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Context. In the historical SUSY story, “BPS protection” is algebraic: a mass—charge bound follows from a central extension, and saturation
is tied to multiplet shortening. UIH does not assume SUSY, strings, or any related structures. It recovers a closely related mathematical core:
an exact Bogomolny square completion gives a sharp bound with a first-order equality condition. UIH formulates an operational analogue
of SUSY-style “protection” in terms of (i) a computable defect-to-bound functional, (ii) curvature-driven relaxation to the minimiser, and
(iii) equality diagnostics that certify when the system is actually on the predicted channel.

One sentence definition. In UIH the corresponding protection mechanism is geometric: a Bogomolny lower bound fixes a sharp floor, information
curvature fixes a relaxation rate, and equality certificates (BPS defect, equality dial, no-work identity) make the claim falsifiable in numerics and data.

1. The Bogomolny completion is the primitive

Let a scalar Fisher channel be described by a field o on X, with weight w(x) > 0 and a source sector encoded by g(x). The cold (zero Fisher
temperature) pure-sector free energy admits an exact square completion
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This identity gives the sharp bound
Folo] = —Qrlql,

with equality if and only if Vo = g a.e. (in the stated function class and boundary conditions). We use “BPS” only in this restricted
Bogomolny sense: saturating the completed-square bound, with no supersymmetry assumed.

2. The operational dial is the BPS defect

Define the defect-to-bound functional
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This plays the role of a “multiplet protection” diagnostic: it is a nonnegative, computable number. Small Agps means close-to-cold
saturation; large Apps signals a deformed regime (finite Fisher temperature, stiffness running, boundary flux, or coupling to additional
sectors).

The generic minimiser solves the weighted Euler-Lagrange condition
V-(w(Veo—gq)) =0,

and the pointwise BPS equation Vo = g is the sharp equality subclass (attained when g is compatible with being a gradient in the relevant
class).

3. Protection by curvature: why saturation becomes an attractor

A bound alone is static. UIH adds a second ingredient: positive information curvature (curvature coercivity of the Fisher functional in the
natural H, > 1 geometry). When curvature has a uniform lower floor xpin, > 0, Fisher gradient flows inherit quantitative relaxation estimates
of the form

F(t) — Foo < (F(0) — Fao) e 2Fmnf,

so the minimiser is not merely a special configuration but a dynamically selected attractor, with a measurable rate. This is the UIH analogue
of “radiative stability”: perturbations decay because the geometry is coercive.

4. Equality certificates: how we test the mechanism

UIH supplies three clean certificates that mirror some roles played by SUSY protection arguments, but framed without superalgebra.

1. BPS defect: Appg is the exact nonnegative gap to the Bogomolny floor. BPS saturation is equivalent to Agpg = 0.

2. Equality dial (irreversible sector): the sharp cost-entropy inequality has equality iff the protocol tangent is collinear with the Onsager
gradient-flow direction. This certifies whether the observed dynamics is genuinely the Fisher gradient flow, rather than merely fit by it.

3. No-work identity (reversible sector): the antisymmetric Liouville channel does no work on the free energy. Reversible circulation can
change trajectories, but it cannot change the dissipation budget required to reach a given free-energy level.

Together, these certificates separate (i) being near the BPS bound, (ii) being on the true gradient-flow ray, and (iii) being contaminated by
reversible circulation.



5. Relation to SUSY-style BPS protection

The historical SUSY BPS story uses symmetry algebra to argue robustness: a central extension fixes a mass—charge bound, and multiplet
shortening explains why small perturbations do not spoil saturation. UIH realises a closely analogous pattern using inequality, geometry,
and diagnostics rather than superalgebra. In this restricted, operational sense the same structural ingredients appear:

e Bounded below: the Bogomolny completion fixes a hard floor determined by the source sector.
o Rigidity: saturation selects a first-order equation (a sharp structural regime).
e Attractor: positive curvature forces relaxation toward the minimiser at a measurable rate.

o Certificates: defect, equality dial, and no-work identity indicate which regime the system is in.

Thus, for macroscopic information-theoretic models, SUSY is not required in order to obtain BPS-like robustness: the protected structure
(and its controlled failure modes) already follows from the Fisher geometry and its associated inequalities.



