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1 Purpose and scope

This note records a small but operational check of the reversible sector described in the
later part of the “Answer” paper, in the setting where the Fisher scalar sector is coupled
to an antisymmetric transport term. The aim is not to introduce new theory, but to
make several structural claims concrete: we write the relevant operators explicitly,
state the minimal identities we rely on, and report numerical observations showing
that these identities survive discretisation in a clean, high resolution testbed.

We work on a two dimensional periodic domain, so the antisymmetric part 𝐽 has
one independent component and can be represented by a single amplitude field 𝑎(𝑥).
This is the simplest nontrivial case in which the Liouville compatibility constraint
∇· (𝜌𝐽) = 0 can be enforced by a canonical projection, and in which the “no-work”
statement can be checked in two distinct forms. The restriction to two dimensions
is deliberate: it keeps the construction transparent and avoids introducing gauge
choices for a general antisymmetric tensor. A generalisation to higher dimensions is
conceptually straightforward but is not attempted here.

Remark. Everything in this note should be read as an operational sanity check of
ongoing research, not a formal stance. The continuum identities are known from
the programme; what we add is an explicit discretisation in which adjointness,
projection, and the no-work certificate can be measured directly. We make no
claim that these tests, by themselves, settle questions of universality, continuum
limits, or model selection in applications.

2 Setting and notation

Let T2 denote the flat two torus. We write 𝑥 = (𝑥1, 𝑥2) and ∇ = (𝜕1, 𝜕2). The density
𝜌(𝑥) is assumed smooth and strictly positive, and we treat the Fisher scalar chemical
potential in the canonical form

𝜇 := log 𝜌. (2.1)
The antisymmetric operator 𝐽 is represented by a scalar amplitude 𝑎(𝑥) through the
canonical area form 𝜀:

𝐽𝑖 𝑗 (𝑥) := 𝑎(𝑥) 𝜀𝑖 𝑗 , 𝜀12 = +1, 𝜀21 = −1, 𝜀11 = 𝜀22 = 0. (2.2)

We distinguish three inner products, chosen to match the “Answer” conventions in the
scalar Fisher sector:

⟨ 𝑓 , 𝑔⟩𝐿2 :=
∫
T2

𝑓 (𝑥) 𝑔(𝑥) d𝑥, (2.3)

⟨ 𝑓 , 𝑔⟩𝐴 :=
∫
T2

𝑓 (𝑥) 𝑔(𝑥) d𝑥, (amplitude space, flat) (2.4)

⟨𝑠, 𝑣⟩𝑉 :=
∫
T2

𝑠(𝑥) · 𝑣(𝑥) d𝑥, (vector space, flat). (2.5)

For this technical note we deliberately keep these flat, since the Liouville defect
operator already carries the density weight explicitly. The weighted pairing enters
through the definition of the defect itself, as in Section 3.
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3 Liouville defect operator and its adjoint

Define the Liouville defect of the amplitude 𝑎 to be the divergence of the weighted
antisymmetric current:

𝑠(𝑎) := ∇· (𝜌𝐽) with (𝜌𝐽)𝑖 := 𝜌 𝐽𝑖 𝑗 e 𝑗 . (3.1)

In two dimensions, with 𝐽𝑖 𝑗 = 𝑎 𝜀𝑖 𝑗 , this can be written componentwise as

𝐷𝑎 := 𝑠(𝑎) =
(
−𝜕2(𝜌𝑎)
𝜕1(𝜌𝑎)

)
. (3.2)

We call 𝑎 (or equivalently 𝐽) Liouville-compatible if

𝐷𝑎 = 0. (3.3)

This is precisely the local compatibility condition used in the reversible sector of the
programme: it is stronger than antisymmetry alone and is the condition that makes the
reversible current compatible with probability conservation in the Fisher scalar sector.

The formal adjoint 𝐷∗ with respect to the flat pairings ⟨·, ·⟩𝐴 and ⟨·, ·⟩𝑉 is the unique
operator satisfying

⟨𝐷𝑎, 𝑣⟩𝑉 = ⟨𝑎, 𝐷∗𝑣⟩𝐴 for smooth periodic fields 𝑎 and 𝑣. (3.4)

A short integration by parts yields

𝐷∗
(
𝑣1
𝑣2

)
= 𝜌

(
𝜕2𝑣1 − 𝜕1𝑣2

)
. (3.5)

3.1 Canonical repair as an orthogonal projection

Given a general amplitude 𝑎, the “Answer” construction suggests a canonical way
to remove its Liouville defect by orthogonally projecting onto ker 𝐷. In the present
setting this is naturally expressed through the normal operator 𝐷∗𝐷. Formally, the
excess component 𝛿𝑎 is obtained by solving

𝐷∗𝐷 𝛿𝑎 = 𝐷∗𝐷 𝑎, (3.6)

and then defining the repaired amplitude

𝑎cons := 𝑎 − 𝛿𝑎. (3.7)

If 𝛿𝑎 solves Eq. (3.6), then 𝑎cons ∈ ker 𝐷 in the sense that 𝐷𝑎cons = 0 in the range of
the discretised operator. In finite precision numerics one expects 𝐷𝑎cons to be small at
the level of solver tolerance and roundoff.

Remark (A concrete kernel element). A particularly transparent Liouville-
compatible amplitude is obtained by fixing 𝜌𝐽 = 𝜀 pointwise. In two dimensions
this is simply

𝑎ex(𝑥) =
1

𝜌(𝑥) , (3.8)

for which 𝐷𝑎ex = 0 holds exactly at the continuum level. This element is useful as
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a reference direction when testing repair numerically.

4 Reversible drift and the no-work certificate

The reversible contribution to the density dynamics driven by 𝐽 and the Fisher scalar
potential 𝜇 = log 𝜌 takes the local form

𝑣rev := ∇·
(
𝜌 𝐽 ∇𝜇

)
. (4.1)

There are two distinct “no-work” statements one can write down.

The first is an algebraic identity that holds for any antisymmetric 𝐽:

𝑃1 :=
∫
T2

𝜌 ∇𝜇 · (𝐽∇𝜇) d𝑥 = 0, (4.2)

since 𝑢 · 𝐽𝑢 = 0 pointwise for antisymmetric 𝐽. This identity is true but weak: it does
not constrain the divergence form ∇· (𝜌𝐽∇𝜇).
The second is the continuity-based pairing

𝑃2 :=
∫
T2

𝜇 𝑣rev d𝑥, (4.3)

which is sensitive to Liouville compatibility. In the “Answer” framework, the reversible
term is required to do no work in this stronger sense when the Liouville constraint is
enforced. Operationally, the distinction between Eq. (4.2) and Eq. (4.3) is part of what
makes the Liouville condition nontrivial.

5 What is tested in this note

The numerical experiments reported later are designed to check the following minimal
structural points in a single consistent discretisation.

5.1 Adjointness of 𝐷 and 𝐷∗

We discretise Eqs. (3.2) and (3.5) on a periodic grid and check the adjoint identity
Eq. (3.4) on random fields, measuring the absolute discrepancy.

5.2 Repair as a projection onto ker 𝐷

We implement the repair map 𝑃 : 𝑎 ↦→ 𝑎cons defined by Eqs. (3.6) and (3.7) using
a matrix free conjugate gradient solve, and measure three properties: ∥𝐷 (𝑃𝑎)∥ is
driven to numerical roundoff, 𝑃(𝑃𝑎) ≈ 𝑃𝑎 (idempotency), and when 𝑎 = 𝑎ex + 𝛿 with
𝑎ex = 1/𝜌, the repaired field aligns strongly with 𝑎ex.
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5.3 No-work certificate in two forms

We compute 𝑣rev from Eq. (4.1) and evaluate 𝑃1 and 𝑃2 from Eqs. (4.2) and (4.3) for
two cases: a Liouville-compatible amplitude 𝑎ex = 1/𝜌, and a deliberately distorted
amplitude 𝑎viol = 𝑎ex + 𝛿. The purpose is to exhibit that 𝑃1 is blind to Liouville
breaking, while 𝑃2 and ∥𝑣rev∥ respond at order one.

5.4 Holonomy mechanism on an analytic loop

As a separate mechanism check, we compute the winding number of a simple analytic
loop 𝑍 (𝜃) = ei𝜃 and show that a mild smoothing leaves the winding unchanged at the
observed discretisation error. This is included only to calibrate the winding reader
used elsewhere in the programme.

5.5 Kramers–Kronig note

We include a minimal Kramers–Kronig residual calculation, but only as a bookkeeping
placeholder. As discussed later, a naive FFT-based Hilbert transform on a finite
symmetric band is not yet accurate enough to serve as quantitative evidence for
admissibility of inferred generators.

6 Numerical observations

This section records the numerical observations corresponding to Section 5. The
emphasis is on checking that the operator identities used in the reversible sector admit
a clean and stable discrete realisation, rather than on performance or on any particular
application. All tests below use a periodic grid on T2 and centred finite differences, so
that discrete integration by parts is as close as possible to the continuum calculation.

6.1 Discretisation used for the checks

Let the grid be 𝑛𝑥 × 𝑛𝑦 with spacings Δ𝑥,Δ𝑦 and periodic boundary conditions. We
discretise 𝜕1, 𝜕2 by centred differences. The discrete inner products are taken as the
obvious Riemann sums, for example

⟨ 𝑓 , 𝑔⟩𝐿2,ℎ :=
∑︁
𝑝

𝑓𝑝𝑔𝑝 Δ𝑥 Δ𝑦, ⟨𝑠, 𝑣⟩𝑉,ℎ :=
∑︁
𝑝

𝑠𝑝 · 𝑣𝑝 Δ𝑥 Δ𝑦. (6.1)

The discrete versions 𝐷ℎ and 𝐷∗
ℎ

are obtained by applying these stencils to Eqs. (3.2)
and (3.5) without additional filtering.

The density 𝜌 is a smooth strictly positive field on the grid, constructed from a small
number of random Fourier modes and then shifted and rescaled so that 𝜌 > 0 pointwise
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and ⟨𝜌⟩ = 1. For each test we form the reference Liouville-compatible amplitude
𝑎ex = 1/𝜌 from Eq. (3.8), and then distort it by an independent random perturbation 𝛿:

𝑎raw := 𝑎ex + 𝛿, 𝛿 ∼ mean-zero, smooth random field on the grid. (6.2)

The repair map 𝑃 is implemented by solving the discrete normal equations Eq. (3.6)
using a matrix free conjugate gradient method with a tolerance of order 10−10 in the
Euclidean norm of the residual.

6.2 Adjointness of 𝐷ℎ and 𝐷∗
ℎ

The first check is the discrete analogue of Eq. (3.4). For independent random fields 𝑎
and 𝑣 we measure

|⟨𝐷ℎ𝑎, 𝑣⟩𝑉,ℎ − ⟨𝑎, 𝐷∗
ℎ𝑣⟩𝐴,ℎ |. (6.3)

At 256 × 256 resolution, the mean discrepancy over 44 trials is at roundoff level,
indicating that the discretisation respects the intended integration by parts structure.

6.3 Repair as a projection onto ker 𝐷ℎ

For each trial we compute 𝑎cons := 𝑃(𝑎raw), and measure the Liouville defect norms
∥𝐷ℎ𝑎raw∥𝑉,ℎ and ∥𝐷ℎ𝑎cons∥𝑉,ℎ, together with the idempotency defect ∥𝑃(𝑃(𝑎raw)) −
𝑃(𝑎raw)∥𝐴,ℎ. We also record the alignment of the repaired amplitude with the explicit
kernel element 𝑎ex = 1/𝜌 using the flat amplitude pairing:

⟨𝑎cons, 𝑎ex⟩𝐴,ℎ . (6.4)

This quantity is not an orthogonality diagnostic; it is included here only to confirm
that, when the raw field is constructed as 𝑎ex + 𝛿, the repair map returns a field strongly
aligned with the reference kernel direction.

A representative run (the one discussed in this note) produced the following aggregate
results:

Quantity (mean over 44 trials, grid 256 × 256) Value
Adjoint discrepancy |⟨𝐷ℎ𝑎, 𝑣⟩𝑉,ℎ − ⟨𝑎, 𝐷∗

ℎ
𝑣⟩𝐴,ℎ | 2.092 × 10−16

Raw defect norm ∥𝐷ℎ𝑎raw∥𝑉,ℎ 7.676345 × 101

Repaired defect norm ∥𝐷ℎ𝑎cons∥𝑉,ℎ 8.999801 × 10−14

Alignment |⟨𝑎cons, 𝑎ex⟩𝐴,ℎ | 9.999583 × 10−1

Idempotency ∥𝑃(𝑃(𝑎)) − 𝑃(𝑎)∥𝐴,ℎ 5.822 × 10−16

Mean CG iterations (worst of two passes) 5.358 × 102

Mean final CG residual (worst of two passes) 9.830 × 10−11

Two qualitative points are worth extracting.

First, the repaired field is numerically Liouville-compatible: the defect norm collapses
from order 101 to order 10−13 at this resolution. Second, the repair map is numerically a
projector: 𝑃(𝑃(𝑎)) returns 𝑃(𝑎) to roundoff. These are the two operational properties
needed for the “repair” interpretation in Section 3.1.
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Remark (On the diagnostic |∥𝐷𝑎raw∥ − ∥𝐷𝑎ex∥|). In the present setup 𝑎ex = 1/𝜌
is chosen precisely because it lies in ker 𝐷, so 𝐷𝑎ex = 0 at the continuum level.
At finite resolution the measured ∥𝐷ℎ𝑎ex∥𝑉,ℎ is at numerical floor. Consequently
|∥𝐷ℎ𝑎raw∥𝑉,ℎ − ∥𝐷ℎ𝑎ex∥𝑉,ℎ | is essentially ∥𝐷ℎ𝑎raw∥𝑉,ℎ. This is not a defect
decomposition and should not be interpreted as such.

6.4 No-work certificate: algebraic versus continuity-based

We now evaluate the reversible drift 𝑣rev from Eq. (4.1) and the two “power” functionals
Eqs. (4.2) and (4.3). Recall that 𝑃1 vanishes for any antisymmetric 𝐽, whereas 𝑃2 is
sensitive to whether the reversible term is compatible with the Liouville constraint.

We report the three quantities 𝑃1, 𝑃2, and ∥𝑣rev∥𝐿2,ℎ, for a Liouville-compatible
amplitude 𝑎ex = 1/𝜌 and for a distorted amplitude 𝑎viol = 𝑎ex + 𝛿.

Quantity 𝑎ex = 1/𝜌 𝑎viol = 𝑎ex + 𝛿

𝑃1 =
∫
𝜌 ∇𝜇 · (𝐽∇𝜇) d𝑥 −5.434 × 10−25 4.432 × 10−25

𝑃2 =
∫
𝜇 𝑣rev d𝑥 2.527 × 10−25 8.272 × 10−25

∥𝑣rev∥𝐿2,ℎ 2.653 × 10−17 9.687 × 10−2

The behaviour matches intended separation of roles.

For 𝑎ex = 1/𝜌, the reversible drift is numerically zero and both 𝑃1 and 𝑃2 are at
floating point floor. For the distorted amplitude 𝑎viol, the algebraic quantity 𝑃1 remains
at numerical floor (as it must, by antisymmetry), while the actual reversible drift
becomes order 10−1 in 𝐿2. This is the operational content of the “no-work certificate”
in the scalar Fisher sector: antisymmetry is insufficient, and Liouville compatibility is
the extra constraint that collapses the divergence form 𝑣rev = ∇· (𝜌𝐽∇𝜇).

Remark (What this does and does not show). These checks support a specific local
statement: the Liouville constraint can be enforced by a canonical projection and,
when enforced, it makes the reversible drift vanish (in this specific Fisher-scalar
choice 𝜇 = log 𝜌). This note does not address the more delicate questions of how
𝐽 should be inferred from data, how stable the projection is under coarse graining
in applications, or how the reversible sector interacts with the full metriplectic
structure once 𝐺 is included. Those belong in separate analyses.

7 Holonomy mechanism and Kramers–Kronig caveat

This section records two auxiliary points. The first is a minimal holonomy or winding
computation on an analytic loop, included only to calibrate the winding reader used
elsewhere in the programme. The second is a caveat on a naive Kramers–Kronig
residual computed with an FFT-based Hilbert transform on a finite band.
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7.1 Winding number on a simple analytic loop

Consider the loop 𝑍 (𝜃) = ei𝜃 , 𝜃 ∈ [0, 2𝜋). Its winding number about the origin is
exactly 1. A standard numerical winding reader computes

𝑛(𝑍) :=
1

2𝜋

(
arg 𝑍 (2𝜋−) − arg 𝑍 (0)

)
, (7.1)

where arg is unwrapped along the sampled points. Using 4096 points and comparing
a “microscopic” reader with a mildly blurred one (local three point averaging), we
observed

𝑛micro ≈ 0.999756, 𝑛blur ≈ 0.999756, (7.2)
with no discrepancy at the level of the printed precision. The undercount relative to 1
is a discretisation artefact of the particular unwrapping and endpoint convention, and
provides a convenient scale for what “integer to within numerical tolerance” means
when the same reader is applied to more structured loops.

Remark (Relation to the programme). The programme uses holonomy or winding
diagnostics in settings where a complex reader 𝑍 (𝜆) is built from physical data
or from a control family 𝜌𝜆. The calculation above does not address those
constructions. It only shows that, for the simplest analytic loop, the winding reader
is stable under mild smoothing, as a sanity check for the topological mechanism.

7.2 Kramers–Kronig residual: what was (and was not) checked

A Kramers–Kronig (KK) consistency dial is useful when a susceptibility 𝜒(𝜔) is
known to be the boundary value of a function analytic in the upper half plane, with
suitable decay. In that setting the real and imaginary parts are Hilbert transforms of
each other, and KK provides a sharp admissibility constraint.

In this note we implemented only a minimal placeholder version of a KK residual,
using an FFT-based Hilbert transform on a finite symmetric frequency band. Even for
the simplest analytic one-pole susceptibility

𝜒(𝜔) = 1
𝛾 − i𝜔

, (7.3)

the resulting baseline residual was large (of order unity in the chosen normalisation).
This does not indicate a failure of analyticity of 𝜒. It indicates that the naive finite-band
periodic Hilbert transform is not a faithful numerical proxy for the principal value
integral on R. A quantitative KK dial requires a more careful discretisation (for
example, a semi-infinite quadrature, explicit principal value handling, or a windowed
and de-aliased transform).

Remark (Why this is mentioned at all). KK is conceptually important in the unified-
operator story, where one wants admissibility conditions on inferred generators.
However, the version included in the present diagnostic script should be treated as
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a bookkeeping hook only. A proper KK dial is a separate numerical task.

8 Integration within the UIH programme

The “Answer” paper develops the irreversible sector as a Fisher-metric gradient
flow and then sketches how reversible and irreversible parts can be combined into a
unified operator K = 𝐺 + 𝐽. Within that story, the reversible component 𝐽 is not an
arbitrary antisymmetric perturbation: it is constrained by probability conservation in
the weighted geometry, and it is precisely this constraint that permits the “no-work”
interpretation.

The present technical note supports that part of the story in an explicitly operational
way, in the simplest nontrivial setting.

8.1 What is now operational rather than schematic

The core operator claims checked here are:

Adjointness: the discrete operators corresponding to Eqs. (3.2) and (3.5) satisfy the
adjoint identity Eq. (3.4) to roundoff on a high resolution periodic grid. This is
the minimal finite-dimensional analogue of the continuum integration by parts used
repeatedly in the programme.

Canonical repair: there is a constructive and numerically stable map 𝑃 that takes
a general antisymmetric amplitude 𝑎 and returns a Liouville-compatible amplitude
𝑎cons ∈ ker 𝐷 by solving the normal equation Eq. (3.6). In our tests, the repaired
defect ∥𝐷ℎ𝑎cons∥ collapses to roundoff and 𝑃 is idempotent to roundoff. This is an
operational form of the “repair” idea in the later part of the Answer paper.

No-work separation: antisymmetry alone enforces the algebraic cancellation 𝑃1 = 0,
but does not guarantee that the reversible divergence term 𝑣rev = ∇· (𝜌𝐽∇𝜇) vanishes.
When Liouville compatibility is enforced by 𝑃, the reversible drift collapses to
numerical floor. When Liouville compatibility is violated at order one, the reversible
drift is order one while 𝑃1 remains essentially zero. This sharp separation is precisely
the content of the no-work certificate in the Fisher scalar setting.

8.2 How it connects to other parts of the work

These observations fit naturally into the broader programme in three ways.

First, they provide a concrete procedure for maintaining structural constraints in
numerical solvers that use K = 𝐺 + 𝐽. In particular, any inferred or proposed
antisymmetric component can be passed through the projection 𝑃 to obtain a Liouville-
compatible reversible component. This is closely analogous in spirit to gauge fixing or
Hodge-type projections, but it is tied directly to the Fisher scalar geometry used in the
programme.

Second, they clarify the interpretation of the reversible sector as a form of “protection”
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that is operational rather than microscopic. The constraint ∇· (𝜌𝐽) = 0 is checkable
and enforceable at the level of the effective operator, and the no-work property can be
verified directly. In this sense the reversible sector can be stabilised without appeal to
additional microscopic symmetries.

Third, they support the internal consistency of the unified-operator decomposition.
The programme’s irreversible sector is already tightly constrained by convex regularity
and the Fisher functional. The present check shows that the reversible sector can be
constrained comparably tightly by Liouville compatibility, and that the distinction
matters operationally.

9 Limitations and remaining questions

This note is intentionally narrow. The following items remain open, and should be
treated explicitly if these diagnostics are used in broader arguments.

9.1 Dimensional generality

All calculations here are in 2D, where an antisymmetric tensor has one degree of
freedom and can be encoded by a scalar amplitude. In 3D, 𝐽 has three independent
components, and the Liouville defect operator 𝐷 acts on a vector-valued amplitude.
One expects an analogous projection onto ker 𝐷 to exist, but the details (and any
gauge-type redundancies) need to be written down and tested. This is a natural next step
if one wants the same operational checks for realistic three dimensional applications.

9.2 Continuum limit and discretisation dependence

We observed roundoff-level adjointness and projection properties on a 256 × 256
periodic grid with centred differences. This is strong evidence that the discrete
operators reflect the continuum structure in that setting, but it is not a theorem. A more
complete analysis would show how the measured errors scale with grid refinement and
how robust the projection is under alternative discretisations (finite volume, spectral,
staggered grids).

9.3 Beyond the scalar Fisher choice 𝜇 = log 𝜌

The no-work check was performed for the canonical scalar Fisher choice 𝜇 = log 𝜌.
In the full programme one often considers a Fisher term plus additional potentials,
and the generator 𝐺 is present as well. The interaction of the projected 𝐽 with these
additional structures, and with the full metriplectic evolution, is not analysed here.
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9.4 Holonomy and KK as programme-level dials

The holonomy mechanism check is performed only on an analytic toy loop and does
not yet validate holonomy dials built from UIH readers. The KK residual in the present
diagnostic script is not yet numerically faithful. Both are conceptually important
within the broader programme, but both require separate dedicated numerical work
before they can be used as quantitative evidence.

10 Practical implications and cautions

Operationally, the main implication is that Liouville repair can be treated as a first-class
numerical primitive: one can enforce ∇· (𝜌𝐽) = 0 by a canonical projection that is
stable and idempotent in practice, and doing so has a visible effect on the reversible
drift. This supports the view that the reversible sector is a constrained geometric object
rather than an arbitrary antisymmetric add-on.

The main caution is rhetorical rather than technical: the results here are clean but
local. They certify that a particular set of identities in the “Answer” framework can be
realised numerically on a periodic grid at high resolution. They do not by themselves
establish universality claims, do not validate KK dials, and do not replace the need for
application-specific tests in gravity, spectroscopy, or other domains.

A Reproducibility notes

nomogenetics.com/python/uih_diag.py

The diagnostic script used for these checks implements 𝐷ℎ and 𝐷∗
ℎ

using centred
differences on a periodic grid, constructs a smooth positive 𝜌 from random Fourier
modes, and computes the projection 𝑃 by a matrix free conjugate gradient solve
of the normal equations Eq. (3.6). The reported run used a 256 × 256 grid and 44
independent trials for the anomaly projection suite. The no-work check used 𝜇 = log 𝜌

and compared 𝑎ex = 1/𝜌 to a distorted amplitude 𝑎viol = 𝑎ex + 𝛿.

We emphasise again that the KK residual reported by the script is not a quantitative
KK test; it is included only to keep the place of such a dial visible in the diagnostic
workflow.
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