Local Complexifier Rigidity

Universal Information Hydrodynamics: no hidden local change of variables

J. R. Dunkley
December 2025

Context: why “complexifying” matters. In the reversible sector we work in hydrodynamic variables (p, S) with continuity d;0 + V- (0VS/m) = 0 and
a Hamilton—Jacobi equation containing a local curvature term. A standard objection to any hydrodynamic-first approach is: “perhaps your apparent
uniqueness is an artefact of variables, and some other local reparametrisation makes a different reversible theory linear too”. Local complexifier rigidity
closes that door inside the admissible class.

One sentence theorem (Prop. 8.1). If a local, pointwise, invertible, gauge-covariant complexifier
P = F(p) elS60), F>0,
maps the Fisher-regularised reversible hydrodynamics into a linear Schrédinger evolution
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Koy = ( A+ V)q; with the same external V(x) and constant x > 0,

then, up to constant phase and scale,
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S
F(p) = c\/p, G(S,p) = o T const, a= o

Equivalently, = \/pe‘S/" is the only admissible local linearising map (up to scale), and it fixes the Fisher scale.

1. What is assumed (and what is not)

Locality. ¢(p, S) is zeroth order in spatial derivatives of (p, S). Gauge covariance. Global U(1) on S is encoded by S — S + 0, acting as a global phase on
P, 50 G(S+0,p) — G(S,p) is independent of x. Linearity. The target PDE is linear with coefficients independent of (p, S), meaning external potentials only.
Invertibility. F > 0 and G5 # 0 almost everywhere on the positivity set.

This does not classify derivative-dependent or nonlocal complexifications. Those raise differential order and exit the class by construction.

2. Why the conclusion is forced (the proof mechanism)

Two structural identities do all the work.

(i) Flux matching fixes the phase gradient and the amplitude. Linear Schrodinger evolution implies the continuity law 9 ||2 + V- ] = 0 with
= X Im(eve) = LF(p)2
J= X m(§vy) = ZF(pPve.
Hydrodynamics gives d:0 + V- (0VS/m) = 0, so the current is j = pVS/m. Gauge covariance forces G to be affine in S: requiring ¥ — ¢/7/*1 under
S— S+ogives G(S+0,p) — G(S,p) = ¢/x, hence Gs = 1/«. Therefore
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VG = _VS+Go(p) Vo, | = —F(p)VS+ %F(p)sz Vp.
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Matching | = j for arbitrary admissible states forces the Vp coefficient to vanish and the VS coefficient to match:
G, =0, F(p)? = p,

so F(p) = c,/p with ¢ > 0.

(if) Recombination fixes the Fisher scale. With the polar map ¢ = ,/p €5/ fixed (up to c and constant phase), the hydrodynamic system recombines into
a linear Schrodinger equation if and only if the curvature coefficient matches

Setting x = Fi yields « = 1/ (2m).

3. What this buys you

No hidden local linearisation. Within the admissible class there is no second local change of variables that could secretly linearise a different reversible
theory while keeping the axioms and exact projective linearity intact.

A single scale. The same local complex structure fixes the Fisher curvature scale. In particular the free-particle dispersion is pinned once « is identified
operationally.

A clean refutation criterion. A counterexample within scope must either identify a concrete error in the derivations under the axioms, or exhibit an explicit
model satisfying all axioms (including coefficient-only linearity) while producing a non-Schrodinger reversible flow. Models outside axiomatic scope do not
refute the classification, they redefine the problem.

4. Node handling (the only subtle analytic point)

All equalities are meant on the positivity set {p > 0} and extend in the weak sense using test functions, with the quotient AR/ R interpreted distributionally
(where R = /p). This is consistent with the admissible boundary classes and the functional-analytic setup used elsewhere in the programme.



