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1 Purpose

The aim of this open technical note is to record a rigid, purely topological statement
for a minimal internal fibre supporting colour and weak symmetries, together with a
natural choice of bundle data. The output is a closed form polynomial for a twisted
spin𝑐 Dirac index on a compact complex threefold 𝑌 , with discrete dependence on
an SU(3) instanton number. The note is deliberately narrow. It isolates one index
computation tied to one minimal internal bundle choice, and it keeps all twisting
globally well defined.

A second, explicitly marked aim is to sharpen the open dynamical continuation.
Theorem 5.2 below shows that, in the globally honest hypercharge packaging, literal
replication by tuning global line bundle flux does not occur. If replication and mixing
occur in this framework, they must enter through multiplicity of localised sectors above
a vacuum label, with mixing controlled by the spectral data of K and its effective slow
subspaces. Section 8 records a canonical three well mechanism native to CP2 and
states the corresponding qutrit slow sector target. In the updated version of this note,
Section 8 also records disciplined computational diagnostics for that target on simplex
discretisations of the moment polytope, to pin down the correct barrier height and
scaling regime for a subsequent analytic theorem.

2 Internal fibre and bundle data

2.1 The fibre

Let
𝑌 = CP2 × CP1. (2.1)

Write ℎ3 ∈ 𝐻2(CP2;Z) for the hyperplane class on CP2, and ℎ2 ∈ 𝐻2(CP1;Z) for the
hyperplane class on CP1. We identify these with their pullbacks to𝑌 . The cohomology
ring is generated by ℎ3, ℎ2 with relations

ℎ3
3 = 0, ℎ2

2 = 0, (2.2)

and normalisation ∫
𝑌

ℎ2
3ℎ2 = 1. (2.3)

The total Todd class factorises,

Td(𝑇𝑌 ) = Td(𝑇CP2) Td(𝑇CP1) =
(
1 + 3

2ℎ3 + ℎ2
3
) (

1 + ℎ2
)
, (2.4)

so in particular the top degree term is (Td(𝑇𝑌 ))6 = ℎ2
3ℎ2. Since CP2 is not spin, 𝑌

is not spin. We work with the canonical spin𝑐 structure associated to the complex
structure, for which the index is computed by the Todd class Td(𝑇𝑌 ).
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2.2 Gauge bundles

We specify an SU(3) bundle 𝐸3 → 𝑌 pulled back from CP2, with

𝑐1(𝐸3) = 0, 𝑐2(𝐸3) = 𝑛3 ℎ
2
3, 𝑛3 ∈ Z, (2.5)

and we impose 𝑐3(𝐸3) = 0 in the minimal branch considered in the first part, since it
does not enter a degree six computation on 𝑌 . The corresponding Chern character
truncates as

ch(𝐸3) = 3 − 𝑛3 ℎ
2
3, (2.6)

since higher degree terms do not contribute to a degree six integral on 𝑌 under the
assumptions above.

We take an SU(2) bundle 𝐸2 → 𝑌 pulled back from CP1. In the minimal topology
branch we treat 𝐸2 as topologically trivial, so

ch(𝐸2) = 2. (2.7)

2.3 Hypercharge twisting as an honest line bundle

To avoid fractional tensor powers, we introduce a primitive line bundle 𝐿0 → 𝑌 with

𝑐1(𝐿0) = 𝑎 ℎ3 + 𝑏 ℎ2, 𝑎, 𝑏 ∈ Z. (2.8)

We encode the Standard Model hypercharges by integer exponents 𝑘𝑅 = 6𝑌𝑅 ∈ Z and
define the associated line bundles as 𝐿𝑘𝑅

0 . Concretely,

𝑘𝑞 = 1, 𝑘𝑢 = 4, 𝑘𝑑 = −2, 𝑘ℓ = −3, 𝑘𝑒 = −6. (2.9)

This packaging is consistent with the usual statement that the faithful gauge group is a
discrete quotient in which hypercharge is quantised in units of 1/6. We will not need
any finer global information here. For any 𝑘 ∈ Z,

ch(𝐿𝑘
0 ) = exp

(
𝑘 (𝑎ℎ3 + 𝑏ℎ2)

)
, (2.10)

understood as a truncated series in cohomology using ℎ3
3 = 0 and ℎ2

2 = 0.

2.4 Standard Model multiplet bundles

Define the holomorphic bundles corresponding to one Standard Model generation as

𝑄𝐿 = 𝐸3 ⊗ 𝐸2 ⊗ 𝐿
𝑘𝑞

0 , 𝑈𝑅 = 𝐸3 ⊗ 𝐿𝑘𝑢
0 , 𝐷𝑅 = 𝐸3 ⊗ 𝐿𝑘𝑑

0 , (2.11)

𝐿𝐿 = 𝐸2 ⊗ 𝐿𝑘ℓ
0 , 𝐸𝑅 = 𝐿

𝑘𝑒
0 . (2.12)

Let
𝐸SM := 𝑄𝐿 ⊕ 𝑈𝑅 ⊕ 𝐷𝑅 ⊕ 𝐿𝐿 ⊕ 𝐸𝑅 . (2.13)

We will study the twisted spin𝑐 Dirac operator 𝐷𝑌
𝐸SM

and its index.
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3 Index computation

3.1 Definition

We define the net Standard Model chiral index in this internal sector by

𝐼SM(𝑎, 𝑏, 𝑛3) := index
(
𝐷𝑌

𝐸SM

)
=

∫
𝑌

ch(𝐸SM) Td(𝑇𝑌 ). (3.1)

This is an integer and depends only on the topological data (𝑎, 𝑏, 𝑛3) under the minimal
branch assumptions above.

3.2 Closed form polynomial

Proposition 3.1 . For the bundle choice above one has the closed form

𝐼SM(𝑎, 𝑏, 𝑛3) = −48𝑎2𝑏 + 60𝑎2 + 180𝑎𝑏 − 4𝑏𝑛3 − 4𝑛3 + 15. (3.2)

Proof. One multiplies the truncated Chern characters ch(𝐸3) = 3 − 𝑛3ℎ
2
3, ch(𝐸2) = 2,

and ch(𝐿𝑘
0 ) = exp(𝑘 (𝑎ℎ3 + 𝑏ℎ2)), forms ch(𝐸SM) by additivity, then multiplies by

Td(𝑇𝑌 ) from Eq. (2.4). The integral over 𝑌 extracts the coefficient of ℎ2
3ℎ2 using∫

𝑌
ℎ2

3ℎ2 = 1.

3.3 Per multiplet indices

Since 𝐷𝑌
𝐸SM

is block diagonal in the multiplet decomposition, its index is the sum of
the indices of the twisted operators for each bundle. The individual indices are also
rigid polynomials.

Lemma 3.2 . The multiplet indices are

𝐼𝑄 (𝑎, 𝑏, 𝑛3) := index
(
𝐷𝑌

𝑄𝐿

)
= 3𝑎2𝑏 + 3𝑎2 + 9𝑎𝑏 + 9𝑎 + 6𝑏 − 2𝑛3(𝑏 + 1) + 6,

(3.3)
𝐼𝑈 (𝑎, 𝑏, 𝑛3) := index

(
𝐷𝑌

𝑈𝑅

)
= 96𝑎2𝑏 + 24𝑎2 + 72𝑎𝑏 + 18𝑎 + 12𝑏 − 𝑛3(4𝑏 + 1) + 3,

(3.4)
𝐼𝐷 (𝑎, 𝑏, 𝑛3) := index

(
𝐷𝑌

𝐷𝑅

)
= −12𝑎2𝑏 + 6𝑎2 + 18𝑎𝑏 − 9𝑎 − 6𝑏 + 𝑛3(2𝑏 − 1) + 3,

(3.5)
𝐼𝐿 (𝑎, 𝑏) := index

(
𝐷𝑌

𝐿𝐿

)
= −27𝑎2𝑏 + 9𝑎2 + 27𝑎𝑏 − 9𝑎 − 6𝑏 + 2, (3.6)

𝐼𝐸 (𝑎, 𝑏) := index
(
𝐷𝑌

𝐸𝑅

)
= −108𝑎2𝑏 + 18𝑎2 + 54𝑎𝑏 − 9𝑎 − 6𝑏 + 1, (3.7)

and satisfy
𝐼SM = 𝐼𝑄 + 𝐼𝑈 + 𝐼𝐷 + 𝐼𝐿 + 𝐼𝐸 . (3.8)
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Proof. Same computation as in the proposition, but applied to each summand bundle
separately, using multiplicativity of ch under tensor product and additivity under direct
sum.

4 Minimal branch consequences

4.1 The (𝑎, 𝑏) = (0, 0) branch

A particularly transparent regime is the minimal hypercharge branch

𝑎 = 0, 𝑏 = 0, (4.1)

in which the hypercharge twisting line bundle is topologically trivial, 𝐿0 ≃ O𝑌 , and all
dependence on (𝑎, 𝑏) disappears. In this branch the only remaining discrete parameter
in the present truncation is the colour instanton number 𝑛3 through 𝑐2(𝐸3) = 𝑛3ℎ

2
3.

Specialising the multiplet polynomials of Lemma 3.2 yields

𝐼𝑄 (0, 0, 𝑛3) = 6 − 2𝑛3, (4.2)
𝐼𝑈 (0, 0, 𝑛3) = 3 − 𝑛3, (4.3)
𝐼𝐷 (0, 0, 𝑛3) = 3 − 𝑛3, (4.4)

𝐼𝐿 (0, 0) = 2, (4.5)
𝐼𝐸 (0, 0) = 1, (4.6)

and therefore
𝐼SM(0, 0, 𝑛3) = −4𝑛3 + 15. (4.7)

This is the simplest statement of the note: within the globally honest hypercharge
packaging, and within the minimal topology branch for weak isospin, the net chiral
index depends on the colour instanton number only through the colour charged
multiplets, while the lepton indices remain fixed.

Remark. The fixed values 𝐼𝐿 = 2 and 𝐼𝐸 = 1 in the minimal branch are not a claim
of three family replication. They are the indices of the chosen internal twisting for
a single fixed vacuum label. In particular, the value 15 at 𝑛3 = 0 should be read
only as the output of the chosen internal bundle data and the chosen convention for
what is included in 𝐸SM.

4.2 Dependence on 𝑛3 is confined to colour charged multiplets

The full polynomial makes the confinement of 𝑛3 dependence explicit. From Lemma
3.2 one has

𝐼𝐿 (𝑎, 𝑏) and 𝐼𝐸 (𝑎, 𝑏) are independent of 𝑛3, (4.8)
whereas

𝐼𝑄 (𝑎, 𝑏, 𝑛3), 𝐼𝑈 (𝑎, 𝑏, 𝑛3), 𝐼𝐷 (𝑎, 𝑏, 𝑛3) (4.9)
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carry affine dependence on 𝑛3 with coefficients fixed by the ranks and hypercharge
exponents. This is the minimal version of the claim that the colour instanton number
controls only the colour sector contribution to the net chiral index within this internal
fibre choice.

5 No replication by global hypercharge flux

The preceding index formulae permit a direct obstruction statement. If one attempts to
realise 𝑁 identical lepton families purely by tuning the global line bundle flux (𝑎, 𝑏),
one would require the lepton indices to scale as

𝐼𝐿 (𝑎, 𝑏) = 2𝑁, 𝐼𝐸 (𝑎, 𝑏) = 𝑁, (5.1)

with 𝑁 ≥ 2 an integer.

Theorem 5.1 . There is no integer choice (𝑎, 𝑏) ∈ Z2 and integer 𝑁 ≥ 2 such that

𝐼𝐿 (𝑎, 𝑏) = 2𝑁, 𝐼𝐸 (𝑎, 𝑏) = 𝑁. (5.2)

The only solution is the trivial one 𝑁 = 1 with (𝑎, 𝑏) = (0, 0).

Proof. Assume 𝐼𝐿 (𝑎, 𝑏) = 2𝑁 and 𝐼𝐸 (𝑎, 𝑏) = 𝑁 . Eliminating 𝑁 gives

2𝐼𝐸 (𝑎, 𝑏) − 𝐼𝐿 (𝑎, 𝑏) = 0. (5.3)

Substituting the explicit polynomials from Lemma 3.2 yields the Diophantine equation

63𝑎2𝑏 − 27𝑎𝑏 + 2𝑏 = 9𝑎2 − 3𝑎. (5.4)

Equivalently,
𝑏
(
63𝑎2 − 27𝑎 + 2

)
= 3𝑎(3𝑎 − 1). (5.5)

For integer 𝑎, the quadratic
63𝑎2 − 27𝑎 + 2 (5.6)

is strictly positive. Moreover, for any nonzero integer 𝑎 one has the strict inequality

0 < 3𝑎(3𝑎 − 1) < 63𝑎2 − 27𝑎 + 2, (5.7)

so the ratio
𝑏 =

3𝑎(3𝑎 − 1)
63𝑎2 − 27𝑎 + 2

(5.8)

is a proper fraction and cannot be an integer. Hence 𝑎 ≠ 0 is impossible. If 𝑎 = 0 then
the equation forces 𝑏 = 0. Substituting back gives 𝐼𝐿 (0, 0) = 2 and 𝐼𝐸 (0, 0) = 1, so
𝑁 = 1. This is the only solution.

Remark. The content of this theorem is deliberately narrow. It does not say that
family replication is impossible in the framework. It says that replication cannot
be implemented as literal multiplication of the lepton indices by tuning a global
hypercharge flux within the integer packaged line bundle 𝐿0. Any three family
mechanism must therefore be dynamical and localised, with replication living in
multiplicity of localised sectors above a fixed vacuum label, rather than in global
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line bundle exponents.

6 Holomorphic representatives and an extended topology branch

6.1 A holomorphic SU(3) bundle on CP2 with 𝑐2 = 𝑛3ℎ
2
3

The index computation above depends only on the Chern character. One may
nevertheless record an explicit holomorphic representative of the colour bundle on
CP2 with the required second Chern class, to underline that the topological input is
not empty.

Proposition 6.1 . For each 𝑛 ∈ N there exists a rank three holomorphic vector
bundle 𝐸 (𝑛) → CP2 defined as the cohomology of the monad

0 −→ OCP2 (−1)⊕𝑛 −→ O⊕(2𝑛+3)
CP2 −→ OCP2 (1)⊕𝑛 −→ 0, (6.1)

such that
ch

(
𝐸 (𝑛)

)
= 3 − 𝑛 ℎ2

3, (6.2)

hence 𝑐1
(
𝐸 (𝑛)

)
= 0 and 𝑐2

(
𝐸 (𝑛)

)
= 𝑛 ℎ2

3.

Proof. For a monad 𝐴 → 𝐵 → 𝐶 with cohomology bundle 𝐸 = ker(𝐵 →
𝐶)/im(𝐴→ 𝐵), one has

ch(𝐸) = ch(𝐵) − ch(𝐴) − ch(𝐶). (6.3)

Here ch(O(1)) = eℎ3 and ch(O(−1)) = e−ℎ3 on CP2, so

ch(𝐴) + ch(𝐶) = 𝑛e−ℎ3 + 𝑛eℎ3 = 2𝑛 + 𝑛ℎ2
3, (6.4)

using ℎ3
3 = 0. Since ch(𝐵) = 2𝑛 + 3, the stated formula follows.

Pulling back 𝐸 (𝑛) along the projection CP2 ×CP1 → CP2 gives a holomorphic SU(3)
bundle on 𝑌 with 𝑐2 = 𝑛ℎ2

3 as assumed above.

6.2 Remarks on possible extensions

The present index computation is intentionally minimal. Additional discrete labels can
be introduced by relaxing the minimal branch assumptions, for example by allowing
further topological data in the weak and hypercharge sectors, or by allowing additional
internal bundles beyond 𝐸SM.

Any such extension should respect two constraints if the note is to remain a clean
theorem statement. First, the hypercharge twisting should remain globally honest,
avoiding fractional tensor powers. Second, the extension should not weaken the

8



obstruction of Theorem 5.1 by allowing replication to be encoded purely in a change
of global flux. If replication and mixing are to be claimed, they should be claimed as
consequences of dynamical localisation and slow sector reduction, not as consequences
of reparameterising global topological integers.

7 Interpretation and scope boundary

The index polynomial of Proposition 3.1 is a rigid topological output for a fixed
internal fibre and a fixed internal bundle choice. The dependence on 𝑛3 is discrete
and controlled, and in the minimal (𝑎, 𝑏) = (0, 0) branch the lepton indices are frozen
while the colour sector varies with 𝑛3.

Theorem 5.1 is the key scope delimiter. It rules out an easy but misleading route to
“three families”, namely multiplying lepton indices by tuning a global hypercharge flux.
If replication and mixing are to be discussed in this setting without overclaiming, then
replication must be a dynamical multiplicity phenomenon above a fixed vacuum label,
and mixing must be read as spectral and overlap data of an effective slow sector of the
generator K.

The remaining sections formalise a canonical three well mechanism that is native
to CP2 and compatible with this scope. The mechanism does not touch the global
index polynomial. It acts within a vacuum sector by creating three long lived localised
packets whose slow exchange dynamics closes to a 3 × 3 operator

d𝑝
d𝑡

= 𝐾slow 𝑝, 𝑝 ∈ R3, 1⊤𝐾slow = 0, (7.1)

and one then interprets replication and mixing, if present, through the localisation
structure and the spectral data of 𝐾slow.

8 A canonical three well Fisher sector on CP2

8.1 Moment simplex and fixed points

The complex projective plane CP2 is toric. Under the standard Hamiltonian 𝑇2 action,
the moment map

𝜇 : CP2 −→ Δ2 (8.1)

has image the standard simplex

Δ2 :=
{
(𝜇1, 𝜇2, 𝜇3) ∈ R3

≥0 : 𝜇1 + 𝜇2 + 𝜇3 = 1
}
. (8.2)

The three torus fixed points map to the three vertices of Δ2, which we denote by

𝑣1 = (1, 0, 0), 𝑣2 = (0, 1, 0), 𝑣3 = (0, 0, 1). (8.3)

In what follows we treat 𝜇 as a coarse coordinate on CP2 and we build a selection
mechanism that is expressed purely in terms of 𝜇.
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8.2 A canonical symmetric three well potential

Define the symmetric polynomial

𝑉 (𝜇) := 𝜇1𝜇2 + 𝜇2𝜇3 + 𝜇3𝜇1, 𝜇 ∈ Δ2. (8.4)

This potential is nonnegative on Δ2 and vanishes precisely at the vertices. It has
a single interior critical point at the barycentre 𝜇∗ = (1/3, 1/3, 1/3) and admits an
elementary barrier height.

Lemma 8.1 . Along each edge of Δ2, the restriction of𝑉 has a unique maximum of
height 1/4 attained at the midpoint of the edge. In particular, the minimal barrier
height separating any vertex from any other vertex through the simplex is

Δ𝑉 =
1
4
. (8.5)

Proof. Consider the edge 𝜇3 = 0 with 𝜇1+ 𝜇2 = 1 and 𝜇1, 𝜇2 ≥ 0. Then𝑉 (𝜇) = 𝜇1𝜇2
on that edge, whose maximum on [0, 1] occurs at 𝜇1 = 𝜇2 = 1/2 with value 1/4. The
same computation applies to the other edges by symmetry.

8.3 Fisher regularised selection and concentration

Let 𝜌 be a probability density on CP2 with respect to the standard volume form dvol,
and let 𝜇(𝑦) ∈ Δ2 denote the moment map coordinate. For 𝜀 > 0 define the Fisher
regularised selection functional

𝐹𝜀 [𝜌] := 𝜀 I[𝜌] +
∫

CP2
𝑉
(
𝜇(𝑦)

)
𝜌(𝑦) dvol(𝑦), (8.6)

where I[𝜌] is the Fisher information in the underlying Kähler metric. We impose a
moment constraint ∫

CP2
𝜇𝑖 (𝑦) 𝜌(𝑦) dvol(𝑦) = 𝑚𝑖 , 𝑖 = 1, 2, 3, (8.7)

for some 𝑚 = (𝑚1, 𝑚2, 𝑚3) ∈ Δ2.

Proposition 8.2 (Selection limit on CP2). Fix an interior moment constraint
𝑚 ∈ int(Δ2). Let 𝜌𝜀 be a minimiser of 𝐹𝜀 subject to Eq. (8.7). As 𝜀 → 0, any
weak limit point of the pushforward measures 𝜇#(𝜌𝜀 dvol) is supported on the
vertices {𝑣1, 𝑣2, 𝑣3}.
If moreover 𝑚 = 𝜇∗ = (1/3, 1/3, 1/3), then the limiting weights are forced to be
equal:

𝜇#(𝜌𝜀 dvol) ⇀ 1
3
𝛿𝑣1 +

1
3
𝛿𝑣2 +

1
3
𝛿𝑣3 . (8.8)
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Proof sketch. The potential term in Eq. (8.6) is minimised by measures concentrating
where 𝑉 is minimal, namely at the vertices of Δ2. The Fisher term is a coercive
regulariser which prevents pathological oscillation and provides tightness. In the limit
𝜀 → 0 the minimisers converge, in the sense of Γ convergence, to minimisers of the
potential term under the moment constraint.

An interior constraint 𝑚 ∈ int(Δ2) cannot be realised by a measure supported on fewer
than three vertices, since any convex combination of two distinct vertices lies on an
edge. Hence the limit support must include all three vertices. If 𝑚 = 𝜇∗, symmetry
forces equal weights.

8.4 Metastable qutrit slow sector target

The selection limit suggests that, for small 𝜀, the relevant degrees of freedom are the
three packet weights near the fixed points. Let𝑈𝑖 ⊂ CP2 be disjoint neighbourhoods
of the three fixed points with 𝜇(𝑈𝑖) contained in small neighbourhoods of 𝑣𝑖 . For an
evolving density 𝜌(𝑡, 𝑦) define the packet masses

𝑝𝑖 (𝑡) :=
∫
𝑈𝑖

𝜌(𝑡, 𝑦) dvol(𝑦), 𝑖 = 1, 2, 3, (8.9)

so that 𝑝(𝑡) ∈ R3 is a coarse description of the internal state once localisation has
formed.

The analytic goal is then a metastable reduction theorem: the full infinite dimensional
evolution generated by K admits, for small 𝜀, a three dimensional slow manifold on
which the packet masses close to a linear qutrit dynamics.

Remark (Target statement for a second note). One seeks an existence plus spectral
gap theorem of the following form. For 𝜀 sufficiently small, there exist three
slow modes separated by a gap from the fast spectrum, and there exists a reduced
operator 𝐾slow(𝜀) such that, after an initial transient, the packet masses satisfy

d𝑝
d𝑡

= 𝐾slow(𝜀) 𝑝 + higher order corrections, (8.10)

with 1⊤𝐾slow = 0 and with a decomposition

𝐾slow = 𝐺slow + 𝐽slow (8.11)

that is the induced symmetric and antisymmetric split under the induced inner
product on the slow manifold.

A sharp quantitative target is that the slow decay rates are exponentially small with
barrier Δ𝑉 = 1/4 from Lemma 8.1, in the form

−ℜ𝜆slow(𝜀) ≍ exp
(
−Δ𝑉
𝜀

)
, Δ𝑉 =

1
4
, (8.12)

up to subexponential prefactors determined by local curvature and mobility data.
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8.5 Disciplined simplex diagnostics for the slow sector

To pin down the correct barrier and scaling regime, one can work on a finite simplex
lattice approximation of Δ2. Fix an integer 𝑁 ≥ 1 and define the lattice

Δ
(𝑁 )
2 :=

{
𝜇 ∈ Δ2 : 𝜇𝑖 ∈

1
𝑁
Z
}
, (8.13)

with nearest neighbour adjacency given by the standard triangular lattice moves. Let
𝑉 be the discrete restriction of ?? to Δ

(𝑁 )
2 , and define the Gibbs weights

𝜋(𝜇) :=
exp

(
−𝑉 (𝜇)/𝜀

)∑
𝜈∈Δ(𝑁 )2

exp
(
−𝑉 (𝜈)/𝜀

) . (8.14)

A reversible conductance on each undirected edge (𝜇, 𝜈) is

𝑤𝜇𝜈 := exp
(
−𝑉 (𝜇) +𝑉 (𝜈)

2𝜀

)
, (8.15)

which is symmetric. To build a nonreversible circulation consistent with stationarity,
one chooses an oriented boundary cycle and an antisymmetric conductance 𝑞𝜇𝜈 = −𝑞𝜈𝜇
supported only on boundary edges, with constant magnitude 𝑓 > 0 and with nodewise
divergence free condition∑︁

𝜈: (𝜇,𝜈) edge
𝑞𝜇𝜈 = 0 for all 𝜇 ∈ Δ(𝑁 )2 . (8.16)

Then the total conductance is

𝑐𝜇𝜈 := 𝑤𝜇𝜈 + 𝑞𝜇𝜈 , (8.17)

and positivity is ensured by choosing 𝑓 below the minimum of 𝑤𝜇𝜈 on boundary edges.
The column generator 𝑄 acting on probability vectors 𝑝 is defined by

𝑄𝜇𝜈 :=


𝑐𝜇𝜈/𝜋(𝜈), 𝜇 ≠ 𝜈 and (𝜇, 𝜈) is an edge,
−∑𝜂≠𝜈 𝑄𝜂𝜈 , 𝜇 = 𝜈,

0, otherwise.
(8.18)

By construction one has
𝑄 𝜋 = 0, (8.19)

and the antisymmetric part of 𝑄 is a finite dimensional analogue of 𝐽 that preserves
the stationary state.

The diagnostic task is then to compute the leading spectrum of 𝑄 and verify that the
slow eigenvalues are exponentially small in 𝜀 with barrier Δ𝑉 = 1/4, and that the slow
subspace is three dimensional and well separated from the fast spectrum. An effective
3 × 3 operator 𝐾slow can be extracted by projecting corner indicators into the slow
subspace under the 𝜋 weighted inner product and then Galerkin reducing 𝑄 onto that
projected basis.
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Remark (Observed scaling and gap in the discrete diagnostic). In the simplex
diagnostic described above, with a fixed circulation strength and with 𝜀 swept
through the small regime, the leading nonzero slow decay rate obeys

log
(
−ℜ𝜆slow(𝜀)

)
≈ −Δ𝑉fit

𝜀
+ const, (8.20)

with Δ𝑉fit ≃ 0.252, consistent with Δ𝑉 = 1/4 from Lemma 8.1. In the same regime
the next eigenvalue is order one negative, giving a very large timescale separation.
This provides a sharp numerical target for the analytic metastable reduction theorem
referenced in Remark 8.2.

8.6 Extracting an explicit 3 × 3 generator from the simplex diagnostic

We make the qutrit reduction in Remark 8.2 concrete in the discrete setting. Fix three
disjoint corner neighbourhoods in the simplex lattice, for example

𝑈
(𝑟 )
1 := {𝜇 ∈ Δ(𝑁 )2 : 𝜇1 ≥ 1−𝑟}, 𝑈

(𝑟 )
2 := {𝜇 ∈ Δ(𝑁 )2 : 𝜇2 ≥ 1−𝑟}, 𝑈

(𝑟 )
3 := {𝜇 ∈ Δ(𝑁 )2 : 𝜇3 ≥ 1−𝑟},
(8.21)

for some small 𝑟 ∈ (0, 1). Let 𝜒𝑖 be the normalised indicator vectors of these sets,

𝜒𝑖 (𝜇) :=
1
𝑈
(𝑟 )
𝑖

(𝜇)

∥1
𝑈
(𝑟 )
𝑖

∥2
, 𝑖 = 1, 2, 3, (8.22)

viewed as vectors in R |Δ
(𝑁 )
2 | .

Let (𝜆𝑘 , 𝑣𝑘) denote the leading right eigenpairs of 𝑄 (sorted by real part, with 𝜆0 = 0).
In the metastable regime one observes a slow triple consisting of the stationary mode
and the slow complex conjugate pair. Denote by

𝑉slow := span{𝑣0,ℜ𝑣1,ℑ𝑣1} (8.23)

the associated real three dimensional slow subspace. Let ⟨𝑥, 𝑦⟩𝜋 :=
∑

𝜇 𝑥(𝜇)𝑦(𝜇)𝜋(𝜇)
be the 𝜋 weighted inner product and 𝑃slow the 𝜋 orthogonal projector onto𝑉slow. Define
the projected corner basis

𝑢𝑖 := 𝑃slow𝜒𝑖 , 𝑖 = 1, 2, 3, (8.24)

and set 𝑈 := [𝑢1 𝑢2 𝑢3] as a matrix with columns 𝑢𝑖. One then defines a reduced
generator by Galerkin projection in the 𝜋 inner product:

𝐾slow := (𝑈⊤Π𝑈)−1𝑈⊤Π𝑄𝑈, Π := diag(𝜋), (8.25)

followed by enforcing exact column conservation in the reduced model by replacing
𝐾slow with

𝐾slow ← 𝐾slow − diag
(
1⊤𝐾slow

)
. (8.26)

This produces a bona fide 3 × 3 column generator on the packet masses.

A natural reduced stationary vector is the induced weight of each basis column under
𝜋,

Πslow,𝑖 := ⟨1, 𝑢𝑖⟩𝜋 , 𝑖 = 1, 2, 3, (8.27)
normalised so that

∑
𝑖 Πslow,𝑖 = 1.
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8.7 Weighted 𝐺slow + 𝐽slow split in the reduced model

Once Πslow is fixed, one defines the adjoint of 𝐾slow with respect to the weighted inner
product on R3,

⟨𝑥, 𝑦⟩Πslow := 𝑥⊤ diag(Πslow) 𝑦. (8.28)
The corresponding adjoint is

𝐾∗slow := diag(Πslow)−1𝐾⊤slow diag(Πslow), (8.29)

and the induced symmetric and antisymmetric parts are

𝐺slow :=
1
2
(
𝐾slow + 𝐾∗slow

)
, 𝐽slow :=

1
2
(
𝐾slow − 𝐾∗slow

)
. (8.30)

This is the finite dimensional analogue of the K = 𝐺 + 𝐽 split restricted to the slow
manifold.

Remark (A fully explicit qutrit instance). For one representative parameter choice
in the simplex diagnostic, taking 𝑁 = 60, 𝜀 = 0.02, a fixed boundary circulation
below the positivity threshold, and a symmetric potential (𝛿 = 0), the extracted
reduced generator has the form

𝐾slow ≈
©­«
−1.2687 × 10−5 7.4107 × 10−7 1.1946 × 10−5

1.1946 × 10−5 −1.2687 × 10−5 7.4107 × 10−7

7.4107 × 10−7 1.1946 × 10−5 −1.2687 × 10−5

ª®¬ , (8.31)

with induced stationary weights Πslow = (1/3, 1/3, 1/3) by symmetry.

In that case the weighted decomposition Eq. (8.30) gives

𝐺slow ≈
©­«
−1.2687×10−5 6.343535×10−6 6.343535×10−6

6.343535×10−6 −1.2687×10−5 6.343535×10−6

6.343535×10−6 6.343535×10−6 −1.2687×10−5

ª®¬ ,
𝐽slow ≈

©­«
0 −5.602465×10−6 5.602465×10−6

5.602465×10−6 0 −5.602465×10−6

−5.602465×10−6 5.602465×10−6 0

ª®¬ .
(8.32)

This is a concrete 𝐺 + 𝐽 qutrit slow sector in the precise sense of Remark 8.2. It
does not prove the continuum theorem, but it pins down the correct symmetry class
and the correct scaling regime for the analytic continuation.

9 Localisation and overlap: a discrete Witten surrogate

The metastable reduction target concerns the dynamics on packet masses once
localisation has formed. A complementary diagnostic is to exhibit, in a controlled
discrete semiclassical model, that the three well potential produces three localised low
energy states whose overlaps define a mixing map between a natural energy eigenbasis
and a natural corner localised basis.
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9.1 A graph semiclassical operator on the simplex

Let 𝐴 be the undirected adjacency matrix of the simplex lattice Δ(𝑁 )2 and let 𝐿 = 𝐷− 𝐴
be the unnormalised graph Laplacian, with 𝐷 the degree matrix. For parameters 𝜅 > 0
and 𝛽 > 0 define the discrete operator

𝐻 := 𝜅𝐿 + 𝛽 diag(𝑉), (9.1)

where 𝑉 is the restriction of ?? to Δ
(𝑁 )
2 .

In the regime of small 𝜅 and large 𝛽, the bottom of the spectrum of 𝐻 concentrates
near the minima of 𝑉 , which are the three vertices of the simplex. In the symmetric
case 𝛿 = 0, the lowest band is expected to be (nearly) threefold degenerate for large
enough 𝑁 , with three eigenvectors spanning the space of corner localised states.

9.2 Corner basis, overlap matrix, and reduced operator

Let 𝑉eig be the matrix of the lowest three eigenvectors of 𝐻 (columns), and let𝑈 be the
corner localised basis obtained by projecting the corner indicators 𝜒𝑖 onto span(𝑉eig)
and orthonormalising. Define the overlap matrix

𝑀 := 𝑉⊤eig𝑈. (9.2)

This 3 × 3 matrix is the change of basis between an energy eigenbasis and a corner
localised basis. In a physical continuation, an analogous overlap structure is the correct
place for mixing information to live, since it is determined by localisation structure
and the internal operator spectrum rather than by global index data.

Define also the reduced operator in the corner basis,

𝐻slow := 𝑈⊤𝐻𝑈. (9.3)

In the symmetric triple degeneracy regime, 𝐻slow is close to a scalar multiple of the
identity and the nontrivial structure is carried by 𝑀 .

Remark (Observed threefold degeneracy and a concrete overlap matrix). For a
representative run with 𝑁 = 70 (so |Δ(𝑁 )2 | = 2556 nodes), 𝜅 = 10−4, 𝛽 = 200,
𝛿 = 0, and a corner radius 𝑟 = 0.06, the lowest three eigenvalues of Eq. (9.1) are
numerically equal to within solver tolerance:

𝜆0 ≈ 1.9999289880×10−4, 𝜆1 ≈ 1.9999289881×10−4, 𝜆2 ≈ 1.9999289881×10−4,
(9.4)

and the corner localised basis𝑈 has essentially unit localisation fractions on the
three corner regions.
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In the same run the overlap matrix Eq. (9.2) is, numerically,

𝑀 ≈ ©­«
0.552563 −0.629479 −0.546288
−0.749232 −0.662287 0.005305
−0.365139 0.406365 −0.837581

ª®¬ . (9.5)

This is an explicit, reproducible example of how a three well internal landscape
produces a three dimensional low energy sector with a nontrivial overlap between
an energy eigenbasis and a corner localised basis.

Remark. The operator𝐻 is a surrogate diagnostic. It is not asserted to be the physical
twisted Dirac operator or the physical K generator. Its role is to demonstrate, in a
controlled finite model, that the CP2 moment potential produces three localised
low energy states and a natural overlap matrix that can carry mixing information
without contradicting the rigid global index constraint of Theorem 5.1.

10 Roadmap for further work

Theorem 5.1 already enforces the essential approach: within the globally honest
hypercharge packaging, any three family mechanism must be local and dynamical.
The work above isolates two theorem level bridges that would complete the replication
story without weakening the index core.

10.1 Metastable reduction theorem for K on CP2

A first theorem should take the schematic form stated in Remark 8.2, but for the
genuine infinite dimensional generator K acting on densities on CP2 (or on the full
internal fibre 𝑌 with CP1 spectator factor).

The analytic structure suggested by the simplex diagnostic is the following.

Fix a small parameter 𝜀 > 0 entering the Fisher regularisation and a symmetric three
well potential 𝑉 (𝜇) with barrier Δ𝑉 = 1/4. Assume a local uniformly elliptic Fisher
mobility and a well posed decomposition K = 𝐺 + 𝐽 with 𝐺 generating a reversible
gradient component and 𝐽 preserving the stationary state.

Then show:

• The stationary state concentrates near the three fixed points as 𝜀 → 0 and the
transition rates between wells are exponentially small with exponent governed by
the barrier Δ𝑉 = 1/4.

• The spectrum ofK near 0 has dimension three (one stationary mode and a complex
conjugate pair) separated by a gap from the rest.

• There exist packet neighbourhoods 𝑈𝑖 and a packet projection map 𝜌 ↦→ 𝑝

such that, after an initial transient, 𝑝(𝑡) satisfies a closed effective dynamics
𝑑𝑝/𝑑𝑡 = 𝐾slow(𝜀)𝑝 up to small corrections.

• The reduced operator inherits a weighted 𝐺 + 𝐽 split and, in the symmetric case,
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satisfies Πslow = (1/3, 1/3, 1/3).
The simplex diagnostic provides explicit, reproducible numerical targets for each bullet,
including the barrier exponent and the symmetry class of 𝐾slow.

10.2 Localisation and overlap theorem for twisted Dirac modes

A second theorem should address replication and mixing at the level of modes of the
relevant internal operators. In the present note, the rigid index is computed for a global
twisting 𝐸SM and cannot be multiplied by global flux. The natural place for replication
is therefore the existence of multiple localised copies of the same internal content in
the three well landscape.

The correct theorem level claim to aim for is:

• In the symmetric three well regime, the relevant twisted operator (for example, a
Witten deformed Dirac type operator compatible with the Fisher geometry) has a
three dimensional low energy sector spanned by three localised modes supported
near the three fixed points.

• These modes carry the same representation content, so replication is realised by
localisation, not by global index multiplication.

• The mixing data is encoded in overlap matrices between a natural eigenbasis and a
natural corner localised basis, and is therefore controlled by geometry and barrier
penetration rather than by ad hoc parameters.

The discrete Witten surrogate of Section 10 is a controlled demonstration that this
structure is not artificial: for the CP2 moment three well it is the generic semiclassical
behaviour.

11 Conclusion

This note isolates a rigid net chiral index computation on the minimal internal fibre
𝑌 = CP2 × CP1 under a globally honest hypercharge packaging. The resulting
polynomial 𝐼SM(𝑎, 𝑏, 𝑛3) is explicit, and in the minimal branch the lepton indices are
fixed while the colour sector depends affinely on the colour instanton number 𝑛3.

A narrow but important obstruction is also proved: lepton family replication cannot be
achieved by tuning a global hypercharge flux while keeping the line bundle twisting
globally honest. This sets the correct scope boundary. Any three family mechanism in
this framework must be local and dynamical.

The note then records a canonical three well Fisher sector native to CP2 and states
the corresponding metastable qutrit slow sector target 𝑑𝑝/𝑑𝑡 = 𝐾slow𝑝 with 𝐾slow =

𝐺slow + 𝐽slow. Disciplined simplex diagnostics are provided to pin down the correct
barrier height Δ𝑉 = 1/4 and to exhibit explicit, reproducible examples of 𝐾slow and its
𝐺 + 𝐽 split in the appropriate symmetry class.

Finally, a discrete Witten surrogate is recorded to demonstrate that a three well CP2
moment potential naturally produces a three dimensional low energy sector with a
nontrivial overlap matrix between an energy eigenbasis and a corner localised basis.
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This is the correct mathematical location for mixing information to live, compatible
with the rigid index core.

A Quick reference: key formulae

For convenience we list the main explicit polynomials and the canonical three well
potential.

A.1 Index polynomials

𝐼SM(𝑎, 𝑏, 𝑛3) = −48𝑎2𝑏 + 60𝑎2 + 180𝑎𝑏 − 4𝑏𝑛3 − 4𝑛3 + 15. (A.1)

𝐼𝐿 (𝑎, 𝑏) = −27𝑎2𝑏 + 9𝑎2 + 27𝑎𝑏 − 9𝑎 − 6𝑏 + 2, (A.2)
𝐼𝐸 (𝑎, 𝑏) = −108𝑎2𝑏 + 18𝑎2 + 54𝑎𝑏 − 9𝑎 − 6𝑏 + 1. (A.3)

A.2 Canonical three well potential on the moment simplex

𝑉 (𝜇) = 𝜇1𝜇2 + 𝜇2𝜇3 + 𝜇3𝜇1, Δ𝑉 =
1
4
. (A.4)

B Reproducibility note (informal)

The discrete simplex diagnostics described in Sections 8 and 9 were implemented in
two scripts, a qutrit metastability suite that constructs a reversible generator with a
divergence free boundary circulation and extracts a reduced 𝐾slow, and a localisation
demo that constructs the graph operator 𝐻 = 𝜅𝐿 + 𝛽 diag(𝑉) and extracts an overlap
matrix between an eigenbasis and a corner basis.

They are included only to set the correct barrier and symmetry class for subsequent
analytic work. They are not asserted as physical models.
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