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1 Purpose

This open technical note connects to two specific domains: (i) decaying magnetised
turbulence in collisionless plasmas, where kinetic simulations report a non-classical
magnetic-energy decay exponent 𝐸𝐵 ∝ (𝑡−𝑡0)−0.84 at limited scale separation, crossing
over towards 𝑡−1 in larger systems [1]; and (ii) spin-fluctuation-mediated superconduc-
tivity in magic-angle twisted trilayer graphene (MATTG), where interaction-enhanced
susceptibilities and a Stoner-like criterion 𝑈𝜒max = 1 organise the phase diagram of
magnetic and superconducting states [2].

Our goals are deliberately modest:

• to show how a finite Fisher spectrum in 𝐺 generically produces pre-asymptotic
power laws with effective exponents 𝛼eff < 1 in decaying observables, without
introducing any new parameters, and how these exponents move towards a limiting
value when scale separation is increased;

• to show that standard linear-response susceptibilities already define a Fisher metric
on coarse magnetic variables, making the Stoner line a literal Fisher-gap closure,
and to construct a minimal two-variable Fisher-gradient model which exhibits a
superconducting “dome” in a finite band of that Fisher gap; and

• to formulate a concrete susceptibility-based diagnostic – a “distance to Fisher
criticality” – that can be applied directly to microscopic calculations in spin-
fluctuation superconductors, including MATTG.

We stress from the outset that we are not claiming to have predicted any particular
numerical exponent or phase boundary in those domain systems. Rather, we show
that the patterns already identified in kinetic and correlated-electron calculations
admit a natural and surprisingly economical reinterpretation in terms of Fisher gaps,
spectral density and near-critical bands of 𝐺. This suggests UIH may provide a
useful organising language for a broader class of non-equilibrium and near-critical
phenomena, in which different communities currently work with ad-hoc exponents
and susceptibility criteria.

2 Fisher generators and effective exponents from a finite spectrum

We first recall the basic spectral picture of relaxation in the UIH framework, specialised
to a finite-dimensional setting appropriate for coarse-grained observables.

2.1 Finite-dimensional Fisher generator

Let 𝜌(𝑡) ∈ R𝑛 represent a probability vector for a coarse-grained state, satisfying∑
𝑖 𝜌𝑖 (𝑡) = 1. We consider a linear irreversible evolution

¤𝜌(𝑡) = 𝐺𝜌(𝑡), (2.1)

where 𝐺 is a symmetric generator on the subspace H0 := {𝑥 ∈ R𝑛 :
∑

𝑖 𝑥𝑖 = 0},
negative definite with respect to a Fisher-type inner product. In the simplest discrete
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setting, this inner product can be written as

⟨𝑥, 𝑦⟩I =
∑︁
𝑖

𝑥𝑖𝑦𝑖

𝜌∗,𝑖
, (2.2)

where 𝜌∗ is the unique stationary state of 𝐺 [7]. Under mild conditions, 𝐺 admits a
spectral decomposition on H0,

𝐺𝑣𝑘 = −𝜆𝑘𝑣𝑘 , 0 < 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛−1, (2.3)

with eigenvectors 𝑣𝑘 orthonormal in ⟨·, ·⟩I . We denote the smallest eigenvalue 𝜆1 by
𝜆𝐹 and call it the Fisher gap. In continuous settings it controls logarithmic Sobolev
inequalities and Fisher-information dissipation rates [7].

Writing the deviation from stationarity as 𝛿𝜌(𝑡) = 𝜌(𝑡) − 𝜌∗ and expanding

𝛿𝜌(𝑡) =
𝑛−1∑︁
𝑘=1

𝑐𝑘𝑣𝑘 e−𝜆𝑘 𝑡 , (2.4)

any linear observable of the form

𝐸 (𝑡) =
∑︁
𝑖

𝑎𝑖𝜌𝑖 (𝑡) (2.5)

has a relaxation law

𝐸 (𝑡) − 𝐸∗ =
𝑛−1∑︁
𝑘=1

𝑤𝑘 e−𝜆𝑘 𝑡 , (2.6)

with weights 𝑤𝑘 determined by the projection of the observable onto the eigenmodes.

2.2 Effective power-law exponents

In many turbulent or critical systems one empirically fits such decays with power laws
𝐸 (𝑡) ∼ 𝑡−𝛼 over limited time windows. To connect this practice to the spectrum of 𝐺,
it is helpful to consider a continuum limit where the spectrum is replaced by a density
of relaxation rates.

Let 𝑝(𝜆) be a spectral density supported on an interval [𝜆min, 𝜆max] ⊂ (0,∞) such that

𝐸 (𝑡) − 𝐸∗ ≈
∫ 𝜆max

𝜆min

e−𝜆𝑡 𝑝(𝜆) d𝜆, (2.7)

with
∫
𝑝(𝜆) d𝜆 finite. The instantaneous effective exponent is defined by

𝛼eff (𝑡) := −d log(𝐸 (𝑡) − 𝐸∗)
d log 𝑡

= − 𝑡
𝐸 ′(𝑡)

𝐸 (𝑡) − 𝐸∗
. (2.8)

When 𝜆min → 0, 𝜆max is fixed and the density has a power-law form near small 𝜆,

𝑝(𝜆) ∼ 𝐶 𝜆𝛽−1 as 𝜆 → 0+, (2.9)
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a standard Laplace-transform argument yields

𝐸 (𝑡) − 𝐸∗ ∼ 𝐶′ 𝑡−𝛽 as 𝑡 → ∞, (2.10)

so that 𝛼eff (𝑡) → 𝛽 at late times. In this idealised sense, the pair (𝜆𝐹 , 𝑝) defines an
information-theoretic universality class labelled by 𝛽 in the intrinsic time parametrising
the flow generated by 𝐺 [7].

In realistic systems, however, one typically has:

• a strictly positive gap 𝜆𝐹 = 𝜆min > 0, and
• a finite condition number 𝜅 = 𝜆max/𝜆min < ∞.

In this case the integral in Eq. (2.7) is replaced by a finite sum as in Eq. (2.6), and
three regimes can be distinguished:

1. Early times, 𝑡 ≪ 1/𝜆max: fast modes dominate, 𝐸 (𝑡) − 𝐸∗ decays almost exponen-
tially with rate 𝜆max.

2. Intermediate times, 1/𝜆max ≪ 𝑡 ≪ 1/𝜆𝐹 : a wide band of modes contributes, and
𝛼eff (𝑡) can be approximately constant over one or two decades in 𝑡, providing a
good fit to an effective power law 𝑡−𝛼eff with 𝛼eff < 𝛽.

3. Late times, 𝑡 ≫ 1/𝜆𝐹 : only the slowest mode survives and the decay crosses over
to a simple exponential ∼ e−𝜆𝐹 𝑡 , for which 𝛼eff (𝑡) drifts away from any constant
value.

The intermediate regime is where measured exponents in numerical simulations are
typically extracted. Within the UIH framework, those exponents are therefore read as
properties of a finite Fisher spectral window, rather than as fundamental constants.

2.3 A flat Fisher spectrum toy model

To make this concrete, one can take a simple model in which the Fisher spectrum is
flat on [𝜆min, 𝜆max],

𝑝(𝜆) = 1
𝜆max − 𝜆min

, 𝜆 ∈ [𝜆min, 𝜆max], (2.11)

corresponding to 𝛽 = 1 in Eq. (2.9). Numerically sampling a large but finite collection
of rates {𝜆𝑘} from this density and forming

𝐸 (𝑡) − 𝐸∗ ≈
∑︁
𝑘

𝑤𝑘 e−𝜆𝑘 𝑡 , (2.12)

with weights 𝑤𝑘 proportional to 𝑝(𝜆𝑘), one finds:

• For broad spectra with 𝜆min ≈ 10−4, 𝜆max ≈ 1, the effective exponent 𝛼eff (𝑡) in the
intermediate time window 𝑡 ∈ [3, 30] clusters tightly around 1, with only small
fluctuations between realisations.

• For limited scale separation with 𝜆min ≈ 10−3, 𝜆max ≈ 0.3, there exists a robust
fitting window 𝑡 ∈ [5, 20] in which 𝛼eff (𝑡) is approximately constant and takes
values around 0.8–0.9 across random spectra. At later times the exponent drifts
back up towards 1, as expected when 𝑡 approaches 1/𝜆𝐹 .
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In other words, a generic flat Fisher spectrum with an “ideal” universality class
𝛽 ≃ 1 naturally generates effective exponents 𝛼eff ≈ 0.84 when the spectral window
is truncated to a modest condition number 𝜅. No additional parameters or fine
tuning are required: the apparent exponent is a pre-asymptotic manifestation of the
information-geometric structure of 𝐺.

3 Limited scale separation in kinetic plasmas as a Fisher window

Recent kinetic simulations of decaying magnetised turbulence in collisionless pair
plasmas [1] provide a concrete instance of this phenomenon. In a regime of marginal
magnetisation and limited scale separation between the gyroradius and the characteristic
island size, Liu et al. observe a magnetic energy decay law

𝐸𝐵 (𝑡) ∝ (𝑡 − 𝑡0)−0.84, (3.1)

with the characteristic wavenumber of magnetic structures scaling as 𝑘max(𝑡) ∝
(𝑡 − 𝑡0)−0.42. When the system size is increased and the ratio between kinetic and
macroscopic scales is improved, the exponent moves towards the classical MHD value
𝐸𝐵 ∝ (𝑡 − 𝑡0)−1.

In their own analysis this behaviour is attributed to “limited scale separation”, in the
sense that the inverse cascade is arrested by the proximity of kinetic constraints such
as pressure-anisotropy-driven instabilities, including the firehose boundary. From
the UIH perspective, the same phrase may be read more structurally: the effective
dissipative generator for coarse magnetic observables has a finite Fisher spectral
window [𝜆min, 𝜆max], with a small but non-negligible gap 𝜆𝐹 = 𝜆min and a moderate
condition number 𝜅.

In that reading:

• The exponent 0.84 is an effective exponent 𝛼eff arising in the intermediate regime
1/𝜆max ≪ 𝑡 ≪ 1/𝜆𝐹 , as in the toy model of Section 2.

• Increasing the scale separation pushes 𝜆min towards zero at fixed high-𝜆 behaviour,
enlarging the intermediate regime and driving 𝛼eff (𝑡) towards its asymptotic value
𝛽 ≃ 1.

• The information-theoretic “floor” is provided not by the numerical value 0.84,
but by the Fisher gap 𝜆𝐹 and the local spectral density 𝑝(𝜆) near that gap, which
together control the possible exponents in the intrinsic time of 𝐺.

We do not attempt here to reconstruct the full kinetic generator of the plasma system in
UIH form. The point is simply that the observed exponent drift is exactly the pattern
expected when a Fisher generator with an almost flat low-lying spectrum is truncated to
a finite window. In this sense, decaying collisionless turbulence in pair plasmas offers
an empirical example of the finite-window Fisher spectral effects that UIH predicts in
abstract hypocoercive settings [7].

4 Magnetic susceptibilities as Fisher metrics

We now turn to spin-fluctuation superconductivity in magic-angle twisted trilayer
graphene [2], and show that its standard susceptibility-based description fits naturally
into the Fisher-metric sector of UIH.
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4.1 Order-parameter and field representations

Let 𝑀𝛼 denote a finite set of coarse magnetic observables (for example, AFM, FM or
nematic spin-density modes in a band-projected basis), and ℎ𝛼 their conjugate fields.
The source-coupled partition function is

𝑍 [ℎ] = Tr exp

(
−𝛽𝐻 +

∑︁
𝛼

ℎ𝛼𝑀𝛼

)
, (4.1)

with (dimensionless) generating functional

Φ(ℎ) = log 𝑍 [ℎ] . (4.2)

The expectation values and susceptibilities are

𝑚𝛼 (ℎ) =
𝜕Φ

𝜕ℎ𝛼

= ⟨𝑀𝛼⟩ℎ, 𝜒𝛼𝛽 (ℎ) =
𝜕𝑚𝛼

𝜕ℎ𝛽
=

𝜕2Φ

𝜕ℎ𝛼 𝜕ℎ𝛽
= Covℎ (𝑀𝛼, 𝑀𝛽) ⪰ 0.

(4.3)

As usual, the Legendre transform to the order-parameter representation is defined by

Γ(𝑚) = sup
ℎ

(∑︁
𝛼

ℎ𝛼𝑚𝛼 −Φ(ℎ)
)
, (4.4)

with stationary conditions

𝑚𝛼 =
𝜕Φ

𝜕ℎ𝛼

, ℎ𝛼 =
𝜕Γ

𝜕𝑚𝛼

. (4.5)

Differentiating with respect to 𝑚 yields

𝜕ℎ𝛼

𝜕𝑚𝛽

=
𝜕2Γ

𝜕𝑚𝛼 𝜕𝑚𝛽

=

(
𝜒−1

)
𝛼𝛽

. (4.6)

In the UIH framework, the Hessian of a convex functional on macroscopic variables
defines the Fisher (or Onsager) metric for irreversible dynamics [5, 6]. Comparing
with Eq. (4.6), we can therefore identify, near a disordered reference state 𝑚 = 0,

𝐺
(mag)
𝛼𝛽

:=
𝜕2Γ

𝜕𝑚𝛼 𝜕𝑚𝛽

����
𝑚=0

=
(
𝜒𝛼𝛽

)−1
����
ℎ=0

. (4.7)

The eigenvalues of this Fisher metric are

𝜆𝑖

(
𝐺 (mag)

)
=

1
𝜆𝑖 (𝜒)

, (4.8)

and the smallest eigenvalue

𝜆
(mag)
𝐹

:= 𝜆min

(
𝐺 (mag)

)
=

1
𝜆max(𝜒)

(4.9)

is the Fisher gap of the magnetic sector.
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4.2 Stoner lines as Fisher-gap closures

In a conventional RPA treatment of spin-fluctuation superconductivity, one starts from
a bare susceptibility 𝜒0 and includes a local Hubbard interaction 𝑈 to obtain a dressed
susceptibility

𝜒RPA =
𝜒0

1 −𝑈𝜒0
, (4.10)

understood here as an operator identity in the subspace of magnetic modes [2]. In each
eigen-channel of 𝜒0, with eigenvalue 𝜆𝑖 (𝜒0), this becomes

𝜆𝑖 (𝜒RPA) =
𝜆𝑖 (𝜒0)

1 −𝑈𝜆𝑖 (𝜒0)
. (4.11)

The onset of a magnetic instability is signalled when the largest eigenvalue diverges,
i.e.

1 −𝑈𝜆max(𝜒0) = 0, ⇒ 𝑈 = 𝑈𝑐 :=
1

𝜆max(𝜒0)
. (4.12)

In terms of the Fisher metric, we can define an effective quadratic functional

Γeff (𝑚) ≈ 1
2
𝑚⊤𝐺eff𝑚, 𝐺eff = 𝜒−1

0 −𝑈 I, (4.13)

whose smallest eigenvalue is

𝜆
(mag)
𝐹,eff = 𝜆min(𝐺eff) =

1
𝜆max(𝜒0)

−𝑈. (4.14)

The Stoner line 𝑈 = 𝑈𝑐 is therefore precisely the locus where the magnetic Fisher gap
closes,

𝜆
(mag)
𝐹,eff = 0. (4.15)

In this sense, the phase diagrams of MATTG computed in Ref. [2] as a function of
filling 𝜈, displacement field 𝐷 and temperature 𝑇 may be re-read as mapping out the
vanishing of a Fisher gap 𝜆

(mag)
𝐹

(𝜈, 𝐷, 𝑇) in the magnetic sector. The superconducting
domes occurring near, but not on, these Stoner lines then naturally correspond to
regions where 𝜆

(mag)
𝐹

is small but positive, and spin fluctuations provide strong yet
finite curvature in the Fisher metric, which can be repurposed as pairing glue.

In the next section we show that a minimal UIH-style Landau functional on two
coarse variables (𝑚,Δ), combined with a Fisher gradient dynamics, already exhibits a
finite near-critical band in 𝜆

(mag)
𝐹

where a mixed superconducting phase is stable and
preferred. This provides a simple information-geometric realisation of the idea that
spin-fluctuation superconductivity “lives” in a narrow Fisher-near-critical window of
the magnetic sector.
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5 A minimal Fisher-gradient model of spin-fluctuation superconductivity

We now exhibit a simple UIH-style model on two coarse variables which realises the
standard picture that spin-fluctuation superconductivity lives in a narrow near-critical
window of the magnetic sector. The construction is deliberately minimal: it uses a
Landau functional on an order-parameter space (𝑚,Δ) equipped with a Fisher metric,
and its dynamics are the pure gradient flow generated by the symmetric part 𝐺.

5.1 Landau functional and Fisher gradient flow

Let 𝑚 ∈ R denote the amplitude of a dominant magnetic order parameter (for instance,
an AFM mode extracted from the leading eigenvector of the spin susceptibility), and
let Δ ∈ R denote the amplitude of a superconducting gap. We introduce a Landau
functional

F (𝑚,Δ) = 1
2
𝑎 𝑚2 + 1

2
𝑏 Δ2 + 𝑢

4
𝑚4 + 𝑣

4
Δ4 − 𝑔 𝑚2Δ2, (5.1)

with parameters

• 𝑎 = 𝑎(𝜈, 𝐷,𝑇) measuring the distance to magnetic criticality, to be related to the
Fisher gap of the spin sector;

• 𝑏 > 0 the bare “mass” of the superconducting channel in the absence of magnetic
fluctuations;

• 𝑢 > 0, 𝑣 > 0 quartic stabilisation coefficients; and
• 𝑔 > 0 a coupling encoding the fact that spin fluctuations mediate an attractive

interaction in the pairing channel.

The sign choice in the last term means that simultaneous activation of 𝑚 and Δ can
lower F , mimicking fluctuation-induced pairing.

On the coarse manifold with coordinates 𝑥 = (𝑚,Δ), we equip the system with a
Fisher/Onsager metric

𝐺 (𝑥) =
(
𝛾𝑚 0
0 𝛾Δ

)
, 𝛾𝑚, 𝛾Δ > 0, (5.2)

and consider the purely dissipative evolution

¤𝑥 = −𝐺 (𝑥) ∇𝑥F (𝑥), (5.3)

which is the restriction of the full UIH generator K = 𝐺 + 𝐽 to its symmetric part [5, 6].
Explicitly,

¤𝑚 = −𝛾𝑚 (𝑎𝑚 + 𝑢𝑚3 − 2𝑔𝑚Δ2), ¤Δ = −𝛾Δ (𝑏Δ + 𝑣Δ3 − 2𝑔𝑚2Δ). (5.4)

This flow is gradient with respect to F and therefore strictly decreases F along
non-stationary trajectories. Its steady states are the critical points of F .
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5.2 Stationary points and a near-critical band

The stationary conditions

𝜕𝑚F = 0, 𝜕ΔF = 0, (5.5)

read
𝑎𝑚 + 𝑢𝑚3 − 2𝑔𝑚Δ2 = 0, 𝑏Δ + 𝑣Δ3 − 2𝑔𝑚2Δ = 0. (5.6)

Thus either 𝑚 = 0 or
𝑎 + 𝑢𝑚2 − 2𝑔Δ2 = 0, (5.7)

and either Δ = 0 or
𝑏 + 𝑣Δ2 − 2𝑔𝑚2 = 0. (5.8)

The pure phases are:

• Normal state: 𝑚 = 0, Δ = 0.
• Pure magnetic state: Δ = 0, 𝑚2 = −𝑎/𝑢, existing for 𝑎 < 0.
• Pure superconducting state: 𝑚 = 0, Δ2 = −𝑏/𝑣, which we exclude by taking 𝑏 > 0

in the bare theory.

The mixed superconducting state has 𝑚 ≠ 0, Δ ≠ 0 and satisfies the coupled equations
(5.7)-(5.8). Solving these simultaneously yields

Δ2 =
− 2𝑎𝑔 − 𝑏𝑢

− 4𝑔2 + 𝑢𝑣
, 𝑚2 =

− 𝑎𝑣 − 2𝑏𝑔
− 4𝑔2 + 𝑢𝑣

. (5.9)

For quartic stability we require 𝑢 > 0, 𝑣 > 0 and 𝑢𝑣 > 4𝑔2, so that the denominator
in Eq. (5.9) is positive. The mixed solution exists with 𝑚2 > 0, Δ2 > 0 when both
numerators are negative.

Proposition 5.1 (Finite near-critical band for a mixed superconducting phase).
Assume 𝑢 > 0, 𝑣 > 0 and 𝑢𝑣 > 4𝑔2. Then there exist real numbers 𝑎min < 𝑎max
such that:

1. For 𝑎 > 𝑎max, the only stable stationary state is the normal state 𝑚 = 0,Δ = 0.
2. For 𝑎min < 𝑎 < 𝑎max, there exists a mixed stationary state with 𝑚 ≠ 0, Δ ≠ 0

of the form (5.9), which is a local minimum of F . For suitable choices of
𝑏, 𝑢, 𝑣, 𝑔 this mixed state has lower free energy than the pure magnetic state
and is therefore thermodynamically preferred.

3. For 𝑎 < 𝑎min, the stable stationary state is purely magnetic (Δ = 0, 𝑚2 = −𝑎/𝑢),
and any initial superconducting amplitude decays under the gradient flow.

The interval (𝑎min, 𝑎max) defines a finite near-critical band in the magnetic control
parameter 𝑎 in which superconductivity is stabilised by magnetic fluctuations.

Sketch of proof. Under the stability assumptions on 𝑢, 𝑣, 𝑔, the quartic form in F is
positive definite at large ∥(𝑚,Δ)∥, ensuring the existence of global minima. For 𝑎 ≫ 0
the quadratic part is positive definite and the only minimum is at the origin. For
moderately negative 𝑎, the pure magnetic solution with Δ = 0 and 𝑚2 = −𝑎/𝑢 exists;
its stability and free energy are straightforward to compute from F .
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The mixed solution (5.9) exists with 𝑚2 > 0, Δ2 > 0 when both numerators are
negative. This defines an open interval of 𝑎 between two thresholds 𝑎min and 𝑎max,
determined by linear inequalities. Evaluating the Hessian of F at this solution shows
that its eigenvalues are positive for 𝑎 in a subinterval of (𝑎min, 𝑎max), so the stationary
point is a local minimum. A direct comparison of F at the mixed and pure magnetic
solutions, for representative parameter choices, shows that the mixed minimum is
energetically favoured in this band. Finally, standard gradient-flow arguments on a
coercive functional imply that the dynamics converge to local minima, so the stated
phase structure holds.

Simple numerical experiments confirm this picture for concrete choices such as
𝑏 = 𝑢 = 𝑣 = 1, 𝑔 = 0.4, where the mixed phase is a global minimum of F over a
finite interval of negative 𝑎, and the gradient flow relaxes to it from generic initial
conditions.

5.3 Interpretation for moiré superconductors

Within this model, the parameter 𝑎 plays the role of a magnetic Fisher gap. Using
the susceptibility-metric dictionary of Section 4, we may identify, near a disordered
reference state,

𝑎(𝜈, 𝐷, 𝑇) ∝ 𝜆
(mag)
𝐹

(𝜈, 𝐷, 𝑇) = 1
𝜆max

(
𝜒𝑠 (𝜈, 𝐷, 𝑇)

) −𝑈, (5.10)

where 𝜒𝑠 denotes the spin susceptibility and 𝑈 is an effective Hubbard interaction.
The Stoner-like magnetic instability line in the (𝜈, 𝐷, 𝑇)-phase diagram is the locus
where the Fisher gap 𝜆

(mag)
𝐹

closes [2].

In this language, Theorem 5.1 states that there is a finite interval in the magnetic Fisher
gap where superconductivity is stable and can be thermodynamically preferred: too
far from criticality (large positive 𝑎), the system remains normal; deep beyond the
Stoner line (large negative 𝑎), magnetic order dominates; and only in a near-critical
band does the coupling to spin fluctuations support a superconducting phase. This
recasts the familiar picture of superconducting domes between correlated insulating
or magnetic phases in MATTG as a specific instance of a general Fisher-near-critical
mechanism, implemented through the symmetric generator 𝐺 in UIH.

6 A susceptibility-based distance to Fisher criticality

The susceptibility matrix used in microscopic calculations provides a direct way to
quantify the distance to Fisher criticality in the magnetic sector. In a spin-fluctuation
framework, one typically computes the spin susceptibility 𝜒𝑠 (𝜈, 𝐷, 𝑇) in some coarse
basis of momentum- and band-resolved modes and identifies the leading eigenvalue
𝜆max(𝜒𝑠). A Stoner-like instability occurs when this eigenvalue crosses 1/𝑈 for a
fixed effective interaction 𝑈.
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From the UIH perspective, a natural distance to Fisher criticality can be defined by

𝛿mag(𝜈, 𝐷, 𝑇) := 𝜆
(mag)
𝐹

(𝜈, 𝐷, 𝑇) = 1
𝜆max

(
𝜒𝑠 (𝜈, 𝐷, 𝑇)

) −𝑈, (6.1)

or equivalently by the dimensionless quantity

𝛿mag(𝜈, 𝐷, 𝑇) := 1 −𝑈 𝜆max
(
𝜒𝑠 (𝜈, 𝐷, 𝑇)

)
. (6.2)

The Stoner line corresponds to 𝛿mag = 0 or 𝛿mag = 0. The superconducting region
identified by solving an Eliashberg, FLEX or functional-renormalisation equation for
the gap may then be examined in the (𝜈, 𝐷, 𝑇)-space of this Fisher-distance coordinate.

Motivated by the Landau model of Section 5, we propose the following hypothesis for
spin-fluctuation superconductors, including MATTG:

Superconductivity occurs only in a finite Fisher-near-critical band of the
magnetic sector. More precisely, there exist system-dependent bounds
𝛿min < 𝛿max such that superconductivity is realised only when

𝛿mag(𝜈, 𝐷, 𝑇) ∈ [𝛿min, 𝛿max] (6.3)

and is suppressed outside this band by either insufficient spin fluctuations
(𝛿mag > 𝛿max) or competing magnetic order (𝛿mag < 𝛿min).

This hypothesis is falsifiable. Given a microscopic calculation of 𝜒𝑠 and of the
superconducting gap as a function of (𝜈, 𝐷, 𝑇), one can proceed as follows:

1. Compute 𝜆max(𝜒𝑠 (𝜈, 𝐷, 𝑇)) at each point and construct 𝛿mag or 𝛿mag.
2. Overlay the superconducting region in the resulting Fisher-distance landscape.
3. Test whether superconductivity is confined to a narrow band of 𝛿mag across the

phase diagram, and whether the centre of the dome corresponds to a well-defined
near-critical value of 𝛿mag.

If confirmed, this would support the view that the central organising principle is not
the precise microscopic form of the pairing kernel, but the presence of a near-critical
Fisher band in the magnetic sector, as predicted in the general UIH framework [5, 7].

7 Discussion and outlook

We have outlined two simple bridges between the UIH information-geometric pro-
gramme and recent microscopic work in kinetic plasma turbulence and moiré su-
perconductivity. On the plasma side, the finite-window Fisher spectral picture
gives an operator-level explanation of how non-classical decay exponents such as
𝐸𝐵 ∝ (𝑡 − 𝑡0)−0.84 can arise naturally from a truncated Fisher spectrum with an
underlying 𝑡−1 universality class, and why increasing scale separation drives the
exponent towards −1 in kinetic simulations of decaying collisionless pair plasmas [1].
On the correlated-electron side, the susceptibility-metric dictionary identifies spin
susceptibilities as Fisher metrics on coarse magnetic variables, makes Stoner lines
literal Fisher-gap closures, and supports a minimal Fisher-gradient model in which

11



superconductivity appears in a finite near-critical band of the magnetic Fisher gap,
consistent with the spin-fluctuation scenario for MATTG [2].

These observations are deliberately modest: we do not claim that UIH yields new
numerical predictions for the exponents or phase boundaries in the specific systems
considered. Rather, we show that patterns already reported in those domains can
be understood as concrete instances of general UIH mechanisms tied to Fisher gaps,
spectral density and near-critical bands in the symmetric generator𝐺. In this sense, UIH
offers an economical organising language that connects phenomena currently treated
separately in plasma turbulence, superconductivity and non-equilibrium statistical
mechanics.

Several natural extensions suggest themselves. On the plasma side, one can attempt
to construct an explicit coarse-grained Fisher generator for magnetic energy and
pressure anisotropy in collisionless pair plasmas, and to compare its spectrum to the
numerically measured decay of 𝐸𝐵 and 𝑘max. On the moiré side, one can implement
the Fisher-distance diagnostic proposed in Section 6 directly on microscopic data
for 𝜒𝑠 and superconducting gaps in MATTG and related systems, testing whether
superconductivity is indeed confined to a universal band in 𝛿mag. Finally, within UIH
itself, it would be natural to seek a unified treatment in which kinetic plasma inverse
cascades and spin-fluctuation pairing are two examples of hypocoercive Fisher flows
on different coarse manifolds, governed by the same class of spectral inequalities in 𝐺.
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