜎.

The scalar sector is coupled to an external source 𝑞(𝑥), which in applications is
generated by baryonic matter or other degrees of freedom. For the moment we take 𝑞
as given and define a linear source functional

𝐽 [𝜎] :=
∫
𝑋

𝑤(𝑥) ∇𝜎(𝑥) · 𝑞(𝑥) d𝜇(𝑥).

In this form 𝐽 couples the gradient of 𝜎 to a vector field 𝑞, but one can equivalently
integrate by parts and write a coupling to a divergence of 𝑞 or to a scalar source density,
depending on boundary conditions. The precise choice is not essential for the present
discussion.

The pure Fisher sector free energy is then

𝐹0 [𝜎] := 𝐼 [𝜎] − 𝐽 [𝜎] .

Formally this is an EPI style functional with 𝐼 the Fisher part and 𝐽 the source part.
We now show that under suitable conditions on 𝑤 and 𝑞 this functional admits a
Bogomolny type completion.
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6.2 Bogomolny completion and Fisher halos

Consider the quadratic form

𝐹0 [𝜎] =
1
2

∫
𝑋

𝑤 |∇𝜎 |2 d𝜇 −
∫
𝑋

𝑤 ∇𝜎 · 𝑞 d𝜇,

where we have dropped the explicit dependence on 𝑥 in the integrand for readability.
We complete the square by writing

1
2
𝑤 |∇𝜎 |2 − 𝑤∇𝜎 · 𝑞 =

1
2
𝑤

(
|∇𝜎 |2 − 2∇𝜎 · 𝑞 + |𝑞 |2

)
− 1

2
𝑤 |𝑞 |2

=
1
2
𝑤 |∇𝜎 − 𝑞 |2 − 1

2
𝑤 |𝑞 |2.

Integrating this identity over 𝑋 we obtain

𝐹0 [𝜎] =
1
2

∫
𝑋

𝑤 |∇𝜎 − 𝑞 |2 d𝜇 − 1
2

∫
𝑋

𝑤 |𝑞 |2 d𝜇.

The second term depends only on the source 𝑞 and the weight 𝑤, not on 𝜎. We denote
it by

𝑄𝐹 [𝑞] :=
1
2

∫
𝑋

𝑤 |𝑞 |2 d𝜇.

In applications this quantity will be called the pure Fisher charge of the source sector.
The free energy can then be written compactly as

𝐹0 [𝜎] =
1
2
∥∇𝜎 − 𝑞∥2𝑤 − 𝑄𝐹 [𝑞],

where we have introduced the weighted norm

∥𝑣∥2𝑤 :=
∫
𝑋

𝑤 |𝑣 |2 d𝜇.

From (6.2) it is immediate that

𝐹0 [𝜎] ≥ −𝑄𝐹 [𝑞],

with equality if and only if

∇𝜎(𝑥) = 𝑞(𝑥) for almost every 𝑥 ∈ 𝑋.

Configurations satisfying (6.2) are Bogomolny saturated for the Fisher sector and
realise the maximal possible extraction of pure Fisher charge from the source. These
configurations are the Fisher analogues of BPS states, and in the UIH gravity context
they correspond to Fisher halos that exactly follow the source in gradient space.

When 𝑞 is generated from a scalar potential or a baryon density, the BPS equation
(6.2) becomes a first order partial differential equation for 𝜎 whose solutions are
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determined by the source and the weight. For example, in a radial setting with 𝑋 = R3

and spherically symmetric 𝑤(𝑟) and 𝑞(𝑟) one obtains halo profiles 𝜎(𝑟) that depend
only on radial integrals of the source. The key point for our purposes is that the BPS
completion is exact and the pure Fisher charge 𝑄𝐹 [𝑞] is a fixed functional of the
source sector, independent of the scalar field configuration.

6.3 Bounded Fisher entropy from logistic occupation

The Bogomolny completion (6.2) shows that the pure Fisher sector free energy 𝐹0 [𝜎]
is bounded below by −𝑄𝐹 [𝑞] and has minimisers given by the first order BPS equation
(6.2). However, there are two reasons to introduce an additional entropy functional in
the scalar sector.

First, in many applications the scalar field𝜎 has the interpretation of a local logarithmic
occupation ratio, so that probabilities or occupation fractions constructed from 𝜎

should remain in a bounded interval. Second, a bounded entropy favours configurations
that avoid extremes of occupation and can define a smooth truncation of tails that
would otherwise extend indefinitely.

To formalise this we map 𝜎(𝑥) to a local probability 𝑝(𝑥) ∈ (0, 1) via a sigmoidal
function. A convenient choice is the logistic map

𝑝(𝑥) :=
1

1 + 𝑒−𝛽𝜎 (𝑥 )
, 𝛽 > 0,

which is monotone increasing in 𝜎 and tends to 0 and 1 as 𝜎 → −∞ and 𝜎 → +∞
respectively. We then define the local binary entropy density

𝑠
(
𝑝(𝑥)

)
:= −𝑝(𝑥) log 𝑝(𝑥) −

(
1 − 𝑝(𝑥)

)
log

(
1 − 𝑝(𝑥)

)
,

which satisfies

0 < 𝑠(𝑝) ≤ log 2, 𝑠(𝑝) strictly concave on (0, 1).

This bounded entropy density is maximal at 𝑝 = 1
2 and vanishes as 𝑝 → 0 or 𝑝 → 1.

Given a nonnegative weight 𝑢(𝑥) that may in general differ from 𝑤(𝑥), we define the
bounded Fisher entropy of the scalar field by

𝑆bnd [𝜎] :=
∫
𝑋

𝑢(𝑥) 𝑠
(
𝑝(𝑥)

)
d𝜇(𝑥),

with 𝑝(𝑥) as in (6.3). This functional satisfies

0 ≤ 𝑆bnd [𝜎] ≤ (log 2)
∫
𝑋

𝑢(𝑥) d𝜇(𝑥),

so it is globally bounded above and below. The upper bound is attained when 𝑝(𝑥) is
identically one half on the support of 𝑢, and the lower bound is attained when 𝑝(𝑥)
approaches 0 or 1 almost everywhere.

The bounded entropy functional (6.3) encodes the idea that the scalar sector cannot
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sustain arbitrary extremes of occupation everywhere: maximal entropy favours
intermediate values of 𝜎, while extremely large positive or negative values of 𝜎
suppress 𝑠(𝑝) and thus reduce entropy. This tension between the Fisher gradient
energy and the bounded entropy leads to a nontrivial deformation of the BPS halo
solutions of the pure Fisher sector.

6.4 Scalar free energy and EPI structure

Combining the pure Fisher functional 𝐹0 [𝜎] and the bounded entropy 𝑆bnd [𝜎] we
arrive at a scalar sector free energy of the form

𝐹𝑇 [𝜎] :=
1
2
∥∇𝜎 − 𝑞∥2𝑤 − 𝑄𝐹 [𝑞] − 𝑇𝐹 𝑆bnd [𝜎],

where 𝑇𝐹 ≥ 0 is an effective Fisher temperature controlling the relative weight of the
entropy term. For 𝑇𝐹 = 0 this reduces to the BPS functional (6.2); for 𝑇𝐹 > 0 the
bounded entropy penalises extreme occupation patterns.

This free energy can be viewed as an EPI style functional on a Fisher type scalar state
space by identifying

𝐼sc [𝜎] :=
1
2

∫
𝑋

𝑤 |∇𝜎 |2 d𝜇,

𝐽𝐹,sc [𝜎] :=
∫
𝑋

𝑤 ∇𝜎 · 𝑞 d𝜇 + 𝑇𝐹 𝑆bnd [𝜎],

so that 𝐹𝑇 = 𝐼sc − 𝐽𝐹,sc up to the constant −𝑄𝐹 [𝑞]. The Fisher functional 𝐼sc
determines the quadratic form associated with the symmetric part 𝐺 of a scalar sector
generator, and hence controls the Fisher spectral channel. The source functional 𝐽𝐹,sc
incorporates both the linear coupling to the external field 𝑞 and the bounded entropy
that reflects internal constraints of the scalar sector.

Extremising 𝐹𝑇 with respect to 𝜎 yields the Euler Lagrange equation

−∇ · (𝑤∇𝜎) + ∇ · (𝑤𝑞) − 𝑇𝐹
𝛿𝑆bnd
𝛿𝜎

= 0,

where the functional derivative of the bounded entropy is

𝛿𝑆bnd
𝛿𝜎
(𝑥) = 𝑢(𝑥) 𝑠′

(
𝑝(𝑥)

) d𝑝
d𝜎
(𝑥).

Using the explicit forms of 𝑠(𝑝) and 𝑝(𝜎) one finds

𝑠′(𝑝) = − log
𝑝

1 − 𝑝 ,
d𝑝
d𝜎

= 𝛽 𝑝(1 − 𝑝),

so that
𝛿𝑆bnd
𝛿𝜎
(𝑥) = −𝛽 𝑢(𝑥) 𝑝(𝑥)

(
1 − 𝑝(𝑥)

)
log

𝑝(𝑥)
1 − 𝑝(𝑥) .

The right hand side is a bounded, nonlinear function of 𝜎 that vanishes when 𝑝 = 0,
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𝑝 = 1
2 , or 𝑝 = 1, and is odd under 𝜎 ↦→ −𝜎.

In the zero temperature limit 𝑇𝐹 → 0 the entropy term drops out and the Euler
Lagrange equation reduces to the BPS condition

∇ ·
(
𝑤(∇𝜎 − 𝑞)

)
= 0,

whose solutions include the pointwise BPS configuration ∇𝜎 = 𝑞 under suitable
boundary conditions. For 𝑇𝐹 > 0 the bounded entropy adds a smooth, bounded
nonlinearity to the equation that deforms and truncates the BPS halo profiles. From the
EPI perspective this corresponds to a scalar sector in which the pure Fisher information
is no longer fully extractable due to internal occupancy constraints.

6.5 Dynamic scalar sector and Fisher spectral fingerprints

So far we have treated the scalar sector statically, focusing on the free energy and its
minimisers. To connect with the Fisher spectral channel and the J to I pumping picture
we briefly outline a dynamic extension.

Let 𝜎𝑡 (𝑥) evolve according to a gradient flow with respect to the Fisher type metric
and the free energy 𝐹𝑇 ,

𝜕𝑡𝜎𝑡 = −∇ℎ𝐹𝑇 (𝜎𝑡 ),
where ℎ is an appropriate Fisher type metric on the space of scalar fields. Linearising
this evolution around a stationary solution 𝜎∗ one finds a generator of the form

𝐺scalar = −𝐿𝐹 − 𝑇𝐹 𝐿𝑆 ,

where 𝐿𝐹 is a positive selfadjoint operator derived from the quadratic Fisher form and
𝐿𝑆 is a bounded operator arising from the second variation of the bounded entropy.
The spectrum of 𝐺scalar can be analysed to extract an effective rate density 𝜌eff (𝜆) for
scalar relaxations in a given mode family.

If the scalar sector is additionally coupled to a reversible channel, for example through
a Hamiltonian term that drives oscillations or waves in 𝜎𝑡 , one obtains a full unified
generator 𝐾scalar = 𝐺scalar + 𝐽scalar. In this setting J to I pumping corresponds to the
reversible part feeding energy into certain scalar modes, which are then dissipated
through 𝐺scalar. The early time growth of information reception in these modes is
controlled by the high frequency tail of 𝜌eff , and particular power law behaviours, such
as the golden exponent case, can be traced back to specific Fisher spectral fingerprints
of the scalar sector.

From the present point of view the key conclusion is that the scalar free energy (6.4) is
not an isolated model but a concrete instance of an EPI style functional on a Fisher
type state space, with a well defined Fisher spectral channel and a bounded entropy
that embodies internal occupancy constraints. In later work this scalar sector will be
coupled to Newtonian gravity to produce Fisher halos that inherit both the Bogomolny
structure and the bounded entropy truncation, but these physical interpretations lie
beyond the scope of the present paper.

25



7 UIH and extreme physical information

Frieden’s “extreme physical information” (EPI) programme [17–19] starts from a
variational principle for two Fisher-type scalars: an observed Fisher information 𝐼
associated with a data channel, and a bound information 𝐽 carried by the source or
underlying field. The basic axiom is written schematically as

𝛿(𝐼 − 𝐽) = 0,

with the claim that, once 𝐼 and 𝐽 are written in terms of a field 𝜓 and its derivatives,
the Euler-Lagrange equations reproduce the familiar dynamical laws of physics.

In Universal Information Hydrodynamics [3, 4], the starting point is different but the
central scalar functional has the same structure. We take a probability density 𝜌 (and,
when present, a phase 𝑆) on a configuration space 𝑀, endow P(𝑀) with a Fisher
metric 𝐺 and a compatible symplectic form 𝐽 to form a Fisher-Kähler structure, and
then build dynamics as metriplectic flows on this information geometry. The natural
Fisher functional on 𝑀 is

𝐼UIH [𝜌] =
∫
𝑀

𝜌(𝑥) 𝑔𝑖 𝑗 (𝑥) 𝜕𝑖 log 𝜌(𝑥) 𝜕 𝑗 log 𝜌(𝑥) d𝜇(𝑥),

where 𝑔𝑖 𝑗 is the information metric and 𝜇 is the reference measure. For a given system
there is a preferred reference state 𝜌∗ (vacuum, equilibrium or prior), with its own
Fisher content 𝐼UIH [𝜌∗]. UIH dynamics then naturally attach physical meaning not
to 𝐼UIH in isolation, but to the difference between the current Fisher content and this
background value.

This makes the link to EPI precise. At the structural level, we can identify

𝐼 ←→ 𝐼UIH [𝜌], 𝐽 ←→ 𝐼UIH [𝜌∗],

so that the EPI functional 𝐼 − 𝐽 is nothing more than the Fisher excess of the current
state over the reference state inside the UIH geometry. In particular, the variation (7) is
naturally reinterpreted as selecting those UIH flows which extremise the Fisher excess,
subject to the constraints encoded in the choice of configuration space, Hamiltonian
part and dissipative part. No additional axiom is required: the EPI functional is simply
a particular scalar observable on the universal Fisher-Kähler manifold.

This reinterpretation becomes concrete in the scalar halo and BPS saturation construc-
tions. In the Fisher halo model, the scalar field 𝜎 is governed by an action whose
Fisher part is of the form

I[𝜎] =
∫
R3
𝛼(x) |∇𝜎(x) |

2

𝜎(x) d3𝑥,

together with a bounded entropy correction and baryonic source terms. Completing
the square yields a Bogomolny-type Fisher inequality,

I[𝜎] ≥ Ibnd [𝜌𝑏],

with equality if and only if 𝜎 satisfies a first-order “Fisher BPS” equation determined
by the baryon density 𝜌𝑏. From the UIH perspective this is a particular instance of a
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Fisher lower bound on a coadjoint orbit; from the EPI perspective it is precisely an
extremum of an 𝐼 − 𝐽 type functional, with I[𝜎] playing the role of 𝐼 and the bound
Ibnd playing the role of 𝐽. The BPS-saturated halo thus realises an EPI extremum
inside a fully geometric UIH setting.

A complementary and genuinely experimental example comes from anisotropic
transport in strange metals. Here the “channel” is the angular dependence of the
longitudinal resistivity 𝜌𝑧𝑧 (𝜃) in a tilted magnetic field. Given an angular sweep
(𝜃𝑖 , 𝜌𝑧𝑧,𝑖), we define a normalised probability density on the circle,

𝑝(𝜃𝑖) =
𝜌𝑧𝑧,𝑖∑
𝑗 𝜌𝑧𝑧, 𝑗

,

and use it to compute a discrete Fisher information 𝐼𝜃 on 𝑆1,

𝐼𝜃 ≈
∑︁
𝑖

𝑝(𝜃𝑖)
(
Δ log 𝑝
Δ𝜃

)2

𝑖

Δ𝜃𝑖 ,

with 𝜃 measured in radians and finite differences taken on the circle. In parallel we
decompose the dimensionless anisotropy

𝑦(𝜃) = 𝜌𝑧𝑧 (𝜃)
⟨𝜌𝑧𝑧⟩𝜃

− 1

into a small number of angular Fisher modes via a stabilised harmonic fit

𝑦(𝜃) ≈
𝐾∑︁
𝑘=1

[
𝑎𝑘 cos(𝑘𝜃) + 𝑏𝑘 sin(𝑘𝜃)

]
,

and record the harmonic amplitudes 𝐴𝑘 =

√︃
𝑎2
𝑘
+ 𝑏2

𝑘
and their power fractions

𝑓𝑘 = 𝐴2
𝑘
/∑ℓ 𝐴2

ℓ
.

Applied to the Warwick 3D strange metal dataset, we find that: (i) for fixed field 𝐻 the
Fisher information 𝐼𝜃 is largest at low temperature and decreases monotonically as 𝑇
increases; (ii) a very small number of harmonics (𝐾 = 3) captures essentially all of the
variance in 𝑦(𝜃), with variance explained exceeding 99 % in all cases; and (iii) the
Shannon entropy of the harmonic power fractions,

𝑆harm = −
𝐾∑︁
𝑘=1

𝑓𝑘 log 𝑓𝑘 ,

lies in a narrow band, indicating that the strange metal occupies a structured interior
region of the Fisher spectral simplex rather than collapsing to either a single mode or a
completely flat spectrum.

From the EPI viewpoint this experiment is a direct measurement of an information
channel: the latent angular mode content (the “bound” 𝐽) is partially realised as
observable Fisher structure 𝐼𝜃 and a finite set of harmonics 𝐴𝑘 in the transport data.
From the UIH viewpoint it is a concrete example of a non-equilibrium condensed-
matter system whose configuration space (here the circle of directions) carries a Fisher
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metric, whose dynamics populate a low-dimensional Fisher spectral subspace, and
whose information content 𝐼𝜃 evolves in a controlled way under changes of external
parameters (𝐻,𝑇, 𝜙).
In this sense, EPI is not a separate foundational principle but a particular way of slicing
the universal UIH geometry: the functional 𝐼 − 𝐽 becomes the Fisher excess of a state
over the reference Fisher vacuum, and EPI extrema correspond to BPS-type saturations
or Fisher-spectral fixed points within the UIH flow.

8 Discussion and outlook

We conclude by summarising the main geometric structures developed in this paper,
their role in Universal Information Hydrodynamics, and how they connect to earlier
and future work. In particular we have placed Frieden’s Extreme Physical Information
(EPI) programme on an intrinsic Fisher-Kahler footing and exhibited explicit scalar
and experimental channels in which EPI functionals arise as geometrically natural
quantities rather than external postulates.

8.1 Summary of the Fisher-Kahler construction

Starting from a state space equipped with a monotone information metric and a
symplectic form we introduced the information structure tensor

𝐵𝜌 = 𝑔−1
𝜌 𝜔𝜌,

and defined a Fisher structure by requiring that −𝐵2
𝜌 is positive definite. On finite

dimensional quantum state orbits of fixed spectrum we showed explicitly that this
condition holds: the BKM metric and the KKS form decompose into two dimensional
root plane blocks, on each of which 𝐵𝜌 is a scalar multiple of the standard complex
structure and −𝐵2

𝜌 is a positive multiple of the identity.

From the Fisher structure we constructed the positive intertwiner

𝑆𝜌 =

√︃
−𝐵2

𝜌,

the twisted complex structure
𝐼𝜌 = 𝑆−1

𝜌 𝐵𝜌,

and the Fisher-Kahler metric

ℎ𝜌 (𝑋,𝑌 ) = 𝑔𝜌 (𝑆𝜌𝑋,𝑌 ).

We proved that on coadjoint orbits the resulting triple (ℎ, 𝜔, 𝐼) is Kahler and that
its Kahler form coincides with the original KKS symplectic form. The metric ℎ
and the complex structure 𝐼 are therefore intrinsic to the pair (𝑔, 𝜔) and encode two
quadratures of a single information current on the state space: a symmetric quadrature
associated with ℎ and an antisymmetric quadrature associated with 𝜔.

This Fisher-Kahler structure provides the natural geometry for gradient flows and
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Hamiltonian flows on quantum state manifolds and reduces to the classical Fisher
metric on commutative probability simplices when the noncommutative degrees of
freedom are absent. In subsequent sections we showed how the same geometry
organises EPI-style functionals and scalar Fisher sectors, so that what appear as
separate quantities in Frieden’s original formulation descend from a single geometric
object.

8.2 Unified generator and slow sector fingerprints

Equipped with the Fisher-Kahler geometry we formulated a unified generator

𝐾 = 𝐺 + 𝐽,

with symmetric nonpositive part 𝐺 and antisymmetric part 𝐽, acting on observables
or on fluctuations around equilibrium. The metric ℎ induces a symmetric bracket for
observables, and the symplectic form 𝜔 induces a Poisson bracket; the generator 𝐾
combines these into a single evolution operator.

In this setting hypocoercivity arises from the interplay between 𝐺 and 𝐽: even when
𝐺 has a large kernel, the full generator 𝐾 can induce exponential convergence to
equilibrium through the coupling enforced by the Fisher-Kahler geometry. The
“Fisher-based relaxation” intuition of EPI is thus realised as hypocoercive convergence
generated by a single Fisher-Kahler current rather than by a separate dynamical principle.
Renormalisation group procedures then coarse grain this structure and produce
fingerprints of slow sectors in terms of characteristic relaxation rates, hypocoercive
indices, and curvature data of the Fisher-Kahler metric.

These fingerprints align naturally with the slow sectors studied in Universal Information
Hydrodynamics. Quantum hydrodynamic sectors, dissipative Lindblad sectors, and
classical Fokker-Planck sectors can all be seen as projections of the same underlying
Fisher-Kahler current onto different coarse grained variables, with the unified generator
providing a single language for reversible and irreversible dynamics and a natural
habitat for EPI functionals.

8.3 Fisher spectral channels and Frieden’s EPI

We interpreted the symmetric part 𝐺 of the unified generator as defining a Fisher
spectral channel for information transfer. The spectral decomposition of −𝐺 yields a
distribution of relaxation rates, and for each slow sector one can define an effective
rate measure whose tail controls early time growth of received information. When
this tail has a power law form the associated information reception grows as a power
of time, with the exponent directly linked to the spectral exponent. This provides the
geometric mechanism behind EPI-style information growth laws.

Within this setting we gave a precise bridge between EPI and UIH. For one-dimensional
translation families we proved an exact EPI-to-UIH Fisher identity: the parametric
Fisher information 𝐼param associated with translations of a location parameter coincides
with the spatial Fisher information 𝐼𝑥 computed from gradients of the probability
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density. We verified this equality analytically and numerically for Gaussian, Laplace,
and Cauchy families using a dedicated EPI-UIH check script, obtaining high precision
agreement between parametric, grid-based, and closed form expressions for the Fisher
information. In this sense the EPI data functional 𝐼 and the UIH spatial Fisher
functional are two evaluations of the same underlying quantity.

The source functional 𝐽𝐹 is naturally associated with structural and Hamiltonian
contributions encoded in the antisymmetric part 𝐽 of the unified generator. 𝐽𝐹 to 𝐼
pumping then describes the process by which reversible dynamics injects energy into
modes that relax through the Fisher channel, with the Fisher spectral tail acting as a
fingerprint of how efficiently source information is converted into data information.
Special exponents, such as the golden case, correspond to distinguished Fisher spectral
patterns. A Fisher spectral tail 𝜌eff (𝜆) ∼ 𝐶𝜆−1−𝛿 with 𝛿 + 1 = 𝜑 defines a golden
information channel, and even simple two-channel RG maps already exhibit 𝜑 as a
scaling eigenvalue for the relative weight of the reversible and dissipative quadratures.
This connects Frieden’s golden exponent observations directly to the spectral geometry
and RG structure of the unified generator.

8.4 Scalar sector as a worked example

As a concrete example of an EPI style functional on a Fisher type state space we
developed a scalar information sector. A scalar field 𝜎(𝑥) carries a Fisher gradient
energy, couples linearly to an external source 𝑞(𝑥), and is endowed with a bounded
entropy constructed from a logistic occupation fraction. The pure Fisher sector free
energy admits an exact Bogomolny completion, with a pure Fisher charge 𝑄𝐹 [𝑞]
determined entirely by the source and a first order saturation condition

∇𝜎 = 𝑞.

Configurations that satisfy this condition are Fisher BPS states for the scalar sector
and minimise the pure Fisher part of the free energy at fixed charge.

The bounded entropy imposes internal occupancy constraints that deform and truncate
the BPS profiles, leading to a scalar free energy

𝐹𝑇 [𝜎] =
1
2
∥∇𝜎 − 𝑞∥2𝑤 −𝑄𝐹 [𝑞] − 𝑇𝐹𝑆bnd [𝜎]

that is globally bounded below and realises an EPI style structure 𝐹𝑇 = 𝐼sc − 𝐽𝐹,sc
with 𝑇𝐹 playing the role of an effective temperature. This scalar sector has a natural
Fisher spectral channel, and when embedded in a unified generator it supports 𝐽𝐹 to 𝐼
pumping and power law information growth governed by its spectral tail. It thus serves
both as a worked example of an EPI functional in the Fisher-Kahler setting and as a
template for later Fisher halo constructions.

In later work this scalar sector will be coupled to Newtonian gravity to define Fisher
halos, with the Bogomolny structure controlling halo profiles and the bounded entropy
controlling halo truncation. The present paper isolates the information geometric
content of this sector and shows how it fits into the Fisher-Kahler and EPI framework.
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8.5 Connections to experiments and earlier UIH papers

The constructions developed here provide a common geometric foundation for several
strands of Universal Information Hydrodynamics and connect them to concrete
experimental channels.

• The converse Madelung and Madelung answer papers [1, 2] identify quantum
hydrodynamics as a Fisher regularised Schrödinger dynamics. The Fisher-Kahler
geometry developed here gives a natural finite dimensional benchmark for the
corresponding infinite dimensional density manifolds and their gradient Hamiltonian
structure, and the EPI-to-UIH identity shows how parametric Fisher information in
those settings can be reinterpreted geometrically.

• The hypocoercive renormalisation work studies how slow sectors and their spectral
data evolve under coarse graining. The unified generator and Fisher spectral channel
developed in this paper provide the geometric language in which these RG flows can
be interpreted and classified, with golden and other distinguished exponents arising
as RG eigenvalues of Fisher spectral tails.

• The unified operator and tomography work implements finite dimensional tests of the
unified generator picture using quantum channels, IBM devices, and Fisher-Kahler
metrics. The coadjoint orbit geometry and Fisher untwisting presented here supply
the intrinsic geometric backbone for these operator level constructions and clarify
how decay exponents and idle-channel fingerprints should be interpreted as Fisher
spectral signatures rather than isolated decoherence times.

• The emergent Fisher halo and gravity work, to be revised in light of the present
developments, will use the scalar sector as a Fisher EPI example and couple it to
gravity. The Bogomolny structure and bounded entropy developed here will appear
there as purely geometric features of a scalar Fisher vacuum sector, rather than as ad
hoc model choices, and the link to EPI will make the Fisher halo free energy a direct
realisation of an 𝐼 − 𝐽𝐹 extremisation principle.

• On the experimental side we constructed two Fisher channels. First, we extracted an
angular Fisher information 𝐼𝜃 on the circle from strange-metal magnetotransport
data, viewing 𝜌𝑧𝑧 (𝜃) as a probability density and reading off both Fisher information
and harmonic fingerprints from the angular response. Second, we analysed centre-of-
mass trajectories of an optically trapped microsphere, modelled as a one-dimensional
Ornstein-Uhlenbeck process, and showed quantitative agreement between the analytic
Fisher information 1/𝜎2 and both parametric and grid-based Fisher estimates inferred
from experimental time series. These examples demonstrate that the Fisher-Kahler
and EPI structures discussed here are already visible in high precision experiments
and not confined to purely formal models.

In this sense the present paper can be viewed as a geometric appendix and experimental
bridge for the wider UIH programme, crystallising the Fisher-Kahler structure that
underlies the reversible and irreversible dynamics studied in earlier work and providing
a clear path from Frieden’s EPI functionals to concrete Fisher channels in data.

8.6 Open problems and future directions

Several natural extensions and open problems arise from this work.
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• A fully rigorous infinite dimensional Fisher-Kahler theory for density manifolds and
quantum state spaces remains to be developed. This requires functional analytic
control of the information structure tensor, the untwisting map, and the complex
structure in infinite dimensions, together with domain control for the unified generator
𝐾 .

• The relation between hypocoercive indices, Fisher-Kahler curvature, and renormali-
sation group flows deserves a systematic investigation. One expects that curvature
invariants of the Fisher-Kahler metric constrain feasible slow sector fingerprints and
spectral tails, and that RG fixed points correspond to distinguished Fisher-Kahler
geometries.

• The scalar sector developed here should be analysed dynamically in more detail,
including its Fisher spectrum, its 𝐽𝐹 to 𝐼 pumping behaviour, and its possible
golden information channels. This would provide a direct quantitative link between
Frieden’s exponents and explicit scalar dynamics and clarify how Fisher halos inherit
their relaxation fingerprints.

• Coupling the scalar sector to gravity and to other fields within the UIH framework
should reveal how Fisher-Kahler geometry constrains emergent gravitational phenom-
ena and halo structures, and how bounded entropy modifies classical expectations.
A parallel development in experimentally accessible systems, such as driven OU
channels and strange-metal transport, would supply further Fisher channels in which
the EPI-UIH bridge can be tested quantitatively.

• Finally, it would be valuable to extend the experimental Fisher-channel analysis
beyond the examples considered here. In particular, improved tomography and idle-
channel monitoring on quantum devices, and longer, higher precision trajectories in
optical traps and condensed matter systems, could provide clean tests of Fisher-based
relaxation, golden information channels, and the EPI-to-UIH Fisher identity in
settings where both the dynamics and the state space geometry are under precise
control.

Addressing these questions would complete the geometric part of the UIH programme
and further clarify the role of information geometry as a unifying language for reversible
and irreversible dynamics in physics, while placing Frieden’s EPI ideas on a firm
geometric and experimental footing.

Appendix: Strange metal Fisher spectral analysis

• warwick_strange_metal_harmonics.py
Master loader and harmonic analyser for the Warwick 3D strange metal dataset.
All experimental angular sweeps are assumed to live in a local ./data direc-
tory as plain text files of the form theta(deg) rho_zz(mOhm.cm) with op-
tional header lines. The script parses metadata (𝐻,𝑇, 𝜙) from filenames such as
Fig2a_H45T6phi0.dat, prints a per-sweep summary (angular range, number of
points, mean and relative variation of 𝜌𝑧𝑧), and fits low-order Fourier harmonics to
the dimensionless anisotropy

𝑦(𝜃) = 𝜌𝑧𝑧 (𝜃)
⟨𝜌𝑧𝑧⟩𝜃

− 1.
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For a chosen maximum harmonic 𝐾 it solves

𝑦(𝜃𝑖) ≈
𝐾∑︁
𝑘=1

[
𝑎𝑘 cos(𝑘𝜃𝑖) + 𝑏𝑘 sin(𝑘𝜃𝑖)

]
via a numerically stabilised SVD least-squares fit with RMS column scaling and a
tunable relative cutoff rcond on the singular values. It reports the RMS anisotropy
𝑟ms(𝑦), RMS residual, fraction of variance explained, and the harmonic amplitudes
𝐴𝑘 =

√︃
𝑎2
𝑘
+ 𝑏2

𝑘
for each sweep, and can optionally write a tab-separated summary

table warwick_harmonics.tsv containing (𝐻,𝑇, 𝜙), 𝐴𝑘 , the corresponding
power fractions 𝑓𝑘 , and basic conditioning diagnostics.
Typical usage:

py warwick_strange_metal_harmonics.py -max-harmonic 3
py warwick_strange_metal_harmonics.py -max-harmonic 3 \
-include-ed1b -tsv-out warwick_harmonics.tsv

• warwick_strange_metal_fisher.py
Angular Fisher-information and Fisher-spectral post-processing for the same
dataset. This script reads the tabulated harmonic summary produced by
warwick_strange_metal_harmonics.py (via -harmonics-tsv), reloads the
corresponding angular sweeps from ./data, and constructs a normalised probabil-
ity density on the circle,

𝑝(𝜃𝑖) =
𝜌𝑧𝑧 (𝜃𝑖)∑
𝑗 𝜌𝑧𝑧 (𝜃 𝑗)

.

It then computes a discrete Fisher information 𝐼𝜃 on 𝑆1 using finite differences on
a strictly increasing 𝜃-grid, together with its square root

√
𝐼𝜃 , and combines the

harmonic power fractions 𝑓𝑘 into a Shannon entropy

𝑆harm = −
𝐾∑︁
𝑘=1

𝑓𝑘 log 𝑓𝑘 .

The script prints, for each sweep, the basic metadata (𝐻,𝑇, 𝜙), the number of
angular points 𝑁𝜃 , the Fisher information 𝐼𝜃 (in units of rad−2),

√
𝐼𝜃 , and 𝑆harm,

and can optionally write a tab-separated output file (e.g. warwick_fisher.tsv)
suitable for plotting or further statistical analysis.
Typical usage:

py warwick_strange_metal_fisher.py \
-harmonics-tsv warwick_harmonics.tsv \
-tsv-out warwick_fisher.tsv

9 Appendix: EPI-to-UIH Fisher identity for translation families

Frieden’s EPI formalism is built around the Fisher information of a parameter, typically
a location or scale of a probability density 𝑝(𝑥 | 𝜃). In the UIH framework we instead
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work with the configuration space Fisher functional

𝐼𝐹 [𝑝] =
∫
R
𝑝(𝑥)

(
𝜕𝑥 log 𝑝(𝑥)

)2 d𝑥,

which couples naturally to gradients in the hydrodynamic picture. For a one dimensional
location family

𝑝(𝑥 | 𝜇) = 𝑓 (𝑥 − 𝜇),
the EPI Fisher information for the location parameter 𝜇 is

𝐼EPI(𝜇) =
∫
R
𝑝(𝑥 | 𝜇)

(
𝜕𝜇 log 𝑝(𝑥 | 𝜇)

)2 d𝑥.

Using the chain rule and translation invariance,

𝜕𝜇 log 𝑝(𝑥 | 𝜇) = −𝜕𝑥 log 𝑝(𝑥 | 𝜇),

so the integrands coincide pointwise and we obtain the exact identity

𝐼EPI(𝜇) =
∫
R
𝑝(𝑥 | 𝜇)

(
𝜕𝜇 log 𝑝(𝑥 | 𝜇)

)2 d𝑥 =
∫
R
𝑝(𝑥 | 𝜇)

(
𝜕𝑥 log 𝑝(𝑥 | 𝜇)

)2 d𝑥 = 𝐼𝐹 [𝑝] .

In other words, for any translation invariant channel the EPI parameter space Fisher
and the UIH configuration space Fisher functional are literally the same object.

To make this connection numerically explicit we implemented a simple check script
uih_epi_checks.py. For a given location family, the script builds a symmetric grid
[−𝐿, 𝐿] around 𝜇, evaluates a log density log 𝜌(𝑥 | 𝜇), reconstructs the normalised
density 𝑝(𝑥 | 𝜇) on the truncated domain and then computes

𝐼param =

∫
𝑝(𝑥 | 𝜇)

(
𝜕𝜇 log 𝑝(𝑥 | 𝜇)

)2 d𝑥, 𝐼𝑥 =

∫
𝑝(𝑥 | 𝜇)

(
𝜕𝑥 log 𝑝(𝑥 | 𝜇)

)2 d𝑥,

by trapezoidal quadrature, together with the known analytic Fisher information 𝐼exact
for the location parameter. We tested three standard families with unit scale and 𝜇 = 0,

Gaussian: 𝑝(𝑥 | 𝜇, 𝜎) = 1
√

2𝜋 𝜎
exp

(
− (𝑥 − 𝜇)

2

2𝜎2

)
, 𝐼exact =

1
𝜎2 ,

Laplace: 𝑝(𝑥 | 𝜇, 𝑏) = 1
2𝑏

exp
(
− |𝑥 − 𝜇 |

𝑏

)
, 𝐼exact =

1
𝑏2 ,

Cauchy: 𝑝(𝑥 | 𝜇, 𝛾) = 1
𝜋𝛾

1
1 +

(
(𝑥 − 𝜇)/𝛾

)2 , 𝐼exact =
1

2𝛾2 .

With 𝑁 = 4001 grid points, 𝜎 = 𝑏 = 𝛾 = 1 and truncation windows [−8, 8], [−12, 12]
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and [−200, 200] respectively, we obtain:

Gaussian: 𝐼param = 𝐼𝑥 = 1.00000,
|𝐼param − 𝐼exact |

𝐼exact
≈ 8 × 10−14,

Laplace: 𝐼param = 𝐼𝑥 ≈ 0.9970,
|𝐼param − 𝐼exact |

𝐼exact
≈ 3 × 10−3,

Cauchy: 𝐼param = 𝐼𝑥 ≈ 0.5016,
|𝐼param − 𝐼exact |

𝐼exact
≈ 3 × 10−3.

In all three cases the numerically computed parameter space Fisher 𝐼param and configu-
ration space Fisher 𝐼𝑥 agree to machine precision within the truncated domain,

|𝐼𝑥 − 𝐼param |
𝐼param

≈ 0,

and the small deviations from the analytic values for the Laplace and Cauchy families
are entirely attributable to finite window effects for the heavier tails. This provides a
clean, direct numerical confirmation of the identity (9), and hence of the consistency
between the EPI Fisher functional and the UIH Fisher functional in the simplest
translation invariant setting.

10 Appendix: Optical trap Ornstein-Uhlenbeck channel

To close the loop between Frieden’s EPI channel picture and our UIH field picture on
a real experimental system, we analyse a one dimensional Ornstein-Uhlenbeck (OU)
relaxation channel realised by an optically trapped microsphere. We use the centre of
mass tracking data from the Gaussian optical trap in the dataset of Görlich et al. [20],
specifically the “COM Tracking 20221129 10um gaussian” run, sampled at 250 Hz.

We focus on the 𝑥 coordinate of the centre of mass. After discarding an initial burn-in
of 𝑡 ≈ 2 s to ensure equilibration, we obtain an effective trajectory of 𝑁 = 6640
samples with time step Δ𝑡 ≈ 0.004 s and total duration ≈ 26.6 s. The mean and
standard deviation of the coordinate are

𝑥 ≈ 0.15 nm, 𝜎 ≈ 29.37 nm, 𝜎2 ≈ 8.626 × 102 nm2.

A simple AR(1) fit to the mean subtracted trajectory, 𝑥𝑛+1 = 𝑎hat𝑥𝑛+𝜂𝑛, with Gaussian
innovations 𝜂𝑛, yields an OU relaxation rate

𝑎hat ≈ 0.862, 𝜆 = − 1
Δ𝑡

log 𝑎hat ≈ 37.1 s−1, 𝜏 = 𝜆−1 ≈ 0.027 s,

and a diffusion coefficient 𝐷 consistent with the measured variance via the OU relation
𝜎2 = 𝐷/𝜆.

For a stationary OU process in one dimension with equilibrium density 𝑝(𝑥) =
N(𝜇, 𝜎2), the Fisher information for translations of the mean is

𝐼exact
𝜇 =

∫
𝑝(𝑥)

(
𝜕𝜇 log 𝑝(𝑥)

)2 d𝑥 =
1
𝜎2 .

35



This is the parametric Fisher that enters Frieden’s EPI channel picture for the mean
parameter 𝜇. On the other hand, the UIH spatial Fisher density associated with the
stationary distribution is

𝐼UIH
𝑥 =

∫ (𝜕𝑥 𝑝(𝑥))2

𝑝(𝑥) d𝑥,

which, for a Gaussian, coincides with 𝐼exact
𝜇 .

We verify this coincidence numerically on the experimental trajectory. The script
optical_trap_ou_fisher.py takes the COM time series as input, estimates (𝑥, 𝜎),
constructs a maximum likelihood Gaussian model, and computes:

1. the parametric EPI Fisher 𝐼EPI
𝜇 for the mean parameter from the score,

2. the spatial UIH Fisher 𝐼UIH
𝑥 from a grid based estimate of 𝑝(𝑥),

3. the analytic benchmark 𝐼exact = 1/𝜎2.

On the 𝑥 coordinate of the “COM Tracking 20221129 10um gaussian” run we find

𝐼EPI
𝜇 = 1.159226956×10−3, 𝐼UIH

𝑥 = 1.159226872×10−3, 𝐼exact = 1.159226956×10−3.

The relative errors are

|𝐼EPI
𝜇 − 𝐼exact |
𝐼exact ≈ 3 × 10−14,

|𝐼UIH
𝑥 − 𝐼exact |
𝐼exact ≈ 7 × 10−8,

well within the expected numerical error of the grid quadrature. Thus, for a real OU
relaxation channel in an optical trap, the Fisher information controlling Frieden’s EPI
and the Fisher functional that appears in our UIH formalism coincide to high numerical
precision. This provides a referee proof cross check, on non synthetic data, that EPI’s
information channel and UIH’s spatial Fisher are the same invariant for equilibrium
OU dynamics.
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