

The Metric Adjoint Split

Universal Information Hydrodynamics: separating dissipation from circulation
J. R. Dunkley
December 2025

Context. In UIH the generator is not “Hamiltonian vs dissipative” by assumption. We start with a single effective evolution operator K acting on an information state space, and then *extract* the irreversible and reversible channels from geometry. The extraction is canonical: it depends only on the choice of inner product induced by the Fisher–Kähler / BKM metric at a reference state.

One sentence definition. Given a positive definite metric M (Fisher/BKM at ρ_{ss}), the *metric adjoint split* writes any generator K uniquely as $K = G + J$ where G is the symmetric (dissipative) part and J is the skew (circulating) part in the M -geometry.

1. The construction (canonical once M is fixed)

Work on a complex coordinate space with the M -inner product

$$\langle u, v \rangle_M := u^\dagger M v, \quad M \succ 0.$$

The **metric adjoint** of K is the unique operator K^\sharp satisfying $\langle u, Kv \rangle_M = \langle K^\sharp u, v \rangle_M$ for all u, v , namely

$$K^\sharp = M^{-1} K^\dagger M.$$

Then define

$$G := \frac{1}{2}(K + K^\sharp), \quad J := \frac{1}{2}(K - K^\sharp), \quad \Rightarrow \quad K = G + J.$$

By construction,

$$MG = (MG)^\dagger, \quad MJ = -(MJ)^\dagger,$$

so G is M -self-adjoint and J is M -skew-adjoint. (If working in a real coordinate representation, replace \dagger by transpose.)

2. What it means physically (no-work vs production)

Let the quadratic information functional be

$$F(u) = \frac{1}{2} u^\dagger M u, \quad \dot{u} = Ku.$$

Then

$$\dot{F} = \text{Re}(u^\dagger MKu) = \text{Re}(u^\dagger MGu), \quad \text{Re}(u^\dagger MJu) = 0.$$

So J performs **no work**: it redistributes without changing F . All production (entropy growth, information decay, cost) is carried by G . This is the precise meaning of “irreversible vs reversible” in UIH.

3. Why this is not a choice (uniqueness)

Once the metric M is fixed, the split is unique. Any other decomposition $K = \tilde{G} + \tilde{J}$ with $M\tilde{G}$ Hermitian and $M\tilde{J}$ skew-Hermitian must coincide with the above, because

$$\tilde{G} = \frac{1}{2}(\tilde{K} + \tilde{K}^\sharp) = G, \quad \tilde{J} = \frac{1}{2}(\tilde{K} - \tilde{K}^\sharp) = J.$$

So “reversible vs irreversible” is not assigned by hand. It is read off from geometry.

4. Two concrete consequences used in the programme

(i) Density-sector universality. In the GKLS setting, place the BKM metric at a full-rank stationary state ρ_{ss} . Then $G = \frac{1}{2}(K + K^\sharp)$ restricted to diagonal perturbations reproduces the classical Fisher Dirichlet dissipation of the induced Markov density dynamics. Hamiltonian dressing changes J , but leaves the diagonal Dirichlet form invariant.

(ii) Operational diagnostics. Given observed probe responses, one can estimate the Gram matrix $B_{ij} = \langle \varphi_i, G\varphi_j \rangle_M$ and test whether the inferred generator admits a consistent M -skew part J . Failures show up as violations of $MG = (MG)^\dagger$ or nonzero $\text{Re}(u^\dagger MJu)$ on test vectors.

5. Minimal falsifiers (what would actually break the claim)

- Metric inconsistency:** show that the claimed M is not the correct Fisher/BKM metric at ρ_{ss} , or that it fails to be positive definite on the claimed state space. Then the split is being taken in the wrong geometry.
- Adjoint identity failure:** exhibit u, v such that $\langle u, Kv \rangle_M \neq \langle K^\sharp u, v \rangle_M$ for $K^\sharp = M^{-1} K^\dagger M$. That would be an algebraic contradiction (it will not happen if $M \succ 0$ and the representation is consistent).
- No-work violation:** find a quadratic $F(u) = \frac{1}{2} u^\dagger M u$ with $\dot{u} = Ku$ where $\text{Re}(u^\dagger MJu) \neq 0$ despite MJ being skew-Hermitian. That would contradict linear algebra.

6. Practical takeaway

The metric adjoint split is the UIH “wiring diagram” for dynamics: it converts any generator into a symmetric G (irreversible power) and a skew J (circulation), using only the Fisher/BKM geometry. This is the mechanism that lets one unify Schrödinger, Fokker–Planck, Markov, and GKLS evolution under one operator $K = G + J$ without hand-labeling what is “Hamiltonian” and what is “dissipative”.