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1 Purpose

The aim of this open technical note is to record a rigid, purely topological statement
for a minimal internal fibre supporting colour and weak symmetries, together with a
natural choice of bundle data. The output is a closed form polynomial for a twisted
spin© Dirac index on a compact complex threefold Y, with discrete dependence on
an SU(3) instanton number. The note is deliberately narrow. It isolates one index
computation tied to one minimal internal bundle choice, and it keeps all twisting
globally well defined.

A second, explicitly marked aim is to sharpen the open dynamical continuation.
Theorem 5.2 below shows that, in the globally honest hypercharge packaging, literal
replication by tuning global line bundle flux does not occur. If replication and mixing
occur in this framework, they must enter through multiplicity of localised sectors above
a vacuum label, with mixing controlled by the spectral data of K and its effective slow
subspaces. Section 8 records a canonical three well mechanism native to CP?> and
states the corresponding qutrit slow sector target. In the updated version of this note,
Section 8 also records disciplined computational diagnostics for that target on simplex
discretisations of the moment polytope, to pin down the correct barrier height and
scaling regime for a subsequent analytic theorem.

2 Internal fibre and bundle data

2.1 The fibre

Let
Y = CP? x CP'. 2.1)

Write h3 € H?>(CP?;Z) for the hyperplane class on CP?, and hy, € H*(CP';Z) for the
hyperplane class on CP!. We identify these with their pullbacks to Y. The cohomology
ring is generated by A3, h, with relations

hy=0, h=0, (2.2)
and normalisation
/ Ry = 1. (2.3)
Y
The total Todd class factorises,
Td(TY) = Td(T'CP?) TA(TCP') = (1 + 373 + h3) (1 + ha), (2.4)

so in particular the top degree term is (Td(7Y))¢ = h%hz. Since CP? is not spin, ¥
is not spin. We work with the canonical spin® structure associated to the complex
structure, for which the index is computed by the Todd class Td(7Y).



2.2 Gauge bundles

We specify an SU(3) bundle E3 — Y pulled back from CP?, with
ci(Es) =0, c(E3)=n3h3, m€eL 2.5)

and we impose c3(E3) = 0 in the minimal branch considered in the first part, since it
does not enter a degree six computation on Y. The corresponding Chern character
truncates as

ch(E3) =3 — n3 h2, (2.6)

since higher degree terms do not contribute to a degree six integral on Y under the
assumptions above.

We take an SU(2) bundle E; — Y pulled back from CP!. In the minimal topology
branch we treat E> as topologically trivial, so

ch(E,) = 2. (2.7)

2.3 Hypercharge twisting as an honest line bundle

To avoid fractional tensor powers, we introduce a primitive line bundle Ly — Y with
C1 (L()) =a h3 + b hy, a,beZ. (2.8)

We encode the Standard Model hypercharges by integer exponents kg = 6Yg € Z and
define the associated line bundles as L’(;R. Concretely,

kg =1, ky, =4, kg =-2, ke = =3, k. = —6. 2.9

This packaging is consistent with the usual statement that the faithful gauge group is a
discrete quotient in which hypercharge is quantised in units of 1/6. We will not need
any finer global information here. For any k € Z,

ch(L§) = exp(k(ahs + bhy)), (2.10)

understood as a truncated series in cohomology using hg =0and h% =0.

2.4 Standard Model multiplet bundles

Define the holomorphic bundles corresponding to one Standard Model generation as

QL=E30E®Ly", Ur=E;®LY  Dr=Ei@Lf (@l
Ly=E®Ly, Eg = L{°. (2.12)

Let
Esm =01, 9Ur®Dr® Ly @ Eg. (2.13)

We will study the twisted spin® Dirac operator D%SM and its index.
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3 Index computation

3.1 Definition

We define the net Standard Model chiral index in this internal sector by
Ism(a, b, n3) = index(D},_ ) = / ch(Esm) TA(TY). (3.1
Y

This is an integer and depends only on the topological data (a, b, n3) under the minimal
branch assumptions above.

3.2 Closed form polynomial

Proposition 3.1. For the bundle choice above one has the closed form

Ism(a, b, n3) = —=48a°b + 60a” + 180ab — 4bns — 4n3 + 15. (3.2)

Proof. One multiplies the truncated Chern characters ch(E3) = 3 — n3h2, ch(E;) = 2,
and ch(Lg) = exp(k(ahs + bhy)), forms ch(Esy) by additivity, then multiplies by
Td(TY) from Eq. (2.4). The integral over Y extracts the coefficient of h%hz using
fy B3y = 1. O

3.3 Per multiplet indices

Since DESM is block diagonal in the multiplet decomposition, its index is the sum of

the indices of the twisted operators for each bundle. The individual indices are also
rigid polynomials.

Lemma 3.2 . The multiplet indices are

Ig(a,b,n3) := index(Dy, ) = 3a’b + 3a® + 9ab + 9a + 6b — 2n3(b + 1) +6,

(3.3)
Iy(a,b,n3) := index(D} ) = 96a’b + 24a* + 72ab + 18a + 12b — n3(4b + 1) + 3,
(3.4)
Ip(a,b,n3) := index(D}, ) = —12a’b + 6a” + 18ab — 9a — 6b + n3(2b — 1) + 3,
(3.5)
IL(a,b) := index(D} ) = —27a’b + 9a* + 27ab — 9a — 6b + 2, (3.6)

Ig(a,b) = index(D}, ) = —108a°b + 18a* + 54ab — 9a — 6b + 1, (3.7)

and satisfy
ISM:IQ+IU+ID+IL+IE- (38)




Proof. Same computation as in the proposition, but applied to each summand bundle
separately, using multiplicativity of ch under tensor product and additivity under direct
sum. 0

4 Minimal branch consequences

4.1 The (a, b) = (0,0) branch

A particularly transparent regime is the minimal hypercharge branch
a=0, b =0, 4.1

in which the hypercharge twisting line bundle is topologically trivial, Ly ~ Oy, and all
dependence on (a, b) disappears. In this branch the only remaining discrete parameter
in the present truncation is the colour instanton number n3 through c;(E3) = n3 h%.

Specialising the multiplet polynomials of Lemma 3.2 yields

1p(0,0,n3) = 6 — 2n3, 4.2)
I;;(0,0,n3) = 3 — n3, 4.3)
ID (0, 0, l’l3) =3- ns3, (4.4)
11.(0,0) =2, 4.5)
I£(0,0) =1, 4.6)
and therefore
ISM(O, 0, n3) = —47’13 + 15. (4.7)

This is the simplest statement of the note: within the globally honest hypercharge
packaging, and within the minimal topology branch for weak isospin, the net chiral
index depends on the colour instanton number only through the colour charged
multiplets, while the lepton indices remain fixed.

Remark. The fixed values I;, = 2 and I = 1 in the minimal branch are not a claim
of three family replication. They are the indices of the chosen internal twisting for
a single fixed vacuum label. In particular, the value 15 at n3 = 0 should be read
only as the output of the chosen internal bundle data and the chosen convention for
what is included in Egyy.

4.2 Dependence on 3 is confined to colour charged multiplets

The full polynomial makes the confinement of n3 dependence explicit. From Lemma
3.2 one has
I1.(a,b) and Ig(a, b) are independent of n3, 4.8)

whereas
Io(a,b,n3), Iy(a,b,n3), Ip(a,b,n3) 4.9)



carry affine dependence on n3 with coefficients fixed by the ranks and hypercharge
exponents. This is the minimal version of the claim that the colour instanton number
controls only the colour sector contribution to the net chiral index within this internal
fibre choice.

5 No replication by global hypercharge flux

The preceding index formulae permit a direct obstruction statement. If one attempts to
realise N identical lepton families purely by tuning the global line bundle flux (a, b),
one would require the lepton indices to scale as

IL(a’b)zzN, IE(a’b):N’ (51)
with N > 2 an integer.

Theorem 5.1. There is no integer choice (a,b) € Z* and integer N > 2 such that
I (a,b) = 2N, Ig(a,b) = N. (5.2)

The only solution is the trivial one N = 1 with (a, b) = (0,0).

Proof. Assume Iy (a,b) = 2N and Ig(a, b) = N. Eliminating N gives

2Ig(a,b) — Ip(a,b) = 0. 5.3)
Substituting the explicit polynomials from Lemma 3.2 yields the Diophantine equation
63a’b — 27ab +2b = 9a* - 3a. (5.4)
Equivalently,
b(63a* - 27a +2) = 3a(3a - 1). (5.5)
For integer a, the quadratic
63a* - 27a +2 (5.6)
is strictly positive. Moreover, for any nonzero integer a one has the strict inequality
0<3a(3a—-1) <63a*>-27a +2, (5.7)
so the ratio 3a(3a - 1
— M (5.8)
63a? —27a +2

is a proper fraction and cannot be an integer. Hence a # 0 is impossible. If a = 0 then
the equation forces b = 0. Substituting back gives 7 (0,0) = 2 and I£(0,0) = 1, so
N = 1. This is the only solution. O

Remark. The content of this theorem is deliberately narrow. It does not say that
family replication is impossible in the framework. It says that replication cannot
be implemented as literal multiplication of the lepton indices by tuning a global
hypercharge flux within the integer packaged line bundle Ly. Any three family
mechanism must therefore be dynamical and localised, with replication living in
multiplicity of localised sectors above a fixed vacuum label, rather than in global




line bundle exponents.

6 Holomorphic representatives and an extended topology branch

6.1 A holomorphic SU(3) bundle on CP? with ¢, = n3 h%

The index computation above depends only on the Chern character. One may
nevertheless record an explicit holomorphic representative of the colour bundle on
CP? with the required second Chern class, to underline that the topological input is
not empty.

Proposition 6.1 . For each n € N there exists a rank three holomorphic vector
bundle E(n) — CP? defined as the cohomology of the monad

0 — Ogp (-1)®" — ijlgf"”) — Op (1)®" — 0, 6.1)
such that
ch(E(n)) =3 -nh3, (6.2)

hence ci(E(n)) = 0 and c;(E(n)) = n k3.

Proof. For a monad A — B — C with cohomology bundle £ = ker(B —
C)/im(A — B), one has

ch(E) = ch(B) — ch(A) — ch(C). (6.3)
Here ch(O(1)) = e”3 and ch(O(-1)) = e " on CP?, so
ch(A) +ch(C) = ne™" + ne™ = 2n + nh3, (6.4)

using hg = 0. Since ch(B) = 2n + 3, the stated formula follows. O

Pulling back E (n) along the projection CP? x CP! — CP? gives a holomorphic SU(3)
bundle on Y with ¢, = nh% as assumed above.

6.2 Remarks on possible extensions

The present index computation is intentionally minimal. Additional discrete labels can
be introduced by relaxing the minimal branch assumptions, for example by allowing
further topological data in the weak and hypercharge sectors, or by allowing additional
internal bundles beyond Egy;.

Any such extension should respect two constraints if the note is to remain a clean
theorem statement. First, the hypercharge twisting should remain globally honest,
avoiding fractional tensor powers. Second, the extension should not weaken the



obstruction of Theorem 5.1 by allowing replication to be encoded purely in a change
of global flux. If replication and mixing are to be claimed, they should be claimed as
consequences of dynamical localisation and slow sector reduction, not as consequences
of reparameterising global topological integers.

7 Interpretation and scope boundary

The index polynomial of Proposition 3.1 is a rigid topological output for a fixed
internal fibre and a fixed internal bundle choice. The dependence on nj is discrete
and controlled, and in the minimal (a, ) = (0, 0) branch the lepton indices are frozen
while the colour sector varies with 7n3.

Theorem 5.1 is the key scope delimiter. It rules out an easy but misleading route to
“three families”, namely multiplying lepton indices by tuning a global hypercharge flux.
If replication and mixing are to be discussed in this setting without overclaiming, then
replication must be a dynamical multiplicity phenomenon above a fixed vacuum label,
and mixing must be read as spectral and overlap data of an effective slow sector of the
generator K.

The remaining sections formalise a canonical three well mechanism that is native
to CP? and compatible with this scope. The mechanism does not touch the global
index polynomial. It acts within a vacuum sector by creating three long lived localised
packets whose slow exchange dynamics closes to a 3 x 3 operator

dp

E = Kglow P> JZBS RB, lTKslow =0, (7.1)

and one then interprets replication and mixing, if present, through the localisation
structure and the spectral data of Koy

8 A canonical three well Fisher sector on CP>

8.1 Moment simplex and fixed points

The complex projective plane CP? is toric. Under the standard Hamiltonian 7% action,
the moment map
u:CP? — A, (8.1)

has image the standard simplex
Ay = {(pr o p3) € R c gy + o + 3 = 1} (8.2)
The three torus fixed points map to the three vertices of A, which we denote by
vi = (1,0,0), vy =(0,1,0), vz = (0,0, 1). (8.3)

In what follows we treat u as a coarse coordinate on CP? and we build a selection
mechanism that is expressed purely in terms of p.



8.2 A canonical symmetric three well potential

Define the symmetric polynomial

V(W) == pipo + pops + pap, M€ As. (8.4)

This potential is nonnegative on A, and vanishes precisely at the vertices. It has
a single interior critical point at the barycentre u,. = (1/3,1/3,1/3) and admits an
elementary barrier height.

Lemma 8.1. Along each edge of A, the restriction of V has a unique maximum of
height 1/4 attained at the midpoint of the edge. In particular, the minimal barrier
height separating any vertex from any other vertex through the simplex is

1
AV = —. 8.5
i (8.5)

Proof. Consider the edge pu3 = O with uy +uy = 1and py, up > 0. Then V(u) = pyuo
on that edge, whose maximum on [0, 1] occurs at p; = pp = 1/2 with value 1/4. The
same computation applies to the other edges by symmetry. O

8.3 Fisher regularised selection and concentration

Let p be a probability density on CP? with respect to the standard volume form dvol,
and let u(y) € A, denote the moment map coordinate. For &£ > 0 define the Fisher
regularised selection functional

Felpl = e 2ol + [ V() o) dvol(y), 8.6)

where I [p] is the Fisher information in the underlying Kéhler metric. We impose a
moment constraint

[ o0 dvlcs) =mi,i=1.2.3 8.7

for some m = (m, mp, m3) € A,.

Proposition 8.2 (Selection limit on CP?). Fix an interior moment constraint
m € int(Ay). Let p. be a minimiser of F. subject to Eq. (8.7). As € — 0, any
weak limit point of the pushforward measures uu(p - dvol) is supported on the
vertices {vi, v, v3}.

If moreover m = u,. = (1/3,1/3,1/3), then the limiting weights are forced to be
equal:

1 1 1
/l#(pg dVOl) — 56‘;1 + 55‘;2 + §5V3- (88)
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Proof sketch. The potential term in Eq. (8.6) is minimised by measures concentrating
where V is minimal, namely at the vertices of A;. The Fisher term is a coercive
regulariser which prevents pathological oscillation and provides tightness. In the limit
& — 0 the minimisers converge, in the sense of I" convergence, to minimisers of the
potential term under the moment constraint.

An interior constraint m € int(A;) cannot be realised by a measure supported on fewer
than three vertices, since any convex combination of two distinct vertices lies on an
edge. Hence the limit support must include all three vertices. If m = p., symmetry
forces equal weights. O

8.4 Metastable qutrit slow sector target

The selection limit suggests that, for small €, the relevant degrees of freedom are the
three packet weights near the fixed points. Let U; ¢ CP? be disjoint neighbourhoods
of the three fixed points with u(U;) contained in small neighbourhoods of v;. For an
evolving density p(t, y) define the packet masses

pi(t) = / p(t,y)dvol(y), i=1,2,3, (8.9

i

so that p(f) € R? is a coarse description of the internal state once localisation has
formed.

The analytic goal is then a metastable reduction theorem: the full infinite dimensional
evolution generated by K admits, for small &, a three dimensional slow manifold on
which the packet masses close to a linear qutrit dynamics.

Remark (Target statement for a second note). One seeks an existence plus spectral
gap theorem of the following form. For & sufficiently small, there exist three
slow modes separated by a gap from the fast spectrum, and there exists a reduced
operator Kgow (&) such that, after an initial transient, the packet masses satisfy
dp . .
m = Kgow (&) p + higher order corrections, (8.10)

with 17 Kow = 0 and with a decomposition
Kilow = Gslow + Jslow (81 1)

that is the induced symmetric and antisymmetric split under the induced inner
product on the slow manifold.

A sharp quantitative target is that the slow decay rates are exponentially small with
barrier AV = 1/4 from Lemma 8.1, in the form

AV 1
_‘P\/lslow(g) = ex%_?), AV = = (812)

up to subexponential prefactors determined by local curvature and mobility data.
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8.5 Disciplined simplex diagnostics for the slow sector

To pin down the correct barrier and scaling regime, one can work on a finite simplex
lattice approximation of A;. Fix an integer N > 1 and define the lattice

1
AN = {,u €Ay € Nz}, (8.13)

with nearest neighbour adjacency given by the standard triangular lattice moves. Let
V be the discrete restriction of ?? to AEN), and define the Gibbs weights

exp(-V(u)/¢)

ZveAEM exp(-V(v)/¢)
A reversible conductance on each undirected edge (u, v) is
Vi) +V(v
Wiy 1= exp(—%), (8.15)

which is symmetric. To build a nonreversible circulation consistent with stationarity,
one chooses an oriented boundary cycle and an antisymmetric conductance g, = —qyu
supported only on boundary edges, with constant magnitude f > 0 and with nodewise
divergence free condition

Z Guv =0  forallpe A, (8.16)
v: (u,v) edge

Then the total conductance is
Cuy = Wuy + quv, (8.17)

and positivity is ensured by choosing f below the minimum of w,,, on boundary edges.
The column generator Q acting on probability vectors p is defined by

Cuv/m(v), u # vand (u,v) is an edge,

Q[IV = _277;&1/ Q7]V9 "=, (818)
0, otherwise.

By construction one has
On=0, (8.19)

and the antisymmetric part of Q is a finite dimensional analogue of J that preserves
the stationary state.

The diagnostic task is then to compute the leading spectrum of Q and verify that the
slow eigenvalues are exponentially small in & with barrier AV = 1/4, and that the slow
subspace is three dimensional and well separated from the fast spectrum. An effective
3 X 3 operator Koy can be extracted by projecting corner indicators into the slow
subspace under the 7 weighted inner product and then Galerkin reducing Q onto that
projected basis.

12



Remark (Observed scaling and gap in the discrete diagnostic). In the simplex
diagnostic described above, with a fixed circulation strength and with & swept
through the small regime, the leading nonzero slow decay rate obeys

AV
log—RAgow(€)) = 2704 const, (8.20)
€

with AV = 0.252, consistent with AV = 1/4 from Lemma 8.1. In the same regime
the next eigenvalue is order one negative, giving a very large timescale separation.
This provides a sharp numerical target for the analytic metastable reduction theorem
referenced in Remark 8.2.

8.6 Extracting an explicit 3 x 3 generator from the simplex diagnostic

We make the qutrit reduction in Remark 8.2 concrete in the discrete setting. Fix three
disjoint corner neighbourhoods in the simplex lattice, for example

Ul(r) ={ue AEN) s = 1-r}, Uér) ={ue AEN) S = 1-r}, Uér) ={ue A;N) D pz = 1-r},

(8.21)
for some small » € (0, 1). Let y; be the normalised indicator vectors of these sets,
1,00 (p)
Xi(p) = =—,  i=123 (8.22)
[T

. . (N)
viewed as vectors in RI%2 |,

Let (Ag, vi) denote the leading right eigenpairs of Q (sorted by real part, with 1y = 0).
In the metastable regime one observes a slow triple consisting of the stationary mode
and the slow complex conjugate pair. Denote by

Vilow := span{vg, Rvy, Iv;} (8.23)

the associated real three dimensional slow subspace. Let (x, y)r := 2, x()y (1) 7 (p)
be the m weighted inner product and Pgjow the 1 orthogonal projector onto Vyoy. Define
the projected corner basis

ui = PS]OWXi? l = 1329 37 (824)

and set U := [u; up usz] as a matrix with columns u;. One then defines a reduced
generator by Galerkin projection in the & inner product:

Kgow = (UTTIU) ' UTTIQU, I := diag(n), (8.25)

followed by enforcing exact column conservation in the reduced model by replacing
Kow With
Kow < Kslow — diag(lTKslow)~ (826)

This produces a bona fide 3 X 3 column generator on the packet masses.

A natural reduced stationary vector is the induced weight of each basis column under
7r7
1_[slow,i = <1a ui>7r7 i=1,2,3, (827)

normalised so that }; Il ow.; = 1.
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8.7 Weighted G oy + Jsiow Split in the reduced model

Once I is fixed, one defines the adjoint of Ko, With respect to the weighted inner
product on R3,
(X, V)M 1= x " diag(Tgiow) y. (8.28)

The corresponding adjoint is
Koy = diag(Tgow) T K], diag(TLiow), (8.29)
and the induced symmetric and antisymmetric parts are

1

1
5 (Kslow + K:k,w), Jsiow = 5 (Kslow - K:low) . (8.30)

This is the finite dimensional analogue of the K = G + J split restricted to the slow
manifold.

Gslow :=

Remark (A fully explicit qutrit instance). For one representative parameter choice
in the simplex diagnostic, taking N = 60, £ = 0.02, a fixed boundary circulation
below the positivity threshold, and a symmetric potential (6 = 0), the extracted
reduced generator has the form

—1.2687 x 107>  7.4107x 1077 1.1946 x 107
Kgow ~ | 1.1946 x 107> —1.2687 x 107> 7.4107 x 1077 |, (8.31)
7.4107 x 1077 1.1946x 1075  —1.2687 x 1073

with induced stationary weights Ilgow = (1/3,1/3, 1/3) by symmetry.
In that case the weighted decomposition Eq. (8.30) gives
—1.2687x107°  6.343535x107® 6.343535%x107°

Gyow ~ | 6.343535x107° —1.2687x107° 6.343535%x107°,
6.343535%107° 6.343535%107% —1.2687x107°

. o\ (832
0 ~5.602465x107¢  5.602465x10~
Jgow ~ | 5.602465%107° 0 —5.602465x107¢ |.
~5.602465x107¢  5.602465x107° 0

This is a concrete G + J qutrit slow sector in the precise sense of Remark 8.2. It
does not prove the continuum theorem, but it pins down the correct symmetry class
and the correct scaling regime for the analytic continuation.

9 Localisation and overlap: a discrete Witten surrogate

The metastable reduction target concerns the dynamics on packet masses once
localisation has formed. A complementary diagnostic is to exhibit, in a controlled
discrete semiclassical model, that the three well potential produces three localised low
energy states whose overlaps define a mixing map between a natural energy eigenbasis
and a natural corner localised basis.
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9.1 A graph semiclassical operator on the simplex

Let A be the undirected adjacency matrix of the simplex lattice AEN) andlet L=D-A
be the unnormalised graph Laplacian, with D the degree matrix. For parameters « > 0
and S > 0 define the discrete operator

H := kL + B diag(V), 9.1

where V is the restriction of ?? to AéN).

In the regime of small « and large 3, the bottom of the spectrum of H concentrates
near the minima of V, which are the three vertices of the simplex. In the symmetric
case 0 = 0, the lowest band is expected to be (nearly) threefold degenerate for large
enough N, with three eigenvectors spanning the space of corner localised states.

9.2 Corner basis, overlap matrix, and reduced operator

Let Vejg be the matrix of the lowest three eigenvectors of H (columns), and let U be the
corner localised basis obtained by projecting the corner indicators x; onto span(Veg)
and orthonormalising. Define the overlap matrix
. T
M :=Vg,U. 9.2)
This 3 X 3 matrix is the change of basis between an energy eigenbasis and a corner
localised basis. In a physical continuation, an analogous overlap structure is the correct

place for mixing information to live, since it is determined by localisation structure
and the internal operator spectrum rather than by global index data.

Define also the reduced operator in the corner basis,
Hgow := UTHU. 9.3)

In the symmetric triple degeneracy regime, Hgoy 1S close to a scalar multiple of the
identity and the nontrivial structure is carried by M.

Remark (Observed threefold degeneracy and a concrete overlap matrix). For a
representative run with N = 70 (so |A£N)| = 2556 nodes), k = 1074, B8 = 200,
6 = 0, and a corner radius » = 0.06, the lowest three eigenvalues of Eq. (9.1) are
numerically equal to within solver tolerance:

Ao ~ 1.9999289880x107%,  A; ~ 1.9999289881x107%, A, ~ 1.9999289881x107%,
9.4

and the corner localised basis U has essentially unit localisation fractions on the

three corner regions.
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In the same run the overlap matrix Eq. (9.2) is, numerically,

0.552563 —-0.629479 -0.546288
M =~ |-0.749232 -0.662287 0.005305 |. 9.5)
-0.365139 0.406365 —0.837581

This is an explicit, reproducible example of how a three well internal landscape
produces a three dimensional low energy sector with a nontrivial overlap between
an energy eigenbasis and a corner localised basis.

Remark. The operator H is a surrogate diagnostic. Itis not asserted to be the physical
twisted Dirac operator or the physical K generator. Its role is to demonstrate, in a
controlled finite model, that the CP2 moment potential produces three localised
low energy states and a natural overlap matrix that can carry mixing information
without contradicting the rigid global index constraint of Theorem 5.1.

10 Roadmap for further work

Theorem 5.1 already enforces the essential approach: within the globally honest
hypercharge packaging, any three family mechanism must be local and dynamical.
The work above isolates two theorem level bridges that would complete the replication
story without weakening the index core.

10.1 Metastable reduction theorem for X on CP?

A first theorem should take the schematic form stated in Remark 8.2, but for the
genuine infinite dimensional generator % acting on densities on CP? (or on the full
internal fibre ¥ with CP! spectator factor).

The analytic structure suggested by the simplex diagnostic is the following.

Fix a small parameter € > 0 entering the Fisher regularisation and a symmetric three
well potential V (u) with barrier AV = 1/4. Assume a local uniformly elliptic Fisher
mobility and a well posed decomposition K = G + J with G generating a reversible
gradient component and J preserving the stationary state.

Then show:

* The stationary state concentrates near the three fixed points as € — 0 and the
transition rates between wells are exponentially small with exponent governed by
the barrier AV = 1/4.

* The spectrum of K near 0 has dimension three (one stationary mode and a complex
conjugate pair) separated by a gap from the rest.

* There exist packet neighbourhoods U; and a packet projection map p — p
such that, after an initial transient, p(¢) satisfies a closed effective dynamics
dp/dt = Kgow (&) p up to small corrections.

* The reduced operator inherits a weighted G + J split and, in the symmetric case,

16



satisfies Ilgow = (1/3,1/3,1/3).

The simplex diagnostic provides explicit, reproducible numerical targets for each bullet,
including the barrier exponent and the symmetry class of Kjoy.

10.2 Localisation and overlap theorem for twisted Dirac modes

A second theorem should address replication and mixing at the level of modes of the
relevant internal operators. In the present note, the rigid index is computed for a global
twisting E'sy and cannot be multiplied by global flux. The natural place for replication
is therefore the existence of multiple localised copies of the same internal content in
the three well landscape.

The correct theorem level claim to aim for is:

* In the symmetric three well regime, the relevant twisted operator (for example, a
Witten deformed Dirac type operator compatible with the Fisher geometry) has a
three dimensional low energy sector spanned by three localised modes supported
near the three fixed points.

* These modes carry the same representation content, so replication is realised by
localisation, not by global index multiplication.

* The mixing data is encoded in overlap matrices between a natural eigenbasis and a
natural corner localised basis, and is therefore controlled by geometry and barrier
penetration rather than by ad hoc parameters.

The discrete Witten surrogate of Section 10 is a controlled demonstration that this
structure is not artificial: for the CP2 moment three well it is the generic semiclassical
behaviour.

11 Conclusion

This note isolates a rigid net chiral index computation on the minimal internal fibre
Y = CP? x CP! under a globally honest hypercharge packaging. The resulting
polynomial Isy(a, b, n3) is explicit, and in the minimal branch the lepton indices are
fixed while the colour sector depends affinely on the colour instanton number 73.

A narrow but important obstruction is also proved: lepton family replication cannot be
achieved by tuning a global hypercharge flux while keeping the line bundle twisting
globally honest. This sets the correct scope boundary. Any three family mechanism in
this framework must be local and dynamical.

The note then records a canonical three well Fisher sector native to CP? and states
the corresponding metastable qutrit slow sector target dp/dt = Kgjowp With Kgow =
Gslow + Jsiow- Disciplined simplex diagnostics are provided to pin down the correct
barrier height AV = 1/4 and to exhibit explicit, reproducible examples of Kjjow and its
G + J split in the appropriate symmetry class.

Finally, a discrete Witten surrogate is recorded to demonstrate that a three well CP2
moment potential naturally produces a three dimensional low energy sector with a
nontrivial overlap matrix between an energy eigenbasis and a corner localised basis.
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This is the correct mathematical location for mixing information to live, compatible
with the rigid index core.

A Quick reference: key formulae

For convenience we list the main explicit polynomials and the canonical three well
potential.

A.1 Index polynomials

Ism(a, b, n3) = —48a°b + 60a® + 180ab — 4bnz — 4n3 + 15. (A.1)
I1.(a,b) = =27a*b + 94> + 27ab — 9a — 6b + 2, (A.2)
Ig(a,b) = =108a%b + 184> + 54ab — 9a — 6b + 1. (A.3)

A.2 Canonical three well potential on the moment simplex

1

V() = pipa + pops + p3pi, AV = 7. (A.4)

B Reproducibility note (informal)

The discrete simplex diagnostics described in Sections 8 and 9 were implemented in
two scripts, a qutrit metastability suite that constructs a reversible generator with a
divergence free boundary circulation and extracts a reduced Kgjow, and a localisation
demo that constructs the graph operator H = kL + 8 diag(V) and extracts an overlap
matrix between an eigenbasis and a corner basis.

They are included only to set the correct barrier and symmetry class for subsequent
analytic work. They are not asserted as physical models.
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